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Abstract
Despite recent advances in synthetic data genera-
tion, the scientific community still lacks a unified
consensus on its usefulness. It is commonly be-
lieved that synthetic data can be used for both data
exchange and boosting machine learning (ML)
training. Privacy-preserving synthetic data gen-
eration can accelerate data exchange for down-
stream tasks, but there is not enough evidence to
show how or why synthetic data can boost ML
training. In this study, we benchmarked ML per-
formance using synthetic tabular data for four use
cases: data sharing, data augmentation, class bal-
ancing, and data summarization. We observed
marginal improvements for the balancing use case
on some datasets. However, we conclude that
there is not enough evidence to claim that syn-
thetic tabular data is useful for ML training.

1. Introduction
Generative modeling is a powerful technique that can be
used to create synthetic data that mimics the properties of
a given population of real data. This can be a valuable tool
for machine learning applications, as it can help to improve
predictive ability and fairness.

When working with scarce or imbalanced datasets (Kim
et al., 2022; Ai et al., 2023), generative modeling can be used
to augment the data by creating synthetic data points that
fill in the gaps. This can help to improve the performance
of machine learning models, as they will have more data to
train on.

In addition to improving predictive ability, generative mod-
eling can also be used to improve the fairness of machine
learning models. This is because synthetic data can be cre-
ated to be more representative of the population as a whole,
which can help to reduce bias in the models. For example, a
study by van Breugel et al. (2021) found that augmenting a
dataset with synthetic data can help to improve the fairness
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of a machine learning model for predicting recidivism rates.

In this study, our focus is tabular data, which poses unique
challenges for generative modeling, including:

• Lack of local structure: Tabular data does not have the
same local structure as image, audio, or text data. This
makes it difficult for generative models to learn the
relationships between different features.

• Co-existence of categorical and numerical features:
Tabular data often contains a mix of categorical and
numerical features. This can make it difficult for gen-
erative models to learn a joint distribution over all of
the features.

• Feature missingness: Tabular data often contains miss-
ing values. This can make it difficult for generative
models to learn a complete distribution over all of the
features.

• High scarcity: Tabular data is often scarce. This means
that there is not enough data to train a generative model.

As a result of these challenges, advances in generative mod-
els for tabular data have lagged behind advances in image,
audio, and text data (Kim et al., 2023; Kotelnikov et al.,
2022). In order to address these challenges, researchers have
developed tailored synthetic data quality metrics. These met-
rics can be used to evaluate the quality of synthetic tabular
data, and to help ensure that the data is suitable for use in
machine learning applications.

In this study, we conduct a range of experiments to evaluate
the applicability of synthetically generated data for generic
downstream tabular learning tasks. We focus on four axes
of practical interest:

• Data sharing / Synthetic data quality: We evaluate
the downstream performance of models trained on syn-
thetic data and compare it to the performance of models
trained on the original data distribution. For synthetic
data to be useful, machine learning development per-
formed on synthetic data should lead to the same con-
clusions as if it were carried out on the real data. The
train-on-synthetic and test-on-real (TS-TR) paradigm
is the default experiment for evaluating the usefulness
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of generative modeling methods for data sharing. Here
are some additional details about the TS-TR paradigm:

– In the TS-TR paradigm, a generative model is
trained on a dataset of real data.

– The generative model is then used to generate
synthetic data.

– A machine learning model is trained on the syn-
thetic data.

– The performance of the machine learning model
is evaluated on a hold-out dataset of real data.

The TS-TR paradigm is a useful tool for evaluating the
usefulness of generative modeling methods for data
sharing. However, it is important to note that the TS-
TR paradigm does not provide formal privacy guar-
antees. If privacy is a concern, additional noise may
need to be added to the synthetic data as in Vietri et al.
(2022).

• Summarization: In this setting, we evaluate whether we
can use synthetic data to represent the original distribu-
tion with fewer samples. To do this, we replace a given
data population with a controllable, smaller number of
synthetic data points sampled from a generative model
that has been trained on the full real dataset. We then
use the synthetic data for downstream learning tasks.
In contrast to the data sharing study outlined above,
where we fixed the volume of synthetic data to equal
the real data used for the generative model training, in
the TS-TR setting of this experiment, we focus on the
trade-off between the number of synthetic data points
and the achievable downstream ML efficiency.

