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Abstract
Bayesian optimisation is a powerful method for
optimising black-box functions, popular in set-
tings where the true function is expensive to eval-
uate and no gradient information is available.
Bayesian optimisation can improve responses
to many optimisation problems within climate
change for which simulator models are unavail-
able or expensive to sample from. While there
have been several feasibility demonstrations of
Bayesian optimisation in climate-related applica-
tions, there has been no unifying review of ap-
plications and benchmarks. We provide such a
review here, to encourage the use of Bayesian
optimisation in important and well-suited appli-
cation domains. We identify four main applica-
tion domains: material discovery, wind farm lay-
out, optimal renewable control and environmental
monitoring. Our contributions are: a) identifying
a representative range of benchmarks, providing
example code where necessary; b) introducing a
new benchmark, LAQN-BO; and c) promoting a
wider use of climate change applications among
Bayesian optimisation practitioners.

1. Introduction
The use of machine learning (ML) to tackle climate change
is gaining traction, including ML-wide surveys of relevant
applications (Rolnick et al., 2022; Donti & Kolter, 2021). To
facilitate technical innovation and its adoption into practice,
it is important to complement these reviews with concise
summaries of problems that specific ML frameworks are
well-matched to, along with example data sets. Here, we
provide a summary, paired with data sets, for Bayesian
optimisation. This is important for three reasons: a) it
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reduces start-up costs and overhead, as the time-consuming
task of identifying suitable data sets does not have to be
repeated; b) it helps researchers focus on problems that
are timely and/or important, and have a structure that is
suitable for the framework(s) they are using; and c) it makes
it easier to compare methods as numerical results can be
compared directly. The benchmarks should be similar to
real-world applications, because that provides more realistic
expectations of performance. It also shows which versions
of Bayesian optimisation are most likely to perform well,
for instance in terms of choice of acquisition function and
underlying model. More realistic benchmarks also let us
identify challenges which still need to be solved, for instance
in terms of generating useful priors from related data.

Bayesian optimisation (BO), is a machine-learning approach
to black-box optimisation (Shahriari et al., 2015). It is
particularly suited to problems that:

a. have a complex unknown structure which can only be
efficiently modelled through a surrogate model, e.g.
the conductivity of solar panel materials;

b. are expensive or slow to evaluate, requiring sample
efficiency from trying out fewer bad or uninformative
choices, e.g. when discovering new materials that must
be synthesised in order to be evaluated;

c. require identifying extrema, either for optimisation, e.g.
maximising power generation, or for intervention, e.g.
emission monitoring.

An additional benefit of Bayesian optimisation is that it
explicitly models its uncertainty, which can be used to deter-
mine when to stop optimising (Makarova et al., 2022), or to
trade off exploration and exploitation (De Ath et al., 2021).

Bayesian optimisation consists of fitting a surrogate model,
typically a Gaussian process (Williams & Rasmussen, 2006),
to observed data, and using the surrogate model to choose
what input value to evaluate next. Then the surrogate model
is adjusted, another input value evaluated, and so on. To
choose the next input value an acquisition function is used,
which balances exploration and exploitation. As an illustra-
tive example, visualised in Figure 1, Bayesian optimisation
can be used to find the angle of a solar panel that maximises
power output: (1) model the output as a function of angle

1



Bayesian Optimisation Against Climate Change

(3)
Adjust panel;

measure power

(1)
Fit model to

observed power
outputs

(2)
Select new
panel angle

Figure 1: Application of Bayesian optimisation to optimis-
ing the power generation of a solar panel by adjusting the
panel angle.

based on all available data and/or domain knowledge; (2)
select a promising angle to try next, e.g., an angle that is
a good candidate for maximising power output or that is
maximally informative about the best angle; and (3) try this
angle before updating the model and returning to Step 1.

