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Abstract

Out-of-distribution (OOD) detection is the prob-

lem of identifying inputs which are unrelated

to the in-distribution task. The OOD detec-

tion performance when the in-distribution (ID)

is ImageNet-1K is commonly being tested on a

small range of test OOD datasets. We find that

most of the currently used test OOD datasets, in-

cluding datasets from the open set recognition

(OSR) literature, have severe issues: In some

cases more than 50% of the dataset contains ob-

jects belonging to one of the ID classes. These er-

roneous samples heavily distort the evaluation of

OOD detectors. As a solution, we introduce with

NINCO a novel test OOD dataset, each sample

checked to be ID free, which with its fine-grained

range of OOD classes allows for a detailed anal-

ysis of an OOD detector’s strengths and failure

modes, particularly when paired with a number

of synthetic ªOOD unit-testsº. We provide de-

tailed evaluations across a large set of architec-

tures and OOD detection methods on NINCO and

the unit-tests, revealing new insights about model

weaknesses and the effects of pretraining on OOD

detection performance. We provide code and data

at https://github.com/j-cb/NINCO.

1. Introduction

While deep learning based models have shown impressive

performance on many real world tasks, they often exhibit

unforeseen behaviour when confronted with unknown situa-

tions like receiving an input that is not related to the task it

has been trained on. Such samples are regarded as out-of-

distribution (OOD) and deep neural network classifiers are

known to make very confident predictions that those belong

to one of the in-distribution (ID) classes (Hendrycks &

Gimpel, 2017; Hein et al., 2019). This unwanted behaviour
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is a serious obstacle when applying classifiers in real world

applications. The purpose of OOD detectors is to reject

OOD inputs, which depending on the application can mean

requesting human intervention, steering towards a safe state,

or simply abstaining from making a prediction, while at the

same time letting ID inputs pass through.

Current OOD detection evaluations in image classification

rely on the assumption that there is no ID class present

in an OOD test image, not even in the background. We

follow this definition and consider an input to be out-of-

distribution (OOD) if it does not contain any of the in-

distribution classes. However, we show that this assumption

is not fulfilled for most of the current test OOD datasets for

ImageNet-1K (IN-1K) of Russakovsky et al. (2015). The

closely related task of open set recognition (OSR), which

simultaneously demands detection of OOD data and high

classification accuracy on the ID data, is evaluated on OOD

datasets which have the same requirements as in OOD detec-

tion. We also examine the test OOD datasets that have been

used in the OSR literature for IN-1K and find similar issues

there. We demonstrate that occurrences of objects from ID

classes in test OOD datasets are often correctly recognized

by state-of-the-art OOD detectors, but as an unwarranted

consequence held against them as mistakes in OOD detec-

tion evaluations (false ªfalse positiveº). Even in cases where

current models struggle to identify ID content, e.g. if ID

objects are partially occluded or in the background, OOD

datasets containing ID objects are not future proof: when

evaluating on them, one would not realize if a future model

correctly predicts the class of a visible ID object.

The erroneous occurrences of ID objects in existing OOD

datasets can be characterized into two failure modes, which

we illustrate in Figure 1 and define as follows. Categorical

ID contaminations show objects from ID classes which

already are classes in a base dataset from which the test

OOD dataset has been built. Their label coincides with an

ID class or semantically designates a subset of an ID class,

e.g. the class hayfield from the PLACES datset and the IN-1k

class hay. Incidental ID contaminations on the other hand

occur in images which are supposed to belong to an OOD

category but which contain an ID object. The object can be

in the background or an aspect of the specific instance of the

shown main object, e.g. the IN-1k class plane in an image

of the OOD category sky. We show that ID contaminations
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Figure 1. Contamination of OOD test sets with ID samples (ImageNet). Blue: ImageNet-1K class found in the image. (Brown): Label

of the image in the original source dataset. Top: Samples from classes of the OOD dataset that by class meaning categorically overlap

with ImageNet-1K classes. Bottom: Labels alone do not reveal that the images are ID, but incidental ID objects can be found.

strongly impact the conclusions which can be drawn from

evaluating OOD detection methods by (1) systematically

underestimating the true OOD detection performance and

(2) unrightfully punishing stronger OOD detectors.

Probing the true performance of OOD detectors for IN-1K

requires a range of OOD classes that are challenging, di-

verse, and most importantly actually OOD. Compiling a

test OOD dataset is indeed a challenging task, as the 1000

classes of IN-1K cover a fair portion of the images found

in general image datasets. In this paper we introduce the

NINCO (No ImageNet Class Objects) dataset which con-

tains 5 879 images that we individually checked not to con-

tain any ID object from the classes in IN-1K. These images

are ordered into 64 OOD classes, which facilitates a specific

analysis of the failure modes of an OOD detector. Addition-

ally, we provide a dataset of ªOOD unit-testsº, synthetic

images which do not resemble real world photos, but are

designed to test specific weaknesses that might have impact

in real-world applications (e.g. due to a camera failure). We

find that surprisingly many OOD detectors struggle to detect

these supposedly easy unit-tests, in particular methods that

work well on natural test data.

We provide a detailed OOD detection evaluation on NINCO

for a range of eleven OOD detection methods across a large

number of architectures and training schemes. Surprisingly,

it turns out to be difficult for many OOD detectors to im-

prove consistently over the baseline of Maximum Softmax

Probability (MSP). While we confirm the observation that

pretraining on larger datasets generally helps OOD detectors

and particularly methods explicitly using pre-logit feature-

information, we find that the type of pretraining has a strong

impact.

2. Existing test OOD datasets for ImageNet-1K

First, we give an overview of the datasets that have been

used to evaluate OOD detection performance for IN-1K as

ID. In the following we use blue for the name of an Ima-

geNet class and brown for the category name in the source

dataset used for the generation of the test OOD dataset.

INATURALIST OOD PLANTS is a subset of 10 000 images

curated by Huang & Li (2021) from 110 OOD plant species

of iNat2017 (Van Horn et al., 2018) which is sourced from

the iNaturalist project. It is frequently used as test OOD

dataset (Xia & Bouganis, 2022; Ming et al., 2022).
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Table 1. Percentage of ID samples, p =
ID

ID+OOD
, in commonly

used test OOD datasets found by visual inspection of 400 random

samples per dataset. Unclear samples are ignored (which are at

most 6.7% (for PLACES) of the 400 samples).

Dataset ID samples Dataset ID samples

PLACES 59.5% SPECIES 57.0%

IMAGENET-O 20.2% TEXTURES 25.6%

INAT. PLANTS 2.5% TEXTURES43 20.0%

OPENIM.-O 4.9% IN-1K-OOD 32.1%

SSB-HARD 41.6% SSB-EASY 53.4%

360OPENSET 26.9% COOD 38.2%

PLACES is a subset of Places365 (Zhou et al., 2017) curated

by Huang & Li (2021) as ª50 categories [ . . . ] that are not

present in IN-1Kº. It is used as test OOD dataset in (Huang

& Li, 2021; Sun et al., 2021; Ming et al., 2022). The dataset

contains 9 822 images from 50 environment classes. We find

that several of these classes are either subsets of ID classes,

e.g. hayfield (hay), cornfield (corn), lagoon (seashore and

lakeshore), or contain mostly ID objects, e.g. underwater

(coral reef and scuba diver), ocean (seashore).

TEXTURES (Cimpoi et al., 2014) contains 5640 images of

various objects that show one of 47 patterns. It is used as test

OOD dataset in (Huang & Li, 2021; Sun et al., 2021; Wang

et al., 2021; Xia & Bouganis, 2022; Ming et al., 2022) and

others. Wang et al. (2022a) address the issue of overlap with

IN-1K and remove four categorically ID textures (bubbly

(bubble), honeycombed (honeycomb), cobwebbed (spider

web), spiralled (spiral)). We find that even their version

(denoted as TEXTURES43) contains about 20% ID images.

SPECIES was proposed in (Hendrycks et al., 2022) as OOD

dataset for IN-21K (Deng et al., 2009) and should thus also

be OOD for the IN-1K subset. Sourced from iNaturalist, it

consists of 700 000 images from 1 316 species which were

selected for not being in IN-21K. They sort the species into

10 superclasses. The largest superclass Fungi largely co-

incides with the IN-1K class mushroom, and also many of

the remaining species are ID. Papers evaluating on SPECIES

for IN-1K OOD detection include (Salehi et al., 2021; Yang

et al., 2022; Song et al., 2022).

IMAGENET-O (Hendrycks et al., 2021) contains 2 000 im-

ages from IN-21K, excluding its subset IN-1K. To make the

dataset challenging it was composed from images where a

ResNet-50 classifier for a subset of 200 IN-1K classes at-

tains high confidence. The samples being OOD relies on the

assumption that IN-21K without IN-1K is OOD for IN-1K.

However, this assumption does not hold, due to a significant

overlap between ImageNet classes from IN-1K and IN-21K,

e.g. analytical balance/scale and pickle/cucumber, and in-

sufficient filtering for incidental ID objects.

OPENIMAGE-O (Wang et al., 2022a) consists of 17 632 im-

ages from the OpenImage-v3 (Krasin et al., 2017) test set

which their human labellers categorize as OOD. It is also

used in Yang et al. (2022).
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Figure 2. A Vision Transformer confidently classifies ID objects in

samples from popular OOD datasets (source label in parentheses)

as the correct IN-1K class, but is marked down with false positives

in OOD detection evaluation when using MSP (Max Softmax

Prob.) as criterion. The weaker ResNet-50, in contrast, doesn’t

recognize the ID objects and hence the MSP is low enough to

reject all images wrongly as OOD. This illustrates how a better

model (ViT in our case) can be unjustly punished when the test

OOD dataset contains ID objects. For both models, the 95%TPR

threshold is at a MSP of 38%. Origins of the images: PL=PLACES,

SP=SPECIES, OO=OPENIMAGE-O, IO=IMAGENET-O.

360OPENSETCLASSES (Bendale & Boult, 2016) uses

those 360 classes (15.000 samples) from ILSVRC2010

which are not part of ILSVRC2012. Like for IMAGENET-O,

this leads to large semantic overlap, e.g. the class organ

pipe coinciding with the ID class organ.

SEMANTIC SHIFT BENCHMARK (SSB) (Vaze et al.,

2022) contains a hard and easy OSR benchmark, each con-

sisting of 1000 classes, that were created by regarding the

distances between nodes in the WordNet tree. Similar to

360OPENSETCLASSES, we find both categorical and in-

cidental ID contamination, e.g. rainbow lorikeet/lorikeet.

Papers evaluating on SSB include (Wen et al., 2022).

IMAGENET-1K-OOD (Wang et al., 2022b) contains

50.000 images from 1.000 classes randomly sampled from

ImageNet-21K, such that those classes don’t overlap with

ImageNet-1K and ImageNet-LT, another dataset introduced

by the authors. Categorical examples include bobwhite

quail/quail and king vulture/vulture.

COOD-BENCHMARK (Galil et al., 2023) is a general

framework for benchmarking ImageNet-1K OOD detection.

Their test set consists of ImageNet-21K samples which were

filtered by class. It includes severe contamination, including

categorical cases like orange, orange tree/orange.

2.1. Prevalence of ID samples in popular OOD datasets

Concerningly, several test OOD datasets for IN-1K that

are in use by the community contain a substantial fraction

of samples that show ID objects. Figure 1 shows some
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typical appearances of ID data in supposedly OOD datasets.