• Augmentation: To address the issue of data scarcity,
original training data can be augmented with synthetic
data to create a richer training dataset. In this setting,
we augment real data populations with synthetically
generated data before performing downstream learning
tasks. We then optimize the end learner on the aug-
mented training dataset and evaluate it on real test data.
We call this approach train-on-augmented, test-on-real
(TA-TR).

• Class balancing: For classification tasks, we can sam-
ple synthetic data conditionally from the minority cat-
egories of a given dataset to reduce or eliminate class
imbalance prior to downstream training. We then use
the balanced version of the data as a training dataset for
the downstream classifier (TA-TR). This setting differs
from the previous one in that we sample synthetic data
conditionally on the minority class.

For the synthetic data generation, we consider two gen-
erative modelling approaches (cf. Section 2.2): (i) deep
generative models (DGMs) trained from scratch using a

real data population at hand, and (ii) fine-tuned versions
of pre-trained large language models (LLMs) that incorpo-
rate prior information beyond the real data at hand. These
experiments aim to unveil if we can achieve an equivalent
or better representation of the training data distribution for
general, downstream model-agnostic learning purposes, via
leveraging synthetic samples from generative models. We
also examine whether the synthetic samples have the capac-
ity to efficiently compress statistical information from the
training data population without further guidance, allowing
relying on a smaller sample size for downstream tasks, with-
out statistical quality loss. This could unlock the potential
of accelerating downstream learning tasks.

With the exception of the synthetic data quality evaluation,
the rest of our experiments have a smaller footprint in the lit-
erature. Studies in deep generative model based data balanc-
ing have reported only weak improvements to lightweight
baselines in the tabular domain (Elor & Averbuch-Elor,
2022), with only recently proposed specialised generative
architectures being able to more confidently outperform
SMOTE (Kim et al., 2022). In addition, we are unaware
of experiments with generative models addressing tabular
data summarization, while an augmentation setting similar
to ours has been considered in Liu et al. (2023) reporting no
significant downstream boosting.

2. Benchmarking
Below we give an overview of the components involved
in our benchmarking setup. These include a set of genera-
tive models (Section 2.1) that enable us to sample synthetic
datapoints w/ and w/o conditioning, a set of downstream
learners (Section 2.2) which correspond to the end learn-
ing task for the data distribution at hand, and some public
access tabular datasets (Section 2.3) that we use for our
evaluation. We conclude this section with further details on
our experimental setup (Section 2.4).

2.1. Generative models

We include the following state-of-the-art tabular data gener-
ation methods in our experimentation.

Conditional Tabular GANs (CTGANs) (Xu et al., 2019).
An adaptation of the original GAN architecture (Goodfellow
et al., 2014) with two main modifications for handling tabu-
lar datasets: (i) an elaborate normalization scheme for multi-
modal features, and (ii) a training-by-sampling paradigm for
better learning of under-represented categories. Training-
by-sampling means that a random column is being selected
and conditioned on during each training iteration of the
GAN. We overload this notation, referring with the term
Conditional CTGAN to a CTGAN model that is trained to
learn the conditional distribution p(x|y) instead, where y is
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Table 1. Dataset statistics and task details.

Dataset Domain #Samples #Num #Cat Task #Classes Imbalance
(

#Majority pts.
#Minority pts.

)
adult Social 32,561 6 8 Classification 2 3.15
churn Marketing 954 2 4 Classification 2 3.26
sick Medical 3,772 7 22 Classification 2 11.96
heloc Financial 9,871 21 2 Classification 2 1.1
california Real Estate 20,640 8 0 Regression - -

Figure 1. (Synthetic data quality experiment) Predictive performance of a downstream AutoGluon classifier, which uses synthetic training
data sampled from generative models that have been trained on increasing subsets of the real data. The number of synthetic training
datapoints increases along the x-axis, matching the number of real data used for training the generative model.

Figure 2. (Data summarization experiment) Predictive performance of a downstream AutoGluon classifier which uses synthetic training
data sampled from a generative model that has been trained on the full real dataset. The number of synthetic training data increases along
the x-axis.

a target variable.1 As in Mirza & Osindero (2014), training
in the case of Conditional CTGAN differs from the original
training-by-sampling paradigm in that the same conditional
column y will be used throughout training. The latter allows
conditional sampling on the target variable for the class
balancing use case, as at sampling time it enables passing
explicitly the information of the desired class y and using
the CTGAN to sample x ∼ p(x|y), to jointly generate a
synthetic sample (x, y). Moreover, it makes use of factor-
ization of the joint that is based on the downstream learning
task.