We present a summary of Bayesian optimisation as applied
to climate change problems. We identify the main applica-
tion domains, emphasise how they impact climate change re-
sponses, and identify beginner-friendly benchmarks for each.
We found a benchmark to be lacking for environmental mon-
itoring, and therefore provide one, the LAQN-BO bench-
mark, based on air pollution data (Imperial College London,
1993). The four use cases are: material discovery — accel-
erating the development of e.g. new solar panels; wind farm
layouts — choosing where to place individual turbines; opti-
mal renewable control — choosing operating parameters of
solar panels or wind turbines; and environmental monitoring
— choosing where to place sensors. (Bliek, 2022) is a related
survey of Bayesian optimisation and other surrogate-based
optimisation methods. Where Bliek takes a higher-level
approach, focusing on classifying previous work by method-
ology, we instead group work by applications in order to
identify data sets and applications for new projects. When
selecting benchmarks, we have emphasised ease of adoption.
So we have only considered ones that are publicly available,
and well documented.

This paper is predominantly concerned with Bayesian opti-
misation. However, Bayesian optimisation is closely related
to other methods, like Bayesian experimental design (Rain-
forth et al., 2023), and we have included some examples of
applications of these methods as well, e.g. (Tran & Ulissi,
2018; Kleinegesse & Gutmann, 2020). Bayesian optimi-
sation can be used within Bayesian experimental design
(Valentin et al., 2023), and can also be seen as a special case
of Bayesian experimental design (Rainforth et al., 2023), es-
pecially when using information-theoretic acquisition func-
tions. Both are powerful methods, with useful applications
in the response to climate change and similar challenges,

such as the choice of priors and scaling to large numbers
of samples. Our focus on Bayesian optimisation does not
reflect a preference of one method over the other, but rather
that more work has been done applying Bayesian optimisa-
tion against climate change than for Bayesian experimental
design. Because the methods are so closely related, and
because our focus is on the applications and benchmarks,
not on the details of the methods used for solving them, we
have opted to include some examples of related methods as
well.

Bayesian optimisation is not a complete solution, but an
important tool when combined with domain knowledge, and
can help improve responses to climate change. Performance
in real applications is the ultimate test of any ML method,
including Bayesian optimisation. Simulated problems of-
ten fail to anticipate crucial challenges, e.g. in terms of
finding suitable inductive biases (Hellan et al., 2022). Cur-
rently, Bayesian optimisation is often evaluated on synthetic
functions or hyperparameter optimisation (HPO) bench-
marks, either exclusively (AV et al., 2022; Papenmeier et al.,
2022; Hvarfner et al., 2022; Thebelt et al., 2022) or mostly
(Oliveira et al., 2022; Folch et al., 2022; Song et al., 2022).
But HPO is just one kind of problem. There are other less
used benchmarks, like robotics (Song et al., 2022; Nguyen
et al., 2022) and chemistry simulations (Folch et al., 2022;
Tu et al., 2022). (Ramesh et al., 2022) test their method on
optimising the control of an airborne wind energy system,
but has not made their setup available as a benchmark. To
increase the impact of Bayesian optimisation, and its preva-
lence, we should adopt a broader set of benchmarks. That
would not only demonstrate which methods work well in
practice, but open up new research problems to solve. Using
benchmarks from climate change has the advantage of doing
so in a dynamic field, increasing the chance of adoption,
and with real impact. Adopting climate change motivated
benchmarks, and using them to compare methods, will make
Bayesian optimisation more relevant outside academia. We
now proceed to the main applications domains and their
respective benchmarks, starting with material discovery.

2. Material discovery
Material discovery means developing materials with supe-
rior combinations of properties (Frazier & Wang, 2016),
e.g. more efficient solar cells. Bayesian optimisation and
related methods have been suggested for optimising a wide
range of materials, from concrete (Severson et al., 2021)
and Direct Air Capture of CO2 (Ortiz-Montalvo et al., 2021)
to solar panel glass (Haghanifar et al., 2021), electrifying
the transport and chemical industry sectors (Annevelink
et al., 2022), and for electrocatalysts for CO2 reduction and
H2 production (Tran & Ulissi, 2018; Zhong et al., 2020;
Frey et al., 2022). The benefits are in reducing greenhouse
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gas emissions or increasing their capture; making renew-
able energy generation or storage more efficient; or making
more sectors able to use renewable energy. If evaluating
the material requires synthesising and testing it, there are
huge potential gains in time and cost by only doing so on
promising candidates identified by Bayesian optimisation.