The categorical ID failure mode illustrated in the top part

is the inclusion of samples from explicitly ID classes of

the source dataset from which the OOD dataset has been

built. For instance, the class hayfield from the PLACES-

dataset overlaps with the IN-1K class hay. However, also in

principally innocuous classes (bottom part), many incidental

ID samples can still be found. Here, the occurring failure

modes are numerous: some ID objects happen to be in

the background, some are a prominent part of the depicted

scene, and some happen to realize both the original class

and the ID class. For instance, the class table knife contains

samples which also show a plate, and the class striped from

the TEXTURES-dataset often shows the stripes of a zebra.

In order to quantify the severity of ID objects in test OOD

datasets, we manually check for ID objects in 400 random

samples from each of the most commonly used datasets. For

fair treatment, unclear and ambiguous samples, which we

would exclude from NINCO introduced below, are ignored

in this survey. The results in Table 1 show that for many

of these common OOD detection benchmarks, a substantial

fraction of samples is actually ID: For both the PLACES and

SPECIES datasets, it is more than 50%. Only INATURALIST

OOD PLANTS (2.5% of samples ID) and OPENIMAGE-O

(4.9% ID) contain comparably few ID images.

2.2. Effect of ID contamination on OOD evaluation

In Figure 2, we show how OOD detection evaluation with

incidental ID samples can unrightfully punish strong OOD-

detectors: A better model can correctly recognize ID objects

with high confidence even if they are in the background of

the image, leading to a false ªfalse positiveº in the evalua-

tion, while a weaker model not recognizing the ID object

and providing a low-confidence prediction is ªrewardedº

with a false ªtrue negativeº. For example, the strong Vision-

Transformer (ViT) (Dosovitskiy et al., 2021) identifies the

pole besides an otherwise empty desert road, and thus has

high confidence on the image where the weaker ResNet-50

does not recognize any ID class with high confidence. Sim-

ilarly, in the second example, the ViT is punished with a

false ªfalse positiveº for recognizing (above the detection

threshold) the oranges in the background while ignoring the

unknown flying fox (truly OOD), whereas the ResNet-50

even does predict a wrong ID class, namely squirrel mon-

key, but does so with low confidence (below the detection

threshold), and is thus rewarded with a false ªtrue negativeº.

We quantify the effect of ID contaminations on evaluation

results in customary OOD datasets in Figure 3 for the MSP

baseline and the Mahalanobis OOD detection method (Lee

et al., 2018). For the test OOD datasets which showed a

large portion of ID samples in Table 1, we report the FPR

at 95% TPR obtained with a ViT when evaluating on the

MSP Maha MSP Maha MSP Maha MSP Maha0

20

40

60

FP
R

clean full
Places Species ImN-O Textures

Figure 3. OOD-detection before and after removing samples

with ID-objects: We show FPR (lower is better) of two OOD

detectors (MSP and Mahalanobis distance) for a ViT, evaluated on

cleaned and full subsets of four popular OOD datasets.

original 400 samples and our cleaned subsample of it not

containing any more ID objects (detailed results for a range

of models and methods can be found in Appendix J). We

find that ID contaminations strongly impact the conclusions

which can be drawn from evaluating OOD detection meth-

ods on those datasets. Most clearly, both methods perform

substantially better after removing the images with ID ob-

jects from the OOD datasets, in some cases reducing the

FPR by more than 50%. This is unsurprising: If a significant

fraction of the dataset is actually ID, this fraction should not

be detected as OOD by a well-performing method. Hence,

evaluating OOD detection performance with partially ID

data leads to a systematic overestimation of the true FPR of

the OOD detection method and disadvantages better models

as they are more likely to detect ID objects as discussed

above. Additionally, we observe that the differences be-

tween OOD detectors become more pronounced. In Fig-

ure 3 it can be seen that for each dataset, the FPR for the

Mahalanobis OOD detector decreases more than for the

MSP-baseline. The effect is particularly strong for SPECIES

(25.6% gain of MSP vs. 33.2% gain of Mahalanobis) and

PLACES (19.6% gain vs. 26.3% gain), which are the two

datasets we found to contain most ID samples. We fur-

ther emphasize that due to the presence of large fractions

of ID samples in most common benchmarks, even the per-

formance of a perfect detector would saturate significantly

above 0% FPR. For example with SPECIES, we find that

for a strong current detector already more than 85% of the

’false positives’ contain ID objects.

3. A new OOD test set for ImageNet-1K

As discussed in Sec. 1, an OOD input for IN-1K is an im-

age that does not contain an object from one (or several) of

the 1 000 IN-1K classes. These ImageNet classes are based

on individual WordNet (Fellbaum, 1998) synsets, each con-

sisting of one or more keywords that are synonymous in

some context. During the ImageNet creation process (Deng

et al., 2009), images were first collected from the web by

using variations of each keyword of a respective class and

then verified by humans to fit its synset’s definition.
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GalÂap. fur seal
sea lion

spagh. bolognese
carbonara

glass of milk
eggnog

donut
bagel

marbled newt
common newt

chicken quesadilla
burrito
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Figure 4. Difficult OOD classes in NINCO: Examples of images from some of NINCO’s most difficult (see Table 7) OOD classes (first

row) and from the ImageNet-1K class (second row) which the OOD class is most frequently confused for.

Sourcing OOD test samples for ImageNet-1K from

ImageNet-21K (or its subsets) based on class-labels has

been leading to highly contaminated datasets (5 of the

datasets in Table 1 are sourced from ImageNet-21K and

all contain between 20% and 53% ID samples and show

significant categorical contamination). This is partly due

to the class-structure of those datasets: Both ImageNet-

1K and ImageNet-21K contain leaf and internal nodes of

the WordNet-tree as classes. While the internal nodes

of ImageNet-1K are not ancestors to other Imagenet-1K

classes, ImageNet-21K internal nodes can be ancestors to

ImageNet-1K nodes, and vice versa. Moreover, there are

ambigous class-definitions in WordNet, like e.g. police

dog, which is not parent or child of another dog class, but

mostly shows a german shepherd, or an alley cat showing

one of the many cat classes without being parent or child

to other cat classes. Besides, there is significant incidental

contamination even for nominally disjoint classes. Since

the automation of filtering for challenging OOD data would

require a strong detector that already solves the problems

that the dataset is meant to pose, we conclude that it is im-

possible to construct a clean and challenging OOD dataset

without manually checking the OOD samples for ID con-

tamination.

In reality, many ImageNet samples fit one but not neces-

sarily all keywords of their class label. This means that

to make sure that OOD detectors are treated fairly1, OOD

test samples cannot fall into the definition of any keyword

of any IN-1K class. For example, photos of the Sumatran

orangutan cannot be considered OOD, since they could be

included in the IN-1K class (orangutan, orang, orangutang,

Pongo pygmaeus), even though Pongo pygmaeus only refers

to the Bornean orangutan. To determine what counts as

an ID object, we follow the WordNet glosses2 as well as

dictionary definitions of keywords and source dataset class

labels. For difficult cases, we consult additional sources

1For fair treatment of previous OOD datasets, such unclear
samples that don’t fit all keywords were ignored in Table 1.

2One can look up synsets with glosses here.

like Wikipedia. For example, the species northern elephant

seal does not fall into the ID class sea lion, among other

biological criteria distinguished by the fact that the former

do not have ears while the latter do. An image of an OOD

dataset can furthermore not incidentally contain ID objects,

to avoid cases as in Figure 1 (bottom) and Figure 2.

3.1. NINCO dataset construction

For each OOD class of our new NINCO dataset, we start

by choosing a base class which consists of all samples

from a named class of an existing or newly scraped dataset.

The majority of the NINCO base classes are sourced from

SPECIES (Hendrycks et al., 2022), which provides images

scraped from iNaturalist. For each base class, we carefully

decide, based on WordNet glosses, iNaturalist taxonomy de-

tails and Wikipedia, whether it can be included according to

the non-permissive interpretation described at the beginning

of Section 3. The choice of base classes is not random, since

there is no way to randomly sample from the set of concepts

that might occur at test time. Rather, we aim for a variety of

classes that are challenging, diverse and, most importantly,

not actually categorically ID to begin with. Then for each

base class, we individually inspect each image for ID ob-

jects. To help remembering the 1000 ID classes, we display

the 5 top ID classes of a ViT’s prediction on each image. If

an ID object is at least partially visible, the corresponding

sample is removed. In cases where it is ambiguous whether

we see an ID object in the image, the sample is not included

in the cleaned dataset. As the iNaturalist data (including

the SPECIES dataset) has been curated by experts and can

be considered very reliable, we generally trust in the main

object belonging to the species it is labelled as. For base

classes chosen from the other sources, we consider ourselves

competent to verify whether a label is correct. In addition to

samples showing ID objects, we also remove images where

no object from the OOD class is visible, e.g. we exclude

pictures of animal traces or remains which frequently appear

in iNaturalist. While for most existing datasets, the cleaning

has been outsourced to external services like Amazon Me-

5
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chanical Turk or student labellers. By researching all OOD

classes and visually inspecting all their samples ourselves,

we as authors of NINCO were able to do more in-depth

research for each ambiguous case and obtain more coherent

decisions, which we are positive leads to a higher quality

dataset. Such high data quality is crucial for in-depth evalu-

ations (Vasudevan et al., 2022; Shankar et al., 2021), as only

being completely in-distribution free allows understanding

a detector’s individual mistakes.

The NINCO (No ImageNet Class Objects) dataset con-

sists of 64 OOD classes with a total of 5 879 samples.

The base classes which we cleaned to obtain NINCO were

sourced from SPECIES (35 classes) (Hendrycks et al., 2022),

PLACES (3 classes) (Zhou et al., 2017), which both are dis-

cussed in Section 2, as well as from the FOOD-101 dataset

(7 classes) (Bossard et al., 2014), CALTECH-101 (4 classes)

(Li et al., 2022), MYNURSINGHOME (4 classes) (Ismail

et al., 2020), ImageNet-21k (1 class) and newly scraped

from iNaturalist.org (2 classes) or other websites

like Flickr (8 classes). Details for all NINCO OOD classes

are given in Appendix F. We show samples from all NINCO

classes in Figures 10 and 11 in Appendix H. In addition to

NINCO, we also provide the 2715 OOD images obtained

from cleaning 400 samples of eleven test OOD datasets

as discussed in Section 2.2. In order to notice ID con-

taminations potentially biasing the drawn conclusions, we

recommend to also evaluate on these cleaned versions when

evaluating on those original benchmarks.

3.2. OOD unit-tests

Following common practice (e.g. Hendrycks et al. (2022)),

we argue that evaluating an OOD detector on a range of

simple, synthetic classes besides the variably challenging

natural image classes of an OOD dataset can give additional

insights about its OOD detection weaknesses. Example

images and reproducibility details for all 17 pre-existing

and newly proposed OOD unit-tests are included in Appen-

dices G and H. Since these OOD unit-tests do not represent

a diverse distribution of photos, but different modes of sim-

ple, synthetically generated image inputs which any good

OOD detector should be expected to detect, we don’t include

them in summary metrics or distribution plots. Instead, we

suggest to count an OOD unit test as failed if a method has

an FPR above a user-defined threshold, which we suggest

setting at 10%, and to report the number of failed OOD

unit-tests (which should be 0 for a strong OOD detector)

alongside the aggregate results on a test OOD dataset like

NINCO. For each OOD unit-test, we provide a set of 400

samples in typical ImageNet format, by mirroring the sizes

and file formats of random ImageNet samples. While some

OOD unit-tests may appear redundant at first sight, we find

that they provide important information as some detectors

e.g. mostly pass the monochrome test but completely fail

on black, which reveals a specific weakness that is very

realistic to be encountered in practice.