Tabular Variational AutoEncoders (TVAEs) (Xu et al.,
2019). An adaptation of the original VAE architec-
ture (Kingma & Welling, 2014) sharing the pre-processing
steps of CTGAN. Similarly to CTGANs, we also consider
Conditional TVAEs that model directly p(x|y), where y is

1as opposed to modeling p(x, y) which is the original learning
goal of CTGAN

the corresponding target variable.

Normalizing Flows (NFs) . A normalizing flow (Papa-
makarios et al., 2021) is a generative model that transforms
a simple distribution to a more complex one by applying
a series of invertible transformations. These transforma-
tions gradually distort the simple distribution to match the
target distribution of the data. By optimizing the parame-
ters of the flow through maximum likelihood estimation,
the model learns to generate new samples from the learned
distribution and estimate the likelihoods of observed data
points accurately. In our tabular learning experiments, we
use the method proposed in Durkan et al. (2019) with stan-
dard one-hot encoding for categorical features. We only use
normalizing flows to learn the data joint probability, hence
omit this model from the balancing use case that requires
conditional sampling.
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Fine-tuned pre-trained Large Language Models
(GReaT) . We use the method proposed in Borisov
et al. (2023). Training consists of (i) converting the
tabular datapoints into sentences via a simple parsing
scheme, and (ii) fine-tuning an existing large-language
model on the data. We rely on tuning the distill-GPT2
model (Sanh et al., 2019) on our tabular datapoints at hand
for each benchmark (introduced in the original paper as
distil-GReaT). We adopt the key design choices selected
in Borisov et al. (2023), e.g. a perturbations scheme
on the extracted sentences. GReaT uses auto-regressive
neural networks implementing a transformer decoder-only
architecture (Vaswani et al., 2017), which along with the
perturbation scheme, enable arbitrary sampling on the
datapoint features (including conditioning on the target
variable, which is used in the balance use case experiments).

SMOTE (Chawla et al., 2002) A non-parametric method
addressing class imbalance in datasets. It works by generat-
ing synthetic samples for the minority class by interpolating
between existing minority class instances. The algorithm
selects a minority class sample and finds its k nearest neigh-
bors. It then randomly selects one or more neighbors and
creates new synthetic samples along the line segments join-
ing the original sample and its neighbors. This process helps
to increase the representation of the minority class, balanc-
ing the class distribution and improving the model ability to
learn from the minority class instances.

Original A baseline that subsamples true datapoints uni-
formly at random in the absence of augmentation. Random
sampling controls for the varying sample size effects, cap-
turing the expected performance on a specified volume of
real training data w/o interventions via generative models.

For our experiments with DGMs we relied on the implemen-
tations of the synthcity package (Qian et al., 2023), for
GReaT we used the original implementation of the authors
be great (Borisov et al., 2023), while for SMOTE we
used the implementation of the model for mixed numeric
and categorical data from Lemaı̂tre et al. (2017).

2.2. Downstream models and metrics

We are interested in measuring the extra downstream utility
induced via generative models for broad practical use cases.
Hence, to make our evaluation agnostic to a specific cate-
gory of downstream ML models, for classification tasks we
consider two powerful tabular classifiers, namely XGBoost
(XGB) (Chen & Guestrin, 2016), and AutoGluon (Erickson
et al., 2020). For regression tasks, we evaluate against a
linear regression model (LinReg), a multilayer perceptron
(MLPRegressor) and AutoGluon. We present the metrics
obtained on AutoGluon in the main part, deferring the re-
maining models to Appendix B. We keep F1-Score and

RMSE as the evaluation metrics respectively for classifica-
tion and regression.

2.3. Datasets

We give a short overview of the datasets used in our exper-
iments in Table 1. We rely on publicly available datasets
(cf. Table 4) comprised of 4 datasets for classification ex-
periments, and 1 for regression, with sizes varying from less
than 1k datapoints to more than 30k.

2.4. Experimental setup

We use a fixed split of training and testing datapoints with
a 80/20 percent scheme throughout the entire experiment.
For each experiment we repeat the training/fine-tuning of
the corresponding generative model across 3 independent
trials, and present the obtained mean and standard error
of the computed metrics. We make use of a fixed set of
training hyperparameters across datasets for each generative
model. We apply hyperpameter optimization (HPO) inde-
pendently per trial for each combination of use case and
model over downstream learning. For HPO we use asyn-
chronous random search. Please refer to Appendix C for
details on the considered hyperparameter search spaces. As
the number of nearest neighbors used to construct artificial
minority samples for SMOTE we use k = 5 throughout.
In the case of GReaT we fine-tuned the distil-GPT model
for a total of 200 epochs for each of our datasets, and used
the default hyperparameters for training and sampling. For
DGMs we trained up to a maximum of 5,000 epochs us-
ing early-stopping with a patience of 500 epochs without
improvement on a validation score.