(Liang et al., 2021) provide three material discovery data
sets (Sun et al., 2021; Bash et al., 2021; Mekki-Berrada
et al., 2021) related to solar panels, with 3-5 features each
and between 94 and 178 unique evaluated data points. Us-
ing Figure 1 to illustrate the Bayesian optimisation process,
the steps become: (1) model the material performance as
a function of ingredient proportions used; (2) select a new
combination of ingredient proportions to try; and (3) pro-
duce and evaluate the material. The data sets enable us to
replace (3) with looking up the evaluations in a table.

• Benchmark: https://github.com/PV-Lab/
Benchmarking (Liang et al., 2021)

• Features: Material properties: 3-5 dimensions
• Data type: CSV files
• Sampling: Manufacture material. In benchmark re-

placed by table look-up
• Objective: Material performance: conductivity, ab-

sorbance spectrum score or stability
• Impact: Better solar panels, which gives more renew-

able generation and lower climate gas emissions

3. Wind farm layout
Wind turbines are typically grouped together in wind farms,
with several turbines in relatively close proximity, to reduce
installation costs and environmental impacts. Before con-
struction, the locations of individual wind turbines must be
planned. Wind turbines work by extracting kinetic energy
from the air, so the wind is weaker and more turbulent after
flowing past a turbine. This leads to less power generation
(Park & Law, 2015) and greater dynamic loads and fatigue
on the downwind turbines (Dong et al., 2022). This is illus-
trated in Figure 2, where the two turbines need to be placed
within the green area. Determining the optimal wind turbine
layout is a difficult but important optimisation problem, as
more renewable electricity can be generated without requir-
ing more turbines to be installed. The efficiency of Bayesian
optimisation is important for this problem, as the type of
simulations used can take 15 seconds to run on one CPU
even for five wind turbines (Bliek et al., 2021). Bayesian
optimisation can be applied to the problem by replacing the
steps in Figure 1 with (1) modelling the collective power
output as a function of the wind turbine placements; (2)
selecting a new combination of locations to evaluate; and
(3) running the power output simulation.

Figure 2: Planning of wind turbines within limits shown
in green. The wind is shown by the blue arrows: wider
arrows indicate stronger wind and more undulating arrows
indicate more turbulence. In the layout on the left one
turbine is directly downwind of the other, resulting in weaker
and more turbulent wind. To the right, both turbines get
unhindered wind.

Bliek et al.’s (2021) set of benchmarking problems and base-
lines include a wind farm layout problem, windwake, based
on FLORIS (NREL, 2020) simulations. The benchmark
assumes a fixed number of wind turbines; this is relaxed in
(Chugh & Ymeraj, 2022), where the two objectives of cost
and power generation are jointly optimised, using simula-
tions based on (Pedersen et al., 2019). In related pieces of
work, (Mern et al., 2021) build wind maps for later layout
planning, and (Tillmann et al., 2020) plan the layout of bi-
facial solar panel arrays. We use the benchmark in (Bliek
et al., 2021) as it has been been prepared for further use.