3.3. OOD detectors and how to evaluate them

An OOD detector for inputs from the domain X of

possible input images is represented by a score function

S : X → R ∪ {±∞} which is generally supposed to be

larger on ID inputs than on OOD inputs. One example is

the Maximum Softmax Probability (MSP) or confidence

SMSP(x) = maxk=1,...,K pk(x) of a classifier with output

probabilities p for K ID classes. The MSP is the standard

baseline OOD detection method (Hendrycks & Gimpel,

2017), since it is intuitively expected to be low on OOD

compared to ID inputs. Observing that standard classifiers

are frequently overconfident on OOD inputs, OOD detection

research aims at finding detectors that improve on this base-

line. In Appendix C, we give an overview of a range of OOD

detection methods which have been proposed for IN-1K as

ID. An OOD detector is usually obtained by combining such

an OOD detection method with a concrete classifier model.

We analyze OOD detectors in terms of the fraction of falsely

accepted OOD inputs at a true positive rate of 95%, short

FPR. Detailed definitions can be found in Appendix D.

Different OOD classes (and similarly also different test

OOD datasets) represent different probabilistic distributions

of inputs that a detector is tested against. An important

arising question is how the collective of individual perfor-

mance measurements can be interpreted and whether they

can be aggregated into one number that can be used to make

an informed decision on which OOD detector works best.

Certainly, the notion of ‘best’ may notably vary depending

on the application and situation and we often cannot hope to

model a ‘true’ out-distribution, or even be sure that it mean-

ingfully exists. An aggregate number which gives a good

overview of an OOD detector’s performance on the class

based NINCO dataset is the mean FPR of the individual

FPR values for each of the 64 OOD classes of NINCO.

However, for many applications it is not possible to model

the potential OOD inputs that might be encountered at test

time with a fixed probability distribution. Thus a single

aggregate number cannot tell the full story, and may hide

outliers in the FPR values. For one, some errors might be

less acceptable than others, e.g. a FPR of 20.0% might be

very bad for monochrome inputs, but would lose much sig-

nificance when subsumed into a mean. For OOD unit tests,

where OOD detectors can be expected to be very robust,

we therefore propose regarding pass-fail statistics instead of

mean FPR. Also, an evaluator might want to be informed

about the concrete failure modes of the model, e.g. all OOD

classes with a particular high FPR. An OOD detector show-

ing consistent improvements on most of the OOD classes

(instead of only in terms of the mean) can be seen as strong

6

iNaturalist.org
https://www.flickr.com/


In or Out? Fixing ImageNet OOD Detection Evaluation

0 20 40 60 80 100
FPR (%)

0

20

40

60

80

100

CD
F 

(%
)

ViT-B with 21k pre + 1k finetuning
Maha (27.5)
RMaha (31.2)
ViM (32.6)
Ener (36.9)
MaxL (37.8)
KL-M (50.3)
MSP (51.9)
KNN (62.7)

0 20 40 60 80 100
FPR (%)

0

20

40

60

80

100
ViT-B variants + R. Mahalanobis

21k+1k 
(31.2, 0 failed u.t.)
clip+12k+1k 
(48.4, 6 failed u.t.)
21k+1k DeiT3 
(48.8, 4 failed u.t.)
only 1k 
(57.1, 10 failed u.t.)
clip+1k 
(53.7, 10 failed u.t.)
clip zero shot 
(79.8, 1 failed u.t.)

Figure 5. Cumulative distribution of the % of NINCO-classes for which an FPR at least as low as a given x-value is achieved. The

area over this curve corresponds to the mean FPR. The further in the top left corner, the better. The best methods explicitly access

pre-logit features (Left): Different OOD detection methods with a ViT-B pretrained on IN-21k (mean FPR in parentheses, pre-logit

feature-accessing methods are solid, others dashed). Not all pretraining helps (Right): RMaha applied to ViT-B with different training

variants (MCM for CLIP zero-shot is dashed). Only the top model does not fail OOD unit-tests.

evidence for the method yielding actual improvement, as

opposed to the detector overfitting to a limited scope of test

OOD data, which Wang et al. (2022a) describe as a form of

hackability. Due to these considerations, and with the OOD

data being organized into OOD classes as in NINCO, we

suggest evaluations of OOD detectors to always provide the

distribution of results over OOD classes and additionally

to make the individual results available, such that the

reader can make an informed comparison based on which

types of OOD inputs are most relevant to them.

4. Evaluation results for OOD Detectors

We evaluate a range of IN-1K models obtained from the

public timm-library (Wightman, 2019) and state-of-the-art

OOD-detection methods on NINCO. We focus on trans-

former architectures and convolutional networks, both with

and without pretraining. While most pretrained models were

initially trained on IN-21K, we also include an EfficientNet

trained via noisy student (Xie et al., 2019) on the JFT-300M

dataset, and four ViTs with CLIP-pretraining (Radford et al.,

2021) and subsequent fine-tuning, as well as a zero-shot

CLIP model. A detailed description of all models can be

found in Appendix B. We investigate the following com-

monly used OOD detection methods, which can be grouped

into two categories: Max-Softmax (MSP) (Hendrycks &

Gimpel, 2017), Max-Logit (Hendrycks et al., 2022), En-

ergy (Liu et al., 2020) and KL-Matching (Hendrycks et al.,

2022) derive an OOD-score exclusively from logit outputs,

whereas Mahalanobis distance (Maha) (Lee et al., 2018),

Virtual Logit Matching (ViM) (Wang et al., 2022a), ReAct

(Sun et al., 2021), Relative Mahalanobis distance (RMaha)

(Ren et al., 2021), and K-Nearest-Neighbours (KNN) (Sun

et al., 2022) also leverage explicit information from the fea-

tures of the DNN’s penultimate (pre-logit) layer. For the

zero-shot evaluation of CLIP, we use Maximum-Concept-

Matching (MCM) (Ming et al., 2022) and Cosine-similarity

(Cos) (Galil et al., 2023) to class-specific text-embeddings.

Noting that OOD detection based on softmax of a cosine

similarity to a specific feature vector has been proposed in

different variants (Tack et al. (2020), Techapanurak et al.

(2020) and MCM),we find that using it with classifier class

means produces reasonable OOD detection results, marked

below as relative cosine class similarity (RCos). We call

those methods which explicitly access the pre-logit feature

layer feature-based and provide an overview over all meth-

ods in Appendix C.

4.1. Results on NINCO

Comparison of OOD detection Methods. In Figure 5

(left), we illustrate the performance of a single ViT when

combined with a range of OOD-methods. Overall, most

feature-based methods, like Maha, RMaha and ViM, out-

perform the MSP-baseline by a clear margin. Notably,

MaxLogit and Energy, which do not explicitly access the pre-

logit features, are also able to strongly improve over MSP,

while KL-Matching performs roughly on par, and KNN

much worse. We observe that while Maha, RMaha and ViM

improve over MSP in all FPR ranges, this is different for e.g.

MaxLogit: For large FPR, it is similar to MSP, indicating

that the method brings no advantage over MSP for hard test

classes, and its improved mean performance is mainly due to

lower FPR for the easier OOD classes. When regarding the

mean FPR values of all method-model-combinations shown

in Table 3 in Appendix A, we observe that while Maha in

combination with a (pretrained) ViT is the single best OOD-

detector, this method often performs worse when combined

with other models. RMaha, however, yields good results

with all models, and is together with (Relative) Cosine the

only method which can fairly consistently improve over the

MSP baseline in terms of mean FPR. For most models, it

is either the best-performing method, or close to the best-

performing method, which is somewhat surprising, given

its relatively poor performance on the unit-tests. We further
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Figure 6. IN-21K pretraining boosts feature-based OOD detectors on NINCO: Mean FPR vs. accuracy for MSP and each model’s best

detector, which (except for the noisy-student model) always explicitly accesses the pre-logit features. OOD detection strongly improves

when using models pretrained on IN-21K. Additional CLIP-pretraining or on JFT can yield higher accuracy, but OOD detection need not

be better than with IN-21K pretraining.

note that for all models (except the noisy-student model),

the best-performing method always explicitly accesses the

pre-logit features, and that in contrast to e.g. KNN, Energy

and ReAct, even the adapted methods based on feature space

cosine similarity Cos and MCM/RCos fairly consistently

improve over the MSP-baseline. Each OOD dataset repre-

senting a different out-distribution that can be relevant for

certain applications, we find that results vary on the cleaned

subsets of eleven previous benchmarks which we evaluate

in Appendix J, while the overall conclusions on the methods

and models resemble those on NINCO.

Pretraining matters. In Figure 6, we plot the mean FPR

on NINCO over the accuracy for all investigated models

for both the MSP-baseline (left) and the best-performing

OOD detector per model (right). For MSP, the mean FPR

decreases roughly linearly with accuracy. Since most pre-

trained models (blue) have higher accuracy, they typically

also show better OOD-detection performance, but also

between models of similar accuracy, the pretrained ones

achieve better mean FPR. For the best-performing OOD

detector, improvements can be observed for models both

with and without pretraining. Notably, the linear relation be-

tween FPR and accuracy disappears, and all purely 1K mod-

els (green) perform roughly on one level. In comparison, the

gains for the majority of models pretrained on IN-21K (blue)

are larger. In particular ViT and BiT benefit strongly from

leveraging their respective best method, which as discussed

above is always feature-based. In other words, pretraining

helps in two ways: First, it leads to higher ID-performance

(accuracy), which benefits methods like the MSP-baseline.

Second, it creates better feature-embeddings for this task,

which lead to improvements beyond the accuracy-MSP cor-

relation. This is most clearly visible for the pretrained BiT-

m, which has comparably low accuracy (82%) and hence

no outstanding MSP-performance, but outperforms all 1k-

models by a significant margin with features leveraging

ViM. However, as we observe in Figure 5 (right), the bene-

fit of pretraining depends strongly on the specific data and

training method: With RMaha, the ViT with ’traditional’

IN-21K pretraining from (Steiner et al., 2022) clearly outper-

forms models with the distillation-based training of DeiT3

(Touvron et al., 2022), CLIP-pretraining or even CLIP with

interjected IN-12K training. The zero-shot methods for

CLIP, despite having shown promising results in (Galil et al.,

2023) and (Ming et al., 2022) and performing well on the

unit tests, are not competitive to IN-1k classifiers on NINCO.

Regarding all methods, the five models trained with differ-

ent pretraining strategies (EfficentNet-b7 with noisy student

and four ViTs with CLIP-pretraining (Radford et al., 2021)

and subsequent fine-tuning) show some of the highest accu-

racies in our survey, yet, their OOD-detection performance

is surprisingly poor. Overall, we see strong indication that

the precise type of pretraining has a large impact on whether

it produces a feature space that is beneficial for feature based

methods. In Appendix K we investigate whether IN-21K-

pretraining particularly benefits detection of OOD classes

that overlap with IN-21K classes, but we notice no substan-

tially different changes between the model with and without

pretraining.

Analysis of failure cases. In Figure 7 we plot the individ-

ual FPR for each OOD class of NINCO for the combina-

tion ViT+Maha, the overall best OOD detector in terms of

mean FPR, and contrast it with ConvNext+Maha, which

also shows good mean FPR. Performance varies widely be-

tween OOD classes, with both models severely struggling

for some classes. Where the ViT shows large FPR, the Con-

vNext rarely performs better, while it also fails to detect

certain classes like the long-tailed silverfish where the ViT

does well. We illustrate samples from hard classes in Figure

4. Both models struggle to detect the GalÂapagos fur seal

(98% FPR for the ViT), often confused with the IN-1K class

sea lion, and cat-faced spider (confused with barn spider,
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Figure 7. FPR of a pretrained ViT-B and pretrained ConvNext-B for all classes of NINCO.

91% FPR). From a human perspective, those classes are

arguably hard to detect. We note, however, that it is possible

to tell them apart, as a ViT IN-21K-classifier e.g. identifies

the GalÂapagos fur seal as a fur seal (IN-21K class) in 92%

of samples and misclassifies only 6% of them as a sea lion.