3. Results
3.1. Quality of Synthetic Data

In this part of the experiment, we aim to evaluate the statisti-
cal quality of the synthetic samples for downstream learning
tasks. For this purpose, we remove the original datapoints
prior to training the downstream model, and replace them
with an equal volume of synthetic datapoints. To capture the
effects of varying sample sizes of the true data, we report
predictive performance for the described TS-TR setup, con-
sidering generative models trained on increasing fractions
of the original training population (10, 50 and 100%). The
obtained downstream performance is shown in Figures 1
and 4. As a general remark, training on the available original
data outperforms training on the synthetic samples for all
tested generative models. Regarding the latter, we observed
that the relative ordering of the downstream efficacy of the
compared DGMs does not seem to change much across the
varying dataset size regimes, while the gap between syn-
thetic and real data is closing as we use more datapoints to
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Figure 3. (Data augmentation experiment) Predictive performance of a downstream AutoGluon classifier which uses increasing subsets of
real data augmented with equal-sized volumes of synthetic data.

Figure 4. Synthetic data quality experiment
for regression

Figure 5. Data summarization experiment
for regression.

Figure 6. Data augmentation experiment for
regression.

train the generative model. When trained on the full dataset,
conditional TVAE maintains the highest rank among DGMs
across the datasets. For large datasets with interpretable
feature semantics (e.g. adult, see Table 3) we eventually
obtain higher quality using the pre-trained LLM. In the case
of datasets with higher dimensionality, long contexts of spe-
cialised terms or abbreviated feature names, such as sick
and heloc, GReaT seems to require fine-tuning on more
training examples in order to eventually provide synthetic
data quality at the same levels with DGMs.

3.2. Summarization

Here we investigate if sampling from generative models
trained on the full original data distribution inherently en-
ables more efficient compression of the statistical informa-
tion of the original data for the downstream task, compared
to extracting random subsets of real datapoints. As in the
previous section, we replace the original datapoints entirely
with synthetic samples with the help of a generator; however
now the generator has been trained on the full real data, and
we use volumes of synthetic data with varying size corre-
sponding to 10, 50 and 100% of the true data population. As
we observe in Figures 2 and 5, the achievable downstream
quality is generally lower compared to equal volumes of
real datapoints, and marginally higher compared to the cor-
responding points in Figures 1 and 4, as now the generative
models have seen more training examples before producing

the same amount of synthetic samples. This hints that sam-
pling from these generative models does not significantly
reduce the redundancy in the resulting population to lower
levels compared to the original data; ML efficiency seems
to be following slightly flatter curves for the synthetic data
training sets, and saturates at the same levels with the plots
of the synthetic data quality experiment (Section 3.1) for
synthetic populations with the same volume as the real data.

3.3. Augmentation

In this experiment, we train our generative models on in-
creasing subsets of the original data population, comprising
10, 50 and 100% of the full data, and complement with
equal volumes of synthetic data, sampled from a trained
generative model that has seen only the subset. Finally, we
train the downstream classifier on the augmented volume of
real and synthetic datapoints. This setting aims to simulate
situations with data scarcity, and provide empirical evidence
addressing whether augmenting with generative models can
benefit downstream predictive accuracy. We present the
ML efficacy achieved with this augmentation strategy for
classification and regression tasks in Figures 3 and 6. We
observe that augmentations via generative models were not
capable to consistently improve the performance that we
got when constraining the downstream training data only
among the original datapoints.
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Original data SMOTE
Conditional

CTGAN
Conditional

TVAE GReaT

F1 Score
adult 0.802±0.009 0.809±0.008 0.808±0.009 0.812±0.008 0.805±0.006
churn 0.779±0.023 0.808±0.011 0.741±0.003 0.771±0.02 0.777±0.02
sick 0.982±0.009 0.974±0.007 0.917±0.013 0.921±0.015 0.977±0.003
heloc 0.721±0.004 0.717±0.003 0.722±0.003 0.721±0.002 0.72±0.004

ROC AUC
adult 0.908±0.005 0.906±0.004 0.91±0.004 0.913±0.003 0.908±0.003
churn 0.934±0.008 0.917±0.01 0.899±0.005 0.913±0.013 0.915±0.008
sick 0.999±0.0 0.999±0.001 0.994±0.001 0.999±0.001 0.999±0.0
heloc 0.787±0.005 0.784±0.005 0.786±0.005 0.791±0.006 0.787±0.005

Table 2. (Data balancing experiment) Predictive metricsevaluated on a downstream AutoGluon classifier that uses an rebalanced augmented
version of the dataset via samples from the generative models.