• Benchmark: https://github.com/
AlgTUDelft/ExpensiveOptimBenchmark
(Bliek et al., 2021)

• Features: Spatial locations: 10 dimensions. 2 for each
of 5 turbines

• Data type: Simulation
• Sampling: Simulate layout
• Objective: Energy production
• Impact: More renewable generation, which reduces

climate gas emissions

4. Optimal renewable control
Having planned the layout of a new renewable power gen-
eration plant, the next question is how best to operate it.
For wind turbines the yaw and pitch angles need to be set
(Doekemeijer et al., 2019; Park & Law, 2015; Park, 2020;
Yang et al., 2022), as well as the induction factor (Park,
2020) and electric load resistance (Park & Law, 2015). For
solar panels the voltage level applied (Abdelrahman et al.,
2016; Lyden et al., 2018) and the angle of the panel (Abel
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et al., 2018) can be adjusted. By adjusting these the amount
of energy generated can be maximised, which in turn re-
duces the amount of fossil fuel consumed for a given amount
of electricity demand. A review of different control method-
ologies for wind turbines is given in (Dong et al., 2022). For
wind farms, the optimisation should occur jointly, as the
available wind energy for a downstream turbine is impacted
by the operating conditions of the upstream turbine (Park
& Law, 2015). Bayesian optimisation is suitable for this
problem as it allows the response of the non-linear problem
to be learnt through data collection. Extensive work on wind
turbine control has also been done using Bayesian Ascent, a
version of Bayesian optimisation which limits the changes
in inputs between iterations (Park & Law, 2016a;b; Park
et al., 2016; 2017; 2018). Relatedly, (Moustakis et al., 2019)
use Bayesian optimisation to tune the parameters of tradi-
tional control methods, and (Fiducioso et al., 2019) consider
the problem of controlling a HVAC system. In (Mulders
et al., 2020), Bayesian optimisation is used to reduce blade
fatigue. (Andersson & Imsland, 2020) use a method related
to Bayesian optimisation for wind turbine control.

Figure 3: Adjusting solar panels to optimise power genera-
tion as the sun moves across the sky.

(Abel et al., 2018) contribute a benchmark for solar panel
optimisation1. The goal is to maximise the energy yield
by adjusting the angles of the solar panel, as illustrated
in Figure 3. They evaluate contextual bandits and rein-
forcement learning methods, but the problem is also suit-
able for Bayesian optimisation. We provide a basic ex-
ample of this at https://github.com/sighellan/
solar_panels_rl2. Figure 1 shows how Bayesian opti-
misation is applied to the problem. We model power output
as a function of panel angles; decide on a new angle to try;
and run the simulation to evaluate the new angle. The chal-
lenge is not to locate the sun; its location can be calculated
and is given as input to the methods. Instead, the idea is
to adapt to other changes like cloud cover, shading from
nearby buildings and changes in the amount of reflected
sunlight, for instance after snowfall. However, many solar
panels are not designed to track the sun, and instead keep

1To make it work, we used v0.784 of the simple rl Python
package (Abel, 2019).

2We built the example using BoTorch (Balandat et al., 2020).
In addition to integrating our basic Bayesian optimisation imple-
mentation into the framework, we also provide a requirements file
and port the code to Python 3.

a fixed angle. Wind turbines have more control settings,
interact in less predictable ways, and have seen more appli-
cations of Bayesian optimisation (see previous paragraph).
We chose the benchmark by (Abel et al., 2018) because it
is well-documented and publicly available. But real-world
benefits are more likely to come from applications to wind
turbines than to solar panels.

• Benchmark: https://github.com/
david-abel/solar_panels_rl (Abel et al.,
2018)

• Features: Panel direction: 2 dimensions
• Data type: Simulation
• Sampling: Simulate collected sunlight
• Objective: Collected energy
• Impact: More renewable generation, which reduces

climate gas emissions

5. Environmental monitoring
An important problem within environmental monitoring is
that of choosing where to place the monitoring sensors. This
is difficult as the planning has to be done without knowing
the usefulness of each site, as that depends on future data.
Bayesian optimisation and related methods are useful tools
in this setting, as they build probabilistic models of the
environmental characteristic of interest — e.g. air pollution
— which they use to make efficient choices. If we are mainly
interested in identifying the worst-hit locations, e.g. for
targeting interventions or evaluating compliance with legal
limits, Bayesian optimisation lets us do that efficiently. To
build accurate environmental maps for an entire area we can
instead use Bayesian experimental design, for instance if
we want to know the water quality throughout a lake.