The networks however also fail for classes more obvious

to humans: donut (84% FPR ViT, confused with bagel),

spaghetti bolognese (69% FPR, carbonara) and chicken

quesadilla (73% FPR, burrito) also confuse both models.

4.2. Results on the OOD unit-tests

Auditing OOD detectors on the OOD unit-tests, we find that

surprisingly many combinations of models and OOD detec-

tion methods struggle to distinguish supposedly easy inputs

from ID-data. While results for all models and methods can

be found in Appendix I, we provide some illustrative unit-

test results in Table 2 for a ViT pretrained on IN-21k and a

ConvNext both with and without IN-21K pretraining. In gen-

eral, most methods fail fewer unit tests when applied to pre-

trained models, however there are still many severely flawed

combinations, often involving methods that would otherwise

shine based on their detection of natural OOD data discussed

above: especially the feature-based methods ViM, Maha and

RMaha reveal weaknesses, each failing multiple unit-tests

on at least 21 of 26 models. Many tested OOD detectors are

vulnerable to black, white and grey, which is concerning as

encountering inputs of this kind could occur in many real-

world applications due to camera malfunction or occlusion.

Here those feature-based methods only provide trustworthy

Table 2. Some detectors fail OOD unit-tests: FPR for a ViT and

a ConvNext (with and without pretraining) on selected unit-tests.

FPR larger than 10% count as failed and are thus marked red.

Especially for methods relying on feature representations (like

ViM and Maha) the OOD unit-tests reveal difficulties.

method bla whi gre hor SmN Rad mon

V
iT

2
1

k MSP 0.0 0.0 0.0 0.2 0.5 0.0 0.0
ViM 0.0 100.0 46.0 0.0 0.0 0.0 0.5
Maha 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cos 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C
n
v

1
k

MSP 0.0 0.0 0.0 60.5 0.8 0.0 0.0
ViM 100.0 100.0 100.0 98.0 24.5 100.0 100.0

Maha 100.0 100.0 100.0 87.5 27.5 100.0 100.0

Cos 0.0 0.0 0.0 27.5 0.0 0.0 0.0

C
n
v

2
1

k MSP 0.0 0.0 0.0 13.5 2.2 0.0 0.0
ViM 100.0 100.0 100.0 0.0 0.0 41.2 0.5
Maha 100.0 100.0 100.0 0.0 0.0 42.5 2.8
Cos 0.0 0.0 0.0 0.0 0.0 0.0 0.0

results in combination with ViTs pretrained on IN-21k, the

BiT-models and a pretrained EfficientNet-V2. Methods like

Cos (7/26 models fail multiple tests) and MCM/RCos (7/26),

originally designed for cosine-trained features as in CLIP,

achieve remarkably strong OOD-detection performance on

the unit-tests across a broad range of models, both with

and without CLIP-pretraining. While taking note of these

general trends, each OOD detector’s robustness to the OOD

unit-tests should be examined individually.

5. Conclusions

We introduce with NINCO a novel, ID-contamination-free

and challenging OOD test-dataset for IN-1K with fine-

grained class-resolution. We find that many OOD detectors

work better than previously thought, when their recorded

number of undetected OOD inputs is not inflated by ID

contaminations. However, most detection methods cannot

reliably be applied with arbitrary classifier models, as even

OOD unit-tests are failed by many combinations. We are

hopeful for NINCO and the cleaned test OOD subsets to

facilitate the more precise development of reliable OOD

detectors which do not try to avoid presumed failures which

are actually correct decisions.
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A. Detailed results on NINCO

A detailed overview over the results on the NINCO benchmark is presented in Table 3, where we show the mean FPR

for all models and methods across the dataset’s OOD classes. Tables 4-6 show AUROC, AUPR-S and AUPR-E with the

same conclusions. The best method per model is marked bold, and the difference to the MSP-baseline is shown in green

where a model outperforms the MSP-baseline and in red if it performs worse than MSP. It is clearly visible that there is no

one-fits-all method. Instead, different models synergize with different methods. Overall, the two ViT models pretrained

only on IN-21K in combination with Mahalanobis distance outperform other models and methods by a clear margin. This

is in line with the observations of previous works (Koner et al., 2021; Fort et al., 2021; Galil et al., 2023), which also

found the ViTs to perform exceptionally well. In terms of MSP, the ViTs are not better than e.g. the ConvNext, indicating

that their improved OOD detection capabilities stem from a favourably structured feature-space. It is further interesting

to see that for models without pretraining, out of all methods only Relative Mahalanobis and the cosine-based methods

improve over the MSP-baseline fairly consistently. Apart from KL-Matching and KNN, most methods improve over the

MSP-baseline for most pretrained models and the CLIP-methods Cosine and RCos perform comparably well, yielding their

best results with models pretrained both on CLIP and IN-12k. Since CLIP models are trained with cosine-similarity, it is

likely that the structure of the feature space after finetuning remains favorable to cosine-based methods, while it might harm

the performance of other feature-based methods like Mahanobis compared to models pretrained only on IN-21k.

It has been remarked (Hendrycks et al., 2022) that the advantage of models pretrained with IN-21K in the OOD detection

task CIFAR-10 vs. CIFAR-100 (Krizhevsky & Hinton, 2009) might partially be explained by the CIFAR-100 classes not

truly being unseen at train time, as they have a large overlap with IN-21K classes. We checked each NINCO class for

overlap with the 21 843 classes of IN-21K with the help of a ViT classifier for IN-21K, see Table 9. This allows us to

test whether the pretrained models have a larger advantage over purely IN-1K-trained models when trying to detect those

classes with overlap compared to the classes without overlap. In Appendix K notice no substantially different changes

between the models with and without pretraining. We remark, however, that even for several models without pretraining, the

subselections of classes show quite different results.

In Figure 8 we contrast the results on NINCO with the results from previously used datasets. We show all methods for a

pretrained ViT-B-384 and all models for the MSP-baseline. In both cases we observe several ranking changes: For the ViT,

the best-performing method changes from ViM to Mahalanobis, and Relative Mahalanobis improves from sixth to second

place. For the MSP-baseline, the clip-pretrained ViTs were the strongest OOD detectors on the previously used datasets, but

are outperformend by the ConvNext-B on NINCO.

Figure 8. Mean FPR on NINCO vs. mean-FPR on previously used contaminated datasetes with fixed model (left) and fixed method

(right). We observe several ranking changes, including the best-performing method and model.
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Table 3. Mean FPR on our NINCO dataset. Lower is better. The difference to MSP is shown in red if a method performs worse, and in

green if it improves. Bold values mark the best-performing method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 51.9 37.8 −14 36.9 −15 50.3 −2 27.5 −24 31.2 −21 32.6 −19 38.5 −13 62.7 +11 46.0 −6 45.0 −7

84.5 ViT-B-224 58.0 46.5 −12 46.1 −12 57.2 −1 31.9 −26 36.8 −21 38.4 −20 49.4 −9 68.8 +11 54.7 −3 54.3 −4

86.3 Swinv2-B-256 51.1 41.1 −10 40.0 −11 56.0 +5 62.8 +12 53.8 +3 54.8 +4 37.4 −14 61.9 +11 51.4 +0 48.2 −3

86.7 Deit3-B-384 61.8 56.0 −6 56.3 −5 60.3 −1 53.9 −8 48.8 −13 56.9 −5 51.6 −10 53.4 −8 48.4 −13 47.7 −14

85.7 Deit3-B-224 64.8 59.2 −6 58.1 −7 65.2 +0 60.0 −5 53.8 −11 62.5 −2 55.2 −10 58.7 −6 54.2 −11 53.2 −12

86.3 CnvNxt-B 47.2 41.1 −6 43.3 −4 54.9 +8 49.6 +2 42.4 −5 41.5 −6 40.5 −7 51.8 +5 44.2 −3 42.6 −5

84.1 CnvNxt-T 54.7 47.9 −7 45.4 −9 60.7 +6 46.9 −8 45.8 −9 37.4 −17 44.1 −11 56.6 +2 51.2 −4 49.2 −5

82.3 BiT-m 67.8 62.0 −6 63.2 −5 64.9 −3 50.0 −18 45.1 −23 40.7 −27 57.1 −11 58.0 −10 51.6 −16 54.4 −13

85.6 EffNetv2-M 50.7 48.3 −2 54.1 +3 54.6 +4 62.9 +12 51.6 +1 53.5 +3 89.8 +39 67.5 +17 45.4 −5 50.6 −0

none

81.1 ViT-B-384 69.5 67.7 −2 68.1 −1 66.7 −3 60.0 −9 57.1 −12 69.4 −0 65.8 −4 73.6 +4 68.7 −1 69.8 +0

84.6 Swinv2-B-256 69.9 67.6 −2 72.2 +2 67.5 −2 63.9 −6 60.0 −10 66.5 −3 68.8 −1 69.2 −1 63.5 −6 62.0 −8

85.1 Deit3-B-384 67.3 72.8 +5 87.6 +20 64.6 −3 64.0 −3 59.4 −8 60.0 −7 90.2 +23 74.4 +7 67.1 −0 56.9 −10

83.8 Deit3-B-224 70.3 71.9 +2 82.3 +12 68.4 −2 69.0 −1 64.3 −6 63.5 −7 83.1 +13 80.4 +10 73.0 +3 61.9 −8

82.6 XCiT-M-224 72.7 73.3 +1 79.2 +6 71.8 −1 66.2 −6 63.5 −9 64.9 −8 76.4 +4 71.8 −1 67.1 −6 66.0 −7

84.3 XCiT-M-224-d 68.3 66.2 −2 73.1 +5 66.9 −1 66.4 −2 61.9 −6 62.3 −6 72.4 +4 70.4 +2 64.6 −4 62.6 −6

84.4 CnvNxt-B 64.7 71.5 +7 89.1 +24 68.0 +3 65.8 +1 60.6 −4 65.4 +1 85.9 +21 70.5 +6 61.3 −3 58.6 −6

78.0 BiT-s 78.8 81.2 +2 82.9 +4 68.4 −10 83.5 +5 64.1 −15 73.5 −5 77.8 −1 83.2 +4 72.1 −7 84.1 +5

85.1 EffNetv2-M 65.3 65.3 +0 74.5 +9 62.8 −2 62.5 −3 54.9 −10 72.5 +7 69.6 +4 64.4 −1 59.6 −6 54.4 −11

84.9 EffNetb7 66.8 69.0 +2 81.5 +15 62.7 −4 68.1 +1 54.6 −12 72.7 +6 76.3 +10 66.8 +0 60.5 −6 53.7 −13

77.7 EffNet-B0 72.0 72.4 +0 79.6 +8 72.3 +0 83.3 +11 74.0 +2 75.2 +3 75.1 +3 86.9 +15 61.3 −11 69.8 −2

80.4 ResNet50 72.4 74.3 +2 77.9 +6 69.0 −3 85.9 +13 69.5 −3 78.6 +6 97.4 +25 77.9 +6 63.0 −9 62.1 −10

JFT 86.8 EffNetb7-ns 63.2 55.7 −7 61.5 −2 64.5 +1 87.4 +24 68.7 +6 89.2 +26 61.7 −1 73.8 +11 65.2 +2 63.7 +1

clip

+12k

87.2 ViT-B-384-l2b 50.2 47.4 −3 50.3 +0 52.2 +2 52.6 +2 47.3 −3 45.8 −4 44.9 −5 45.4 −5 40.1 −10 40.2 −10

87.0 ViT-B-384-oai 48.8 43.7 −5 44.1 −5 49.6 +1 57.7 +9 48.4 −0 52.5 +4 42.2 −7 45.0 −4 39.3 −10 39.1 −10

clip
86.6 ViT-B-384-l2b 61.9 61.6 −0 65.8 +4 57.5 −4 52.7 −9 50.5 −11 51.7 −10 63.2 +1 57.0 −5 50.8 −11 49.1 −13