3.4. Class balancing

In our last scenario, we consider the effects of eliminating
the imbalance ratio of the original training datapoints via
synthetic data from generative models. We follow the same
setup with the augmentation use case, developing a TA-TR
experiment for evalution. However here, we restrict our
analysis on the conditional DGMs that have been trained to
model p(x|y), and extract synthetic samples corresponding
to the minority category by setting y to the minority category.
We also sample minority datapoints from GReaT starting
the autoregressive generation via setting the feature y to
the value of the minority class. Hence, we can restore the
balance among the categories of each dataset. Subsequently,
we provide the downstream model with the balanced ver-
sion of the data as the new richer training dataset. As ob-
served in Table 2 the generative models are capable to only
marginally outperform the original data and the SMOTE
baseline in 2 of the 4 considered datasets.

4. Conclusions
We investigated the effects of generative model-based data
augmentation strategies on downstream learning tasks for
commonly used tabular benchmarks. We experimented with
data imbalance and scarcity learning scenarios. We delib-
erately excluded privacy and fairness considerations from
this paper to focus on the usefulness of ML training. We
found that, despite ongoing advances in tabular generative
modeling, popular state-of-the-art methods are not yet able
to consistently outperform the ML efficacy of using only
the original training datapoints for practical use cases, such
as data summarization, augmentation, and learning in im-
balanced datasets. We believe that including experiments
that simulate real-world situations where practitioners might
need synthetic data is often missing from the literature, and
should be seen as a necessary prerequisite for improving

tabular synthetic data generation methods. As future work,
we will focus on integrating extensive HPO, adding down-
stream task-informed regularization terms over training of
the generative models, as well as using pre-trained LLMs
that are more relevant to the domain of the training data.
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Table 3. Feature names of the datasets.

adult
age, workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, race, sex,
capital-gain, capital-loss, hours-per-week, native-country, income

churn
Age, Frequent Flyer, Annual Income, Class of user, Number of times Services Opted during recent years,
Company account of user synced To Social Media, Whether the customer book lodgings / Hotels using company services,
Target

sick

age, sex, on thyroxine, query on thyroxine, on antithyroid medication, sick, pregnant, thyroid surgery, I131 treatment,
query hypothyroid, query hyperthyroid, lithium, goitre, tumor, hypopituitary, psych, TSH measured, TSH,
T3 measured, T3, TT4 measured, TT4, T4U measured, T4U, FTI measured, FTI, TBG measured,
referral source, binaryClass

heloc

External Risk Estimate, Months Since Oldest Trade Open, Months Since Most Recent Trade Open, Average Months in File,
Number of Satisfactory Trades, Number of Trades 60+ Days Past Due - Public Records or Derogatory Public Records,
Number of Trades 90+ Days Past Due - Public Records or Derogatory Public Records,
Percentage of Trades Never Delinquent, Months Since Most Recent Delinquency,
Maximum Delinquency 2 Public Records in Last 12 Months, Maximum Delinquency Ever, Number of Total Trades,
Number of Trades Open in Last 12 Months, Percentage of Installment Trades,
Months Since Most Recent Inquiry excluding 7 days, Number of Inquiries in Last 6 Months,
Number of Inquiries in Last 6 Months excluding 7 days, Net Fraction Revolving Burden, Net Fraction Installment Burden,
Number of Revolving Trades with Balance, Number of Installment Trades with Balance,
Number of Bank/National Trades with High Utilization, Percentage of Trades with Balance,
Risk Performance

california MedInc, HouseAge, AveRooms, AveBedrms, Population, AveOccup, Latitude, Longitude, target

A. Dataset details
In this section we include some further details on the datasets that we used for our experiments. In Table 3 we outline the
names of the dataset features used for our generative model training, indicating in bold the target variable for the downstream
discrimative learning task. Note that, with the exception of GReaT, all generative methods are agnostic to the semantics
of the features (only require the column type to apply the right encoding and preprocessing of the corresponding feature).
On the other hand, for GReaT feature semantics directly interact with synthetic data quality, as the datapoints will be
understood by the corresponding language model as a sentence of the form ”feature name 0 is feature value 0,
feature name 1 is feature value 1, . . . ”, adopting the pre-trained word embeddings for the features.