Monitoring is important for tracking the impacts of climate
change, including oceans (Sanchez-Pi et al., 2020), for lo-
cating gas leakages (Asenov et al., 2019; Gao & Bai, 2022;
Kleinegesse & Gutmann, 2020), and the related task of air
pollution monitoring (Ainslie et al., 2009; Morere et al.,
2017; Marchant & Ramos, 2012; Singh et al., 2010; Hellan
et al., 2020; 2022; Leu & Ho, 2020). (Samaniego et al.,
2021) provide a benchmark for path-planning based on wa-
ter quality monitoring, also used by (Folch et al., 2022), but
the benchmark uses synthetic data.

The LAQN-BO benchmark

We present a new benchmark for the climate change
Bayesian optimisation community, using air pollution data
from the London Air Quality Network (LAQN) (Imperial
College London, 1993). Air pollution monitoring is related
to climate change in that the sources and hence required
interventions are often interlinked, e.g. car exhaust. Also,
environmental changes are often sped up by climate change,
making their monitoring more important. The optimisa-
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tion problems in the LAQN-BO benchmark are similar to
those in (Hellan et al., 2022). But while that focuses on
Bayesian optimisation methodology, we focus on the prob-
lems themselves. We provide simple scripts and step-by-
step instructions for generating the problems and put them
in the context of other climate-related Bayesian optimisation
problems and benchmarks.

The optimisation objective is the NO2 concentration, i.e.
to find the location of maximum pollution from the set of
available locations. This is useful as higher pollution con-
centrations mean greater impacts on human health. Again
using Figure 1 as a basis, we replace the steps with: (1)
model the NO2 concentration as a function of spatial loca-
tion; (2) determine a new location to evaluate; and (3) mea-
sure the pollution in the new location. We use the provided
benchmark to replace (3) with looking up the historical mea-
surement. We construct a training set from the 2015 data,
and a test set from the 2016 data. Each problem corresponds
to data from a single day, so multiple days give multiple
problems. As in (Hellan et al., 2022), we filter out days
when less than 40 stations collected measurements, and
only use the ‘Roadside’ sensors, resulting in 214 training
problems and 365 test problems. We log-transformed the
data, and standardised it using the mean and standard devia-
tion from the training set. Example problems are shown in
Figure 4.

The LAQN-BO benchmark has several advantages. Firstly,
it uses real data. Secondly, we present a set of related prob-
lems, so that methods can be trained on the training set, and
evaluated on the test set. Finally, the provided scripts can
be easily adapted to generate new Bayesian optimisation
problems using other pollutants or other years of the exten-
sive available LAQN data. None of the other benchmarks
combine all of these advantages. A disadvantage is that data
is not available everywhere, only at locations with existing
sensors, limiting the available search space. This corre-
sponds to having to choose from a sparse set of locations.
For instance, if we are mounting sensors to lampposts, we
can only choose between the locations with lampposts.

• Benchmark: https://github.com/
sighellan/LAQN-BO

• Features: Spatial coordinates: 2 dimensions
• Data type: Python class
• Sampling: Place pollution sensor. In benchmark re-

placed by table look-up
• Objective: NO2 concentration
• Impact: Better monitoring of air pollution, enabling

targeted interventions

6. Benchmark comparison
The four benchmarks identified in our survey have different
characteristics, as is summarised in Table 1. They represent
different key challenges for Bayesian optimisation deploy-
ments, and provide breadth for evaluating different types
of Bayesian optimisation methods. The key challenge of
the materials benchmark is its small size, meaning there is
little opportunity to fine-tune the methods. For LAQN-BO
it is that of constructing priors from the training data, as the
problems have as little as 40 evaluations each, requiring very
sample-efficient learning. The wind farm layout benchmark
also requires efficient use of data. But in contrast to LAQN-
BO, it does not provide training data for learning priors. The
key challenge for the renewable control benchmark is deal-
ing with large numbers of samples, as the panel direction is
optimised regularly over many days. It is therefore a good
candidate for testing Bayesian optimisation built on scalable
Gaussian processes (Liu et al., 2020). It also requires keep-
ing track of context, e.g. time, as the sun moves across the
sky. An additional contrast to the other benchmarks is that
the performance throughout the optimisation matters, as it
directly impacts the amount of electricity generated.