86.2 ViT-B-384-oai 64.9 64.9 +0 69.7 +5 61.8 −3 55.7 −9 53.7 −11 56.9 −8 67.3 +2 61.4 −4 56.6 −8 54.3 −11

clip

z. shot

74.3 clip-ViT-L-336 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 72.5 67.1

66.6 clip-ViT-B-224 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 79.1 79.8

Table 4. Mean AUROC on our NINCO dataset. Higher is better. The difference to MSP is shown in red if a method performs worse,

and in green if it improves. Bold values mark the best-performing method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 87.2 92.5 +5 92.7 +5 86.9 −0 95.0 +8 94.0 +7 94.0 +7 92.5 +5 85.9 −1 91.5 +4 91.7 +4

84.5 ViT-B-224 85.5 90.6 +5 90.8 +5 85.2 −0 94.0 +8 92.8 +7 92.5 +7 90.1 +5 82.6 −3 89.5 +4 89.4 +4

86.3 Swinv2-B-256 86.3 87.0 +1 85.8 −0 86.1 −0 88.0 +2 89.0 +3 89.9 +4 88.8 +3 84.3 −2 89.1 +3 89.8 +4

86.7 Deit3-B-384 81.1 77.7 −3 74.9 −6 83.6 +2 89.7 +9 90.0 +9 89.0 +8 80.7 −0 87.0 +6 90.1 +9 90.4 +9

85.7 Deit3-B-224 80.3 77.3 −3 74.8 −6 82.4 +2 88.3 +8 88.8 +9 87.6 +7 79.5 −1 85.2 +5 88.8 +8 89.0 +9

86.3 CnvNxt-B 87.9 87.6 −0 85.8 −2 88.0 +0 90.9 +3 91.8 +4 92.5 +5 87.9 −0 87.5 −0 91.5 +4 91.8 +4

84.1 CnvNxt-T 85.1 86.0 +1 85.3 +0 85.2 +0 89.8 +5 89.5 +4 92.5 +7 86.0 +1 86.0 +1 89.1 +4 89.6 +5

82.3 BiT-m 82.2 83.3 +1 82.5 +0 82.8 +1 90.6 +8 90.0 +8 92.2 +10 85.8 +4 86.4 +4 89.6 +7 88.5 +6

85.6 EffNetv2-M 86.3 85.1 −1 82.7 −4 87.3 +1 87.6 +1 88.9 +3 87.9 +2 73.0 −13 83.8 −3 90.1 +4 88.8 +3

none

81.1 ViT-B-384 81.4 84.2 +3 84.2 +3 80.7 −1 86.5 +5 87.3 +6 82.6 +1 84.6 +3 79.7 −2 84.4 +3 84.1 +3

84.6 Swinv2-B-256 80.4 77.8 −3 75.0 −5 81.9 +1 86.2 +6 86.7 +6 81.1 +1 80.2 −0 81.9 +1 85.8 +5 86.3 +6

85.1 Deit3-B-384 81.7 76.4 −5 66.6 −15 83.5 +2 86.9 +5 88.0 +6 84.8 +3 61.8 −20 80.4 −1 85.5 +4 87.0 +5

83.8 Deit3-B-224 81.0 78.8 −2 74.8 −6 82.3 +1 85.5 +5 86.9 +6 84.0 +3 74.6 −6 77.6 −3 83.8 +3 85.6 +5

82.6 XCiT-M-224 77.9 72.2 −6 64.5 −13 81.2 +3 85.1 +7 85.7 +8 86.0 +8 73.3 −5 80.9 +3 84.7 +7 85.0 +7

84.3 XCiT-M-224-d 82.7 80.2 −3 74.1 −9 82.9 +0 85.5 +3 86.8 +4 85.3 +3 78.6 −4 81.4 −1 85.8 +3 86.1 +3

84.4 CnvNxt-B 81.1 76.2 −5 64.6 −16 83.4 +2 85.2 +4 86.6 +6 82.5 +1 72.9 −8 81.3 +0 85.8 +5 86.9 +6

78.0 BiT-s 80.1 77.3 −3 75.6 −5 82.3 +2 71.2 −9 84.9 +5 77.9 −2 76.2 −4 68.8 −11 78.3 −2 69.8 −10

85.1 EffNetv2-M 81.8 78.3 −3 71.8 −10 84.0 +2 86.5 +5 88.9 +7 80.1 −2 79.0 −3 83.4 +2 87.3 +6 88.1 +6

84.9 EffNetb7 79.6 72.8 −7 64.6 −15 84.2 +5 84.5 +5 88.6 +9 81.6 +2 71.8 −8 82.5 +3 86.9 +7 87.9 +8

77.7 EffNet-B0 80.8 78.5 −2 74.9 −6 81.9 +1 76.7 −4 82.7 +2 81.6 +1 79.1 −2 76.2 −5 85.0 +4 82.3 +1

80.4 ResNet50 81.5 81.5 +0 81.2 −0 79.3 −2 75.8 −6 85.0 +4 81.3 −0 64.6 −17 76.3 −5 84.9 +3 85.5 +4

JFT 86.8 EffNetb7-ns 83.6 82.5 −1 78.6 −5 83.1 −0 78.1 −5 86.6 +3 74.6 −9 81.1 −2 79.2 −4 85.2 +2 85.0 +1

clip

+12k

87.2 ViT-B-384-l2b 86.1 82.6 −4 78.1 −8 88.8 +3 90.5 +4 91.1 +5 91.9 +6 83.4 −3 89.5 +3 92.2 +6 92.1 +6

87.0 ViT-B-384-oai 87.2 85.8 −1 84.2 −3 88.4 +1 89.6 +2 91.1 +4 90.8 +4 86.5 −1 89.9 +3 92.5 +5 92.5 +5

clip
86.6 ViT-B-384-l2b 81.1 73.5 −8 68.5 −13 85.9 +5 89.1 +8 89.1 +8 88.8 +8 71.7 −9 86.1 +5 89.8 +9 90.0 +9

86.2 ViT-B-384-oai 78.8 70.4 −8 65.0 −14 84.4 +6 88.6 +10 88.5 +10 88.3 +10 68.1 −11 84.6 +6 88.6 +10 89.2 +10

clip

z. shot

74.3 clip-ViT-L-336 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 79.7 81.1

66.6 clip-ViT-B-224 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 74.0 74.9
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Table 5. Mean AUPR-S on our NINCO dataset. Higher is better. The difference to MSP is shown in red if a method performs worse,

and in green if it improves. Bold values mark the best-performing method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 97.2 98.4 +1 98.4 +1 96.6 −1 99.0 +2 98.8 +2 98.7 +2 98.4 +1 97.0 −0 98.2 +1 98.3 +1

84.5 ViT-B-224 96.7 97.9 +1 98.0 +1 96.1 −1 98.7 +2 98.5 +2 98.4 +2 97.8 +1 96.1 −1 97.8 +1 97.8 +1

86.3 Swinv2-B-256 96.2 95.8 −0 95.2 −1 96.6 +0 97.4 +1 97.5 +1 97.9 +2 96.6 +0 96.5 +0 97.7 +2 97.9 +2

86.7 Deit3-B-384 94.1 91.7 −2 90.4 −4 95.9 +2 97.9 +4 97.9 +4 97.6 +4 93.1 −1 97.1 +3 97.9 +4 98.0 +4

85.7 Deit3-B-224 94.1 91.7 −2 90.6 −3 95.5 +1 97.5 +3 97.6 +3 97.3 +3 92.7 −1 96.6 +3 97.6 +4 97.6 +4

86.3 CnvNxt-B 96.8 96.3 −1 95.7 −1 97.2 +0 98.1 +1 98.2 +1 98.4 +2 96.4 −0 97.2 +0 98.2 +1 98.3 +1

84.1 CnvNxt-T 96.0 95.9 −0 95.6 −0 96.4 +0 97.7 +2 97.6 +2 98.4 +2 95.8 −0 96.9 +1 97.6 +2 97.8 +2

82.3 BiT-m 95.7 95.7 −0 95.5 −0 95.3 −0 98.0 +2 97.7 +2 98.3 +3 96.6 +1 97.0 +1 97.7 +2 97.5 +2

85.6 EffNetv2-M 96.3 95.7 −1 95.0 −1 97.0 +1 97.3 +1 97.5 +1 97.2 +1 93.6 −3 96.5 +0 97.8 +1 97.5 +1

none

81.1 ViT-B-384 95.5 96.1 +1 96.2 +1 94.6 −1 96.9 +1 97.1 +2 95.7 +0 96.1 +1 95.2 −0 96.4 +1 96.3 +1

84.6 Swinv2-B-256 94.5 92.6 −2 91.4 −3 95.2 +1 96.9 +2 97.0 +2 94.9 +0 94.0 −1 95.8 +1 96.9 +2 96.9 +2

85.1 Deit3-B-384 95.2 92.9 −2 89.6 −6 95.7 +1 97.1 +2 97.4 +2 96.1 +1 88.2 −7 95.4 +0 96.8 +2 96.8 +2

83.8 Deit3-B-224 95.1 94.1 −1 93.0 −2 95.5 +0 96.8 +2 97.1 +2 95.9 +1 93.2 −2 94.8 −0 96.3 +1 96.6 +2

82.6 XCiT-M-224 93.7 90.7 −3 87.6 −6 95.3 +2 96.5 +3 96.8 +3 96.7 +3 91.6 −2 95.4 +2 96.5 +3 96.5 +3

84.3 XCiT-M-224-d 95.8 94.1 −2 92.1 −4 95.6 −0 96.7 +1 97.0 +1 96.5 +1 93.9 −2 95.6 −0 96.8 +1 96.9 +1

84.4 CnvNxt-B 94.9 93.0 −2 89.8 −5 95.8 +1 96.7 +2 96.9 +2 95.6 +1 92.8 −2 95.5 +1 96.8 +2 97.0 +2

78.0 BiT-s 95.3 94.7 −1 94.3 −1 95.3 +0 92.7 −3 96.5 +1 94.8 −0 94.4 −1 92.0 −3 94.7 −1 92.1 −3

85.1 EffNetv2-M 95.1 92.9 −2 90.4 −5 96.0 +1 97.0 +2 97.6 +3 94.9 −0 93.8 −1 96.2 +1 97.2 +2 97.1 +2

84.9 EffNetb7 94.0 90.7 −3 87.9 −6 96.2 +2 96.5 +3 97.5 +3 95.6 +2 90.9 −3 95.9 +2 97.0 +3 97.3 +3

77.7 EffNet-B0 95.1 94.1 −1 93.1 −2 95.4 +0 94.6 −0 96.1 +1 95.9 +1 94.6 −1 94.6 −1 96.5 +1 95.8 +1

80.4 ResNet50 95.5 95.6 +0 95.5 −0 94.2 −1 94.3 −1 96.7 +1 95.6 +0 91.7 −4 94.1 −1 96.5 +1 96.7 +1

JFT 86.8 EffNetb7-ns 95.8 94.7 −1 92.9 −3 95.8 +0 95.0 −1 97.2 +1 94.1 −2 94.4 −1 95.3 −1 96.8 +1 96.6 +1

clip

+12k

87.2 ViT-B-384-l2b 95.9 94.0 −2 92.6 −3 97.5 +2 98.0 +2 98.1 +2 98.3 +2 94.5 −1 97.7 +2 98.4 +2 98.4 +3

87.0 ViT-B-384-oai 96.6 95.5 −1 94.9 −2 97.3 +1 97.8 +1 98.1 +2 98.1 +2 95.9 −1 97.8 +1 98.5 +2 98.4 +2

clip
86.6 ViT-B-384-l2b 94.2 90.8 −3 89.2 −5 96.6 +2 97.6 +3 97.5 +3 97.4 +3 90.2 −4 96.8 +3 97.8 +4 97.8 +4