In Table 4 we disclose the original sources of the datasets.

Table 4. URLs for real-world datasets of the study.

Dataset URL

adult (Kohavi et al., 1996; Dua et al., 2017) https://archive.ics.uci.edu/ml/datasets/Adult/

churn https://www.kaggle.com/datasets/tejashvi14/tour-travels-customer-churn-prediction

sick (Quinlan et al., 1987; Dua et al., 2017) https://www.openml.org/search?type=data&sort=runs&id=38&status=active

heloc https://www.kaggle.com/datasets/averkiyoliabev/home-equity-line-of-creditheloc

california https://www.kaggle.com/datasets/camnugent/california-housing-prices

B. Additional results
In Figures 7 to 12 we present further predictive performances metrics and downstream models used for the evaluation of the
synthetic data utility in the usecases of our experiments.
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Figure 7. (Synthetic data quality experiment) F1-score and ROC AUC on a downstream XGB model for all classification datasets.

Figure 8. (Synthetic data quality) RMSE for downstream regression tasks on a linear model and a multi-layered perceptron.

Figure 9. (Data summarization experiment) F1-score and ROC AUC on a downstream XGB model for all classification datasets.

C. Reproducibility
Here we add some additional details on our experimentation for reproducibility. The selected hyperparameters for the
trained DGMs are provided in Table 5. Regarding the downstream classifiers, corresponding search spaces for HPO are
displayed in Table 6.
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Figure 10. (Data summarization experiment) Predictive metrics for downstream regression tasks on a linear model and a multi-layered
perceptron.

Figure 11. (Augmentation experiment) F1-score and ROC AUC on a downstream XGB model for all classification datasets.

Figure 12. (Data augmentation experiment) Predictive metrics for downstream regression tasks on a linear model and a multi-layered
perceptron.
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TVAE

n units embedding=500,
lr=5e-4,
weight decay=1e-5,
batch size=1000,
decoder n layers hidden=2,
decoder n units hidden=256,
decoder nonlin=”leaky relu”,
decoder dropout=0.1,
encoder n layers hidden=3,
encoder n units hidden=256,
encoder nonlin=”leaky relu”,
encoder dropout=0.1,
loss factor=1,
data encoder max clusters=10,
clipping value=1,
patience=500

CTGAN

generator n layers hidden=2,
generator n units hidden=256,
generator nonlin=”relu”,
generator dropout=0.1,
generator opt betas=(0.9, 0.999),
discriminator n layers hidden=2,
discriminator n units hidden=256,
discriminator nonlin=”leaky relu”,
discriminator n iter=1,
discriminator dropout=0.1,
discriminator opt betas=(0.9, 0.999),
lr=5e-4,
weight decay=1e-3,
batch size=1000,
clipping value=1,
lambda gradient penalty=10,
encoder max clusters=10,
patience=500,

NF

n layers hidden=2,
n units hidden=256,
batch size=1000,
num transform blocks=1,
dropout=0.1,
batch norm=False,
num bins=8,
tail bound=3,
lr=5e-4,
apply unconditional transform=True,
base distribution=”standard normal”,
linear transform type=”permutation”,
base transform type=”rq-autoregressive”,
encoder max clusters=10,
n iter min=100,
patience=500,

Table 5. Hyperparameters used for our experiments with deep generative models.
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XGB

max depth ∈ {2, 4, 8, 12},
learning rate ∈ {1e− 6, 1e− 4, 1e− 3, 1e− 2, 1e− 1, 1.0},
α ∈ {0.0, 1e− 6, 1e− 4, 1e− 2, 1e− 1, 1.0},
λ ∈ {1e− 8, 1e− 6, 1e− 4, 1e− 2, 1e− 1, 1.0},
γ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0},
min child weight ∈ {1, 3, 5, 7, 9}

MLP Regressor

hidden layer sizes ∈ {(100, ), (200, )},
α ∈ {1e− 4, 1e− 3},
learning rate ∈ {”constant”, ”invscaling”},
learning rate init ∈ {1e− 3, 1e− 4}

Table 6. Search spaces for hyperparameter optimization on downstream models.
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