The materials benchmark is the easiest to start using, as the
data is provided in CSV files, followed by that for environ-
mental monitoring, LAQN-BO, which provides a simple
Python interface to the data. The benchmarks for wind farm
layout and renewable control require more setup, as methods
need to be interfaced with the simulators. Their advantage is
that they are easier to extend, and can be evaluated for more
input values. LAQN-BO can be easily extended to more
problems using the LAQN data (Imperial College London,
1993), but extensions to other base data sets would require
more work. The materials benchmark is the hardest to ex-
tend, as it relies on results from synthesising and evaluating
materials.

7. Conclusion and other applications
Bayesian optimisation and related methods have many more
climate-related applications: learning energy consumptions
of individual household appliances (Jia et al., 2019); op-
timising charging protocols for electric vehicle batteries
(Attia et al., 2020); scheduling smart appliances to smooth
out demand curves (Tabakhi et al., 2020); determining vi-
bration suppression parameters for floating wind turbines
(Zhang et al., 2022); producing policies to reduce the im-
pact of livestock diseases made more prevalent by global
warming (Spooner et al., 2020); and tuning parameters for
HVAC system and building models to reduce cooling and
heating energy demands (Zhan et al., 2022; Chakrabarty
et al., 2021a;b). Bayesian optimisation also has applica-
tions in improving climate models, by targeting informative
training data (Watson-Parris, 2021). And it has been used
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Figure 4: Example LAQN-BO problems from the training set (2015, top) and test set (2016, bottom). Not all sensors are
available on every day. The overall pollution level varies, compare the top left and right plots. The locations of maxima also
varies, compare the right top and bottom plots. Most of the sensors are clustered together in central London.

Table 1: Comparison of benchmarks.

Benchmark Type Key challenge Dimensionality # problems

Materials (Liang et al., 2021) Real Small size 3/5 3
Wind farm layout (Bliek et al., 2021) Simulation Sample efficiency 10 1
Renewable control (Abel et al., 2018) Simulation Scaling, context 2 10
Environmental monitoring (LAQN-BO) Real Priors 2 214+365

for parameter tuning of a global land surface model (Druel
et al., 2017), a landslide model (Pradhan et al., 2021) and
forecasting models for electricity generation and demand
(Trivedi & Khadem, 2021).

To encourage more Bayesian optimisation practitioners to
work on climate change applications, an important next step
is to establish more benchmarks, standard data sets or sim-
ulators, as we do with the LAQN-BO benchmark. More
challenging benchmarks should also be established, e.g. for
constrained or multi-objective optimisation, to encompass
the full complexity of real problems. For example: out-
side a simulation, some of the ground might be unsuitable
for building wind turbines; and when building renewable
energy generators there are multiple competing objectives
(Wu et al., 2018; Flecker et al., 2022). Additionally, there
might be constraints for controlling the generators, due to
increased energy costs and fatigue when changing settings.

The energy cost of changing the panel angles is included
in the renewable control benchmark (Abel et al., 2018), so
Bayesian Ascent (Park & Law, 2016a) should be tested, as
it limits the difference in input — panel angles — between
iterations. As a further extension, the layout and control of
wind farms can be optimised jointly (Chen et al., 2022).

In the future, all these benchmarks should be brought to-
gether and their interfaces aligned, to create a standard-
ised, climate-themed benchmark suite. By identifying four
benchmarks representing the main application domains, in-
troducing a new benchmark, and highlighting the potential
for Bayesian optimisation, we take an important step in
facilitating future research.
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