86.2 ViT-B-384-oai 93.1 89.6 −3 88.0 −5 96.1 +3 97.5 +4 97.5 +4 97.4 +4 89.2 −4 96.4 +3 97.5 +4 97.7 +5

clip

z. shot

74.3 clip-ViT-L-336 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 95.2 95.5

66.6 clip-ViT-B-224 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 93.6 93.9

Table 6. Mean AUPR-E on our NINCO dataset. Higher is better. The difference to MSP is shown in red if a method performs worse,

and in green if it improves. Bold values mark the best-performing method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 60.2 69.8 +10 71.3 +11 60.4 +0 78.9 +19 74.9 +15 74.2 +14 69.4 +9 53.8 −6 65.3 +5 65.3 +5

84.5 ViT-B-224 56.1 64.9 +9 65.4 +9 56.4 +0 75.3 +19 72.4 +16 71.3 +15 62.0 +6 48.2 −8 59.5 +3 59.6 +3

86.3 Swinv2-B-256 61.9 68.2 +6 69.8 +8 54.7 −7 54.7 −7 59.9 −2 59.8 −2 71.6 +10 52.6 −9 60.1 −2 63.0 +1

86.7 Deit3-B-384 54.1 55.8 +2 54.7 +1 53.0 −1 59.2 +5 62.0 +8 57.2 +3 60.3 +6 59.0 +5 62.4 +8 63.4 +9

85.7 Deit3-B-224 50.4 53.5 +3 53.3 +3 49.6 −1 54.9 +4 58.2 +8 53.8 +3 56.7 +6 55.8 +5 59.2 +9 60.0 +10

86.3 CnvNxt-B 64.0 68.3 +4 67.0 +3 57.1 −7 65.3 +1 68.2 +4 69.6 +6 70.2 +6 59.5 −5 67.2 +3 68.1 +4

84.1 CnvNxt-T 58.3 63.4 +5 65.1 +7 52.4 −6 64.8 +7 65.3 +7 71.4 +13 65.0 +7 55.3 −3 60.3 +2 62.6 +4

82.3 BiT-m 47.7 52.5 +5 51.8 +4 51.7 +4 63.5 +16 66.2 +18 68.8 +21 55.7 +8 56.6 +9 62.1 +14 60.2 +13

85.6 EffNetv2-M 60.9 62.3 +1 58.7 −2 56.5 −4 54.5 −6 59.6 −1 58.6 −2 31.0 −30 49.7 −11 65.6 +5 61.5 +1

none

81.1 ViT-B-384 47.1 49.6 +2 50.3 +3 49.6 +2 56.6 +9 58.5 +11 48.3 +1 51.8 +5 43.9 −3 49.7 +3 49.2 +2

84.6 Swinv2-B-256 46.8 46.9 +0 42.7 −4 48.7 +2 52.1 +5 54.8 +8 48.3 +1 46.0 −1 46.3 −1 51.7 +5 53.6 +7

85.1 Deit3-B-384 49.8 43.1 −7 29.0 −21 51.4 +2 51.9 +2 55.5 +6 53.5 +4 25.4 −24 43.1 −7 49.3 −0 57.0 +7

83.8 Deit3-B-224 47.0 45.2 −2 35.7 −11 48.5 +2 49.4 +2 51.9 +5 50.9 +4 35.5 −11 38.5 −9 45.8 −1 52.7 +6

82.6 XCiT-M-224 42.9 40.1 −3 33.5 −9 46.8 +4 52.6 +10 54.2 +11 52.6 +10 38.6 −4 44.6 +2 50.3 +7 50.3 +7

84.3 XCiT-M-224-d 49.0 48.4 −1 41.7 −7 50.2 +1 51.3 +2 53.7 +5 53.1 +4 43.6 −5 46.0 −3 51.8 +3 52.6 +4

84.4 CnvNxt-B 49.6 43.7 −6 27.7 −22 48.8 −1 51.4 +2 55.5 +6 50.3 +1 33.3 −16 45.6 −4 53.1 +3 55.5 +6

78.0 BiT-s 40.5 37.5 −3 36.5 −4 49.1 +9 33.6 −7 51.5 +11 42.1 +2 39.4 −1 32.8 −8 43.1 +3 33.1 −7

85.1 EffNetv2-M 50.1 48.6 −1 39.0 −11 52.3 +2 53.8 +4 58.8 +9 45.3 −5 45.0 −5 52.2 +2 55.1 +5 59.1 +9

84.9 EffNetb7 48.3 43.9 −4 31.5 −17 53.8 +5 49.5 +1 59.2 +11 45.5 −3 39.4 −9 49.8 +2 54.0 +6 60.3 +12

77.7 EffNet-B0 45.3 44.1 −1 37.9 −7 45.9 +1 36.3 −9 45.1 −0 43.0 −2 43.0 −2 33.7 −12 54.2 +9 48.1 +3

80.4 ResNet50 44.8 44.7 −0 42.2 −3 48.0 +3 34.2 −11 48.4 +4 41.5 −3 22.0 −23 39.4 −5 53.1 +8 54.3 +9

JFT 86.8 EffNetb7-ns 52.7 56.3 +4 50.6 −2 49.3 −3 36.1 −17 50.2 −3 33.1 −20 50.6 −2 43.1 −10 50.4 −2 51.5 −1

clip

+12k

87.2 ViT-B-384-l2b 61.0 61.4 +0 58.3 −3 58.2 −3 62.4 +1 65.2 +4 66.9 +6 63.4 +2 64.2 +3 68.2 +7 68.0 +7

87.0 ViT-B-384-oai 62.2 64.9 +3 64.5 +2 60.5 −2 59.5 −3 64.2 +2 62.3 +0 66.8 +5 63.8 +2 69.4 +7 69.7 +7

clip
86.6 ViT-B-384-l2b 51.9 48.7 −3 43.8 −8 56.1 +4 61.0 +9 61.3 +9 60.2 +8 46.3 −6 55.9 +4 60.7 +9 63.0 +11

86.2 ViT-B-384-oai 50.2 44.6 −6 39.5 −11 53.9 +4 59.8 +10 59.8 +10 58.9 +9 42.1 −8 53.5 +3 58.3 +8 60.2 +10

clip

z. shot

74.3 clip-ViT-L-336 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 44.2 48.5

66.6 clip-ViT-B-224 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 37.5 38.0
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Table 7. FPR on all classes of NINCO (lower is better) for a pretrained ViT-B and a pretrained ConvNext-B.
ViT-B-384-21k CnvNxt-B-21k

Dataset MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos RCos MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos RCos

Caracal 79.0 75.0 73.0 68.0 53.0 47.0 82.0 88.0 87.0 83.0 81.0 77.0 74.0 67.0 79.0 79.0 76.0 86.0 67.0 87.0 77.0 77.0

2TAmph 75.6 90.9 91.5 70.5 68.8 54.0 92.0 93.8 95.5 86.9 84.7 79.5 85.8 91.5 69.3 63.6 54.5 72.7 86.9 83.5 72.2 71.0

AFA 95.7 87.0 82.6 93.5 60.9 71.7 65.2 80.4 80.4 84.8 82.6 89.1 82.6 69.6 89.1 73.9 80.4 45.7 65.2 82.6 80.4 80.4

CatFSp 90.0 96.0 96.0 94.0 91.0 88.0 91.0 97.0 100.0 97.0 97.0 78.0 77.0 86.0 92.0 87.0 81.0 88.0 86.0 98.0 96.0 95.0

GFurS 100.0 98.9 96.7 95.6 97.8 96.7 75.8 100.0 98.9 100.0 100.0 98.9 98.9 81.3 96.7 100.0 100.0 100.0 87.9 100.0 100.0 100.0

Bagp 8.2 2.1 2.1 12.4 4.1 4.1 4.1 1.0 11.3 6.2 4.1 16.5 5.2 2.1 37.1 70.1 20.6 18.6 3.1 12.4 8.2 7.2

CSSala 76.0 86.0 89.0 76.0 42.0 60.0 57.0 93.0 100.0 94.0 94.0 78.0 71.0 66.0 79.0 90.0 70.0 92.0 66.0 97.0 86.0 82.0

Cabl 46.6 15.9 14.8 56.8 17.0 42.0 11.4 21.6 45.5 48.9 38.6 35.2 36.4 48.9 52.3 54.5 60.2 29.5 48.9 23.9 34.1 31.8

CQuesa 86.0 95.0 97.0 81.0 73.0 77.0 82.0 88.0 99.0 98.0 98.0 85.0 87.0 93.0 85.0 83.0 78.0 81.0 92.0 96.0 89.0 87.0

DThist 52.0 22.0 19.0 48.0 9.0 13.0 6.0 20.0 51.0 34.0 32.0 41.0 42.0 49.0 46.0 18.0 27.0 10.0 46.0 41.0 34.0 34.0

CBrûlÂee 53.5 33.3 32.3 66.7 14.1 24.2 23.2 28.3 79.8 62.6 54.5 30.3 19.2 24.2 58.6 67.7 45.5 36.4 19.2 45.5 41.4 39.4

LTSilF 59.0 28.0 26.0 51.0 8.0 4.0 36.0 40.0 79.0 44.0 40.0 35.0 17.0 11.0 68.0 92.0 63.0 94.0 11.0 98.0 75.0 66.0

CCake 77.5 62.5 55.0 71.2 35.0 83.8 18.8 56.2 88.8 51.2 46.2 81.2 85.0 93.8 66.2 11.2 40.0 10.0 88.8 12.5 17.5 20.0

CPitch 23.0 5.0 6.0 14.0 0.0 0.0 0.0 1.0 51.0 14.0 15.0 22.0 18.0 26.0 30.0 2.0 6.0 3.0 22.0 18.0 10.0 10.0

LTRoo 68.0 88.0 95.0 72.0 79.0 68.0 93.0 97.0 100.0 96.0 98.0 62.0 70.0 84.0 60.0 62.0 39.0 84.0 84.0 93.0 80.0 78.0

Donuts 81.0 79.0 80.0 86.0 84.0 88.0 74.0 77.0 97.0 86.0 86.0 76.0 70.0 71.0 82.0 77.0 82.0 68.0 71.0 82.0 82.0 82.0

Door 54.0 26.0 26.0 56.0 60.0 77.0 29.0 25.0 67.0 49.0 52.0 30.0 29.0 39.0 43.0 65.0 60.0 33.0 32.0 40.0 34.0 32.0

WDisp 52.5 36.4 35.4 44.4 21.2 35.4 24.2 38.4 61.6 28.3 30.3 58.6 51.5 54.5 59.6 69.7 60.6 62.6 55.6 49.5 37.4 36.4

EMicro 35.0 24.0 23.0 26.0 2.0 1.0 22.0 23.0 44.0 25.0 19.0 47.0 39.0 45.0 48.0 21.0 17.0 24.0 38.0 45.0 34.0 28.0

Franci 26.0 9.0 3.0 18.0 0.0 0.0 0.0 4.0 81.0 15.0 16.0 28.0 10.0 13.0 30.0 12.0 18.0 5.0 11.0 44.0 24.0 24.0

FieldRd 26.0 17.7 15.6 33.3 24.0 25.0 21.9 18.8 50.0 22.9 25.0 29.2 26.0 41.7 33.3 24.0 29.2 20.8 33.3 37.5 19.8 20.8

ForPth 24.0 5.0 3.0 38.0 3.0 11.0 3.0 4.0 29.0 19.0 18.0 13.0 11.0 18.0 21.0 9.0 18.0 4.0 12.0 20.0 15.0 15.0

MLCact 13.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 9.0 1.0 0.0 32.0 20.0 17.0 44.0 3.0 5.0 2.0 14.0 2.0 9.0 9.0

FireEx 16.0 2.8 0.9 13.2 1.9 2.8 0.9 0.0 5.7 1.9 1.9 5.7 3.8 4.7 10.4 73.6 26.4 41.5 3.8 0.9 1.9 1.9

FireW 50.0 30.0 29.0 45.0 11.0 10.0 28.0 28.0 32.0 26.0 24.0 58.0 62.0 69.0 47.0 16.0 22.0 19.0 68.0 45.0 35.0 35.0

Fries 38.0 30.0 39.0 37.0 3.0 1.0 22.0 6.0 99.0 70.0 76.0 67.0 53.0 56.0 57.0 82.0 55.0 73.0 53.0 96.0 82.0 73.0

GlMilk 83.1 64.0 55.1 86.5 82.0 89.9 46.1 68.5 77.5 86.5 86.5 61.8 56.2 46.1 73.0 79.8 82.0 49.4 47.2 65.2 77.5 75.3

Gramo 7.1 1.8 0.0 16.1 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 87.5 67.9 60.7 0.0 0.0 0.0 0.0

BSGrunt 49.0 20.8 12.5 51.0 2.1 4.2 2.1 10.4 56.2 17.7 20.8 31.2 26.0 29.2 42.7 3.1 7.3 1.0 20.8 24.0 18.8 15.6

HHeels 46.5 35.4 32.3 64.6 79.8 87.9 40.4 70.7 83.8 78.8 48.5 41.4 35.4 45.5 64.6 48.5 54.5 17.2 41.4 63.6 45.5 44.4

HinTp 88.2 84.3 82.4 82.4 64.7 56.9 76.5 80.4 98.0 88.2 90.2 68.6 54.9 41.2 80.4 86.3 86.3 68.6 39.2 92.2 86.3 88.2

HHClam 93.5 93.5 90.3 93.5 61.3 67.7 77.4 93.5 96.8 96.8 93.5 77.4 54.8 51.6 74.2 58.1 67.7 41.9 45.2 71.0 71.0 71.0

SilverHB 12.1 2.0 2.0 8.1 3.0 2.0 4.0 2.0 6.1 3.0 3.0 11.1 10.1 16.2 15.2 2.0 3.0 2.0 11.1 6.1 4.0 4.0

SwPea 10.0 1.0 1.0 12.0 0.0 1.0 1.0 0.0 33.0 2.0 2.0 19.0 14.0 19.0 29.0 0.0 1.0 0.0 9.0 1.0 1.0 1.0

RBSunf 76.0 12.0 5.0 69.0 2.0 2.0 4.0 1.0 65.0 14.0 9.0 36.0 13.0 7.0 53.0 81.0 57.0 30.0 7.0 44.0 35.0 18.0

ELFBug 37.0 26.0 49.0 38.0 3.0 3.0 44.0 71.0 98.0 67.0 83.0 35.0 20.0 17.0 66.0 45.0 29.0 22.0 16.0 67.0 41.0 36.0

Mbira 28.4 19.4 20.9 25.4 23.9 16.4 32.8 20.9 17.9 19.4 17.9 40.3 40.3 71.6 29.9 10.4 9.0 11.9 61.2 6.0 10.4 9.0

MWesen 97.0 33.3 18.2 90.9 3.0 30.3 3.0 9.1 57.6 57.6 39.4 78.8 51.5 30.3 87.9 51.5 78.8 6.1 33.3 81.8 84.8 84.8

C2SOct 40.0 49.0 58.0 36.0 22.0 17.0 61.0 62.0 87.0 54.0 52.0 40.0 48.0 58.0 45.0 25.0 13.0 34.0 51.0 59.0 34.0 32.0

RubyOct 42.0 48.0 48.0 39.0 22.0 14.0 55.0 48.0 88.0 54.0 54.0 30.0 34.0 44.0 32.0 25.0 13.0 32.0 40.0 50.0 28.0 28.0

PDeer 81.7 61.0 59.8 89.0 46.3 58.5 52.4 85.4 91.5 80.5 80.5 64.6 34.1 31.7 93.9 84.1 73.2 75.6 29.3 95.1 81.7 80.5

DFlath 58.0 33.0 32.0 52.0 3.0 18.0 13.0 32.0 62.0 31.0 33.0 62.0 58.0 53.0 68.0 37.0 39.0 26.0 47.0 64.0 52.0 49.0

EPWasp 73.0 55.0 56.0 64.0 16.0 29.0 29.0 63.0 90.0 75.0 72.0 39.0 27.0 24.0 73.0 63.0 43.0 45.0 24.0 76.0 65.0 59.0

FalseKW 80.6 74.6 74.6 74.6 55.2 55.2 59.7 86.6 98.5 91.0 89.6 73.1 53.7 53.7 74.6 85.1 77.6 86.6 56.7 97.0 85.1 83.6

Pyra 11.0 5.0 6.0 12.0 5.0 6.0 7.0 6.0 11.0 7.0 5.0 21.0 14.0 19.0 26.0 30.0 9.0 12.0 15.0 13.0 11.0 10.0

Sky 22.1 23.5 25.0 22.1 27.9 25.0 38.2 29.4 44.1 14.7 16.2 20.6 25.0 64.7 17.6 17.6 23.5 25.0 54.4 25.0 13.2 13.2

Dreamf 60.0 44.0 45.0 63.0 26.0 31.0 30.0 42.0 69.0 48.0 50.0 64.0 63.0 67.0 65.0 15.0 29.0 11.0 59.0 65.0 56.0 53.0

YTrump 14.0 1.0 0.0 4.0 0.0 0.0 0.0 0.0 54.0 10.0 14.0 14.0 7.0 5.0 23.0 3.0 1.0 0.0 1.0 3.0 0.0 0.0

Sciss 29.0 9.0 10.0 42.0 9.0 12.0 11.0 11.0 19.0 22.0 26.0 27.0 24.0 24.0 44.0 67.0 64.0 31.0 22.0 16.0 31.0 26.0

GCuttle 30.3 10.1 8.1 33.3 3.0 4.0 15.2 10.1 37.4 14.1 14.1 35.4 30.3 35.4 47.5 42.4 11.1 62.6 35.4 42.4 18.2 15.2

CCuttle 34.0 23.0 24.0 24.0 9.0 8.0 27.0 25.0 44.0 22.0 20.0 22.0 22.0 30.0 34.0 39.0 8.0 57.0 27.0 36.0 16.0 15.0

SCalam 21.2 11.1 12.1 21.2 4.0 4.0 13.1 8.1 40.4 15.2 15.2 29.3 25.3 27.3 35.4 10.1 5.1 11.1 22.2 34.3 18.2 18.2

ShCo 58.2 4.5 4.5 43.3 7.5 1.5 37.3 7.5 3.0 1.5 1.5 13.4 7.5 6.0 64.2 83.6 17.9 76.1 6.0 10.4 10.4 10.4

SCaterp 11.0 13.0 19.0 11.0 3.0 3.0 14.0 15.0 81.0 28.0 29.0 31.0 21.0 27.0 29.0 5.0 8.0 4.0 21.0 22.0 13.0 12.0

SBolo 67.2 47.8 49.3 83.6 68.7 79.1 50.7 22.4 100.0 100.0 100.0 71.6 76.1 82.1 82.1 74.6 61.2 73.1 82.1 100.0 94.0 91.0

Stapl 34.0 14.0 12.0 31.0 11.0 21.0 13.0 18.0 20.0 17.0 19.0 27.0 23.0 24.0 30.0 72.0 59.0 38.0 22.0 22.0 27.0 26.0

Rosyb 65.0 28.0 17.0 45.0 0.0 2.0 2.0 11.0 86.0 36.0 37.0 75.0 72.0 70.0 72.0 23.0 40.0 23.0 65.0 71.0 53.0 53.0

CATapir 13.0 10.0 11.0 12.0 4.0 3.0 15.0 15.0 23.0 13.0 13.0 29.0 32.0 39.0 48.0 51.0 10.0 74.0 36.0 58.0 24.0 24.0

MNewt 90.0 94.0 95.0 91.0 82.0 83.0 80.0 96.0 99.0 98.0 98.0 90.0 93.0 95.0 93.0 80.0 74.0 86.0 95.0 99.0 92.0 91.0

IPBNDol 57.0 47.0 45.0 56.0 27.0 29.0 47.0 64.0 90.0 64.0 69.0 47.0 36.0 39.0 64.0 84.0 59.0 92.0 41.0 94.0 72.0 69.0

‘Åo‘ai 63.0 28.0 23.0 51.0 2.0 5.0 3.0 18.0 71.0 33.0 32.0 54.0 47.0 35.0 50.0 7.0 14.0 2.0 25.0 30.0 19.0 19.0

Waffle 57.4 54.1 59.0 55.7 59.0 49.2 60.7 52.5 83.6 52.5 57.4 70.5 72.1 80.3 55.7 59.0 62.3 59.0 75.4 54.1 62.3 62.3

Walker 77.8 52.5 46.5 53.5 42.4 57.6 44.4 35.4 56.6 56.6 52.5 34.3 17.2 15.2 35.4 32.3 22.2 18.2 14.1 12.1 12.1 11.1

WiChair 97.2 40.8 25.4 90.1 15.5 32.4 12.7 43.7 31.0 32.4 25.4 81.7 49.3 25.4 94.4 97.2 95.8 84.5 28.2 95.8 91.5 88.7

mean 51.9 37.8 36.9 50.3 27.5 31.2 32.6 38.5 62.7 46.0 45.0 47.2 41.1 43.3 54.9 49.6 42.4 41.5 40.5 51.8 44.2 42.6
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B. Models

In Table 8 we give an overview over the evaluated models. All model implementation and model weights were taken from

the publicly available timm-repository (Wightman, 2019), except for the BiT-s weights, which can be obtained via the

github repository of (Kolesnikov et al., 2020), and the zero-shot CLIP models, which are also available via github. For

the ViTs finetuned from CLIP and the ViT without pretraining we used the timm-version 0.8.0dev0, for all other models

version 0.6.12. IN-12k (description and defining synsets) is a subset of IN-21k, for which the classes with few samples are

excluded, leading to an overlap of roughly 85%.

Table 8. Overview over the evaluated models.
model pretraining top-1 acc. params timm name

ViT-B-384-l2b-12k laion2b + IN-12k 87.2 87M vit base patch16 clip 384.laion2b ft in12k in1k

ViT-B-384-oai-12k openai + IN-12k 87.0 87M vit base patch16 clip 384.openai ft in12k in1k

ViT-B-384-l2b laion2b 86.6 87M vit base patch16 clip 384.laion2b ft in1k

ViT-B-384-oai openai 86.2 87M vit base patch16 clip 384.openai ft in1k

ViT-B-384-21k IN-21k 86.0 87M vit base patch16 384

ViT-B-224-21k IN-21k 84.5 87M vit base patch16 224

Swinv2-B-256-21k IN-21k 86.3 88M swinv2 base window12to16 192to256 22kft1k

Deit3-B-384-21k IN-21k 86.7 87M deit3 base patch16 384 in21ft1k

Deit3-B-224-21k IN-21k 85.7 87M deit3 base patch16 224 in21ft1k

CnvNxt-B-21k IN-21k 86.3 89M convnext base in22ft1k

CnvNxt-T-21k IN-21k 84.1 29M convnext tiny 384 in22ft1k

BiT-m IN-21k 82.3 45M resnetv2 101x1 bitm

EffNetv2-M-21k IN-21k 85.6 54M tf efficientnetv2 m in21ft1k

EffNetb7-ns JFT - noisy student 86.8 66M tf efficientnet b7 ns

ViT-B-384 Ð 81.1 87M vit base patch16 384.augreg in1k

Swinv2-B-256 Ð 84.6 88M swinv2 base window16 256

Deit3-B-384 Ð 85.1 87M deit3 base patch16 384

Deit3-B-224 Ð 83.8 87M deit3 base patch16 224

XCiT-M-224 Ð 82.6 84M xcit medium 24 p16 224

XCiT-M-224-d Ð 84.3 84M xcit medium 24 p16 224 dist

CnvNxt-B Ð 84.4 89M convnext base

BiT-s Ð 78.0 45M resnetv2 101x1 bitm

EffNetv2-M Ð 85.0 54M tf efficientnetv2 m

EffNetb7 Ð 84.9 66M tf efficientnet b7

EffNet-B0 Ð 77.7 5M efficientnet b0

ResNet50 Ð 80.4 26M resnet50

CLIP-ViT-B16 openai 66.6 150M Ð

CLIP-ViT-B16 openai 74.2 428M Ð

16

https://github.com/google-research/big_transfer
https://github.com/openai/CLIP
https://web.archive.org/web/20230201122707/https://twitter.com/wightmanr/status/1616908317196169217
https://github.com/rwightman/pytorch-image-models/blob/main/results/imagenet12k_synsets.txt
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C. Methods

Here we give an overview over the evaluated OOD detection methods. For clarity, we denote vectors in bold and lowercase

letters and matrices in bold an uppercase letters. We write neural networks as functions n, which are parametrized by

weights θ, take an input sample x and produce an output vector o of size C, where C is typically the number of classes in a

classification task (1000 in the case of IN-1K). We refer to o as the logits of x, which can be transformed to a probability

vector p (also of size C) via the softmax function: pi = exp (oi)/
∑

c exp(oc). The network n can be decomposed into a

feature extractor h and the networks last layer g:

o = n(x) = g(h(x)),

where g is a fully connected, linear layer, i.e. g(h) = WTh + b with weight W and bias b. We refer to h = h(x) as

the features or the embeddings of x w.r.t. the network n. As presented in Section 4, for each sample x, a method returns

an OOD-score s = f(x), a scalar value which is supposed to be larger for ID data and smaller for OOD data. Methods

accessing h(x) directly in order to compute the OOD-score are referred to as feature-based methods, in contrast to methods

that derive their OOD-score from the logits o (even though obviously the logits implicitly also depend on these features). In

the following, we will describe how each method computes the score s for a test input x.

MSP (Hendrycks & Gimpel, 2017): The most popular OOD-detection baseline uses the confidence, i.e. the max softmax

probability of a models probability output vector:

s = max
c

(pc)

Max-Logit (Hendrycks et al., 2022): Similar to MSP, Max-Logit returns the largest entry of the logit-vector o, i.e.

s = max
c

(oc)

Energy (Liu et al., 2020): The Energy based OOD detection method uses the denominator of the softmax-function as

OOD-score:

s = log
C
∑

c

exp (oc)

KL-Matching (Hendrycks et al., 2022): KL-Matching computes a mean probability vector dc for each of the C classes. For

a test input, the KL-distances of all dc vectors to its probability vector p are computed, and the OOD-score is the negative

of the smallest of those distances:

s = −min
c

KL[p||dc]

In the original paper by (Hendrycks et al., 2022), the average for dc is computed over an additional validation set. Since

none of the other methods leverages extra data and we are interested in fair comparison, we deploy KL-Matching like in

(Wang et al., 2022a; Yang et al., 2022), where the average is computed over the train set.

KNN (Sun et al., 2022): KNN is a non-parametric method that computes distances in the feature-space. Specifically, the

feature vector of a test input is normalized to z = h/||h||2 and the pairwise distances ri(z) = ||z− zi||2 to the normalized

features Z = {z1, ..., zN} of all samples of the training set are computed. The distances ri(z) are then sorted according to

their magnitude and the K th smallest distance, denoted rK(z) is used as negative OOD-score:

s = −rK(z)

Like suggested in (Sun et al., 2022), we use K = 1000.

Mahalanobis distance (Lee et al., 2018): This popular method fits a class-conditional Gaussian with shared covariance

matrix to the train set, i.e. computes

µ̂c =
1

Nc

∑

i:yi=c

hi, Σ̂ =
1

N

∑

c

∑

i:yi=c

(hi − µ̂c)(hi − µ̂c)
T
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where Nc is the number of train samples in class c and N is the total number of train samples. The OOD-score of a test

sample is then the Mahalanobis distance induced by Σ̂ between its feature h and the closest class mean:

s = −min
c

(h− µ̂c)Σ̂
−1(h− µ̂c)

T

Relative Mahalanobis distance (Ren et al., 2021): A modification of the Mahalanobis distance method, thought to improve

near-OOD detection, is to additionally fit a global Gaussian distribution to the train set without taking class-information into

account:

µ̂global =
1

N

∑

i

hi, Σ̂global =
1

N

∑

i

(hi − µ̂global)(hi − µ̂global)
T

The OOD-score is then defined as the difference between the original Mahalanobis distance and the Mahalanobis distance

w.r.t. the global Gaussian distribution:

s = −min
c

(

(h− µ̂c)Σ̂
−1(h− µ̂c)

T − (h− µ̂global)Σ̂
−1

global(h− µ̂global)
T
)

ReAct (Sun et al., 2021): The authors propose to perform a truncation of the feature vector, h̄ = min(h, r), where the min
operation is to be understood element-wise and r is the truncation threshold. The truncated features can then be converted to

so-called rectified logits via ō = g(h̄) = WT h̄+ b. While the rectified logits can now be used with a variety of existing

detection methods, we follow (Sun et al., 2021) and use the rectified Energy as OOD-score:

s = log
C
∑

c

exp (ōc)

As suggested in (Wang et al., 2022a), we set the threshold r such that 1% of the activations from the train set would be

truncated.

Virtual Logit Matching (Wang et al., 2022a): The idea behind ViM is that meaningful features are thought to lie in a

low-dimensional manifold, called the principal space P , whereas features from OOD-samples should also lie in P⊥, the

space orthogonal to P . P is the D-dimensional subspace spanned by the eigenvectors with the largest D eigenvalues of

the matrix FTF, where F is the matrix of all train features offsetted by u = −(WT)+b (+ denotes the Moore-Penrose

inverse). A sample with feature vector h is then also offset to h̃ = h− u and can be decomposed into h̃ = h̃P + h̃P⊥

, and

h̃P⊥

is referred to as the Residual of h. ViM leverages the Residual and converts it to a virtual logit o0 = α||h̃P⊥

||2, where

α =

∑N

i=1
maxc o

c
i

∑N

i=1
||hP⊥

i ||2

is designed to match the scale of the virtual logit to the scale of the real train logits. The virtual logit is then appended to

the original logits of the test sample, i.e. to o, and a new probability vector is computed via the softmax function. The

probability corresponding to the virtual logit is then the final OOD-score:

s = −
exp (o0)

∑C

c=1
exp (oc) + exp (o0)

Like suggested in (Wang et al., 2022a), we use D = 1000 if the dimensionality of the feature space d is d ≥ 2048, D = 512
if 2048 ≥ d ≥ 768, and D = d/2 rounded to integers otherwise.

Cosine (Tack et al., 2020; Galil et al., 2023): This method computes the maximum cosine-similarity between the features of

a test-sample and embedding vectors ũc (sometimes also called concept-vector):

s = max
c

ũT
c h/||ũ

T
c ||2 (1)

For zero-shot CLIP, ũc can be obtained by creating text-embeddings from the ImageNet class names. Encoding ’A photo of

a ...’ yields an embedding from the corresponding class. For classifiers, we use the class-wise train means µ̂c, that are also

used for Mahalanobis distance.
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MCM/RCos (Ming et al., 2022; Techapanurak et al., 2020): Maximum-Concept-Matching was recently introduced as a

zero-shot OOD detection method for CLIP and applies additional softmax-scaling to the cosine-similarities of the Cosine

method, potentially with a temperature scaling (which we omit, following (Ming et al., 2022)). Again, we extend this

method to work with conventional classifiers by using the class-means µ̂c like they are used for Mahalanobis distance as

embedding/concept vectors. We then refer to it as relative cosine (short: MCM/RCos or just RCos) in order to distinguish it

from CLIPs zero-shot method.

D. Definitions of OOD detection metrics

The performance of OOD detectors is commonly reported in terms of the false positive rate at a fixed true positive rate

Q, denoted as FPR@TPRQ, short FPR.This means that the detector is interpreted as making the decision to accept an

unknown input x if S(x) ≥ τ , for a threshold τ that is chosen such that Q% of ID inputs are accepted, and rejecting the

input as OOD if S(x) < τ . The FPR@TPRQ counts the fraction of falsely accepted OOD inputs under this decision scheme.

This means the lower the FPR@TPRQ, the better the OOD detection performance. In the OOD detection literature, the

most commonly used value for Q is 95%, which we too use throughout this paper. We also report results in terms of the

mean area under the receiver-operator characteristic curve, short AUROC in Table 4. It represents the probability that an

ID input receives a higher score (equal scores counted half) than an OOD input when both are drawn randomly from their

respective evaluation datasets (Bitterwolf et al., 2022). Like for the FPR, the mean AUROC corresponds to first uniformly

drawing an OOD class and then drawing a sample from that class.

E. Illustrative examples from the cleaning process

✗ (brain coral) ✗ (coral reef)

✓ ✓

bluestriped grunt

✗ (spiderweb) ✗ (spiderweb)

✓ ✓

cat-faced spider

✗ (plane) ✗ (pole)

✓ ✓

sky

✗ (plate) ✗ (strawberry)

✓ ✓

waffles

Figure 9. Cleaning the OOD classes. Top: Samples that were excluded due to overlap with ID classes. Bottom: Samples from the same

OOD class that were included in the cleaned datasets.
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F. Details of the NINCO dataset.

Table 9. Detailed information for each OOD class. For determining overlap with classes of IN-21K, we checked the 8 most common

predictions of a ViT classifier for IN-21K on the NINCO OOD class.

OOD class name shortname # samples source dataset ImageNet-21K overlap

AFA (cyanobacterium) AFA 46 SPECIES microorganism

bagpipe Bagp 97 Imagenet-21k bagpipe

bluestriped grunt BSGrunt 96 SPECIES grunt

cable Cabl 88 scraped cable television

California pitcher plant CPitch 100 SPECIES pitcher plant

California slender salamander CSSala 100 SPECIES slender salamander

California two-spot octopus C2SOct 100 SPECIES octopus

caracal Caracal 100 iNat. Download caracal

cat-faced spider CatFSp 100 SPECIES unclear/very broad class

Central American tapir CATapir 100 SPECIES tapir

chicken quesadilla CQuesa 100 FOOD-101 -

common cuttlefish CCuttle 100 SPECIES cuttlefish

crème brûlÂee CBrûlÂee 99 FOOD-101 creme brulee

cupcakes CCake 80 FOOD-101 -

donuts Donuts 100 FOOD-101 doughnut

door Door 100 MyNursingHome interior door

dreamfish Dreamf 100 SPECIES sea bream

dune thistle DThist 100 SPECIES creme brulee

dusky flathead (fish) DFlath 100 SPECIES flathead

E. micromeris (cactus) EMicro 100 SPECIES -

Eastern leaf-footed bug ELFBug 100 SPECIES leaf-footed bug

European paper wasp EPWasp 100 SPECIES paper wasp

false killer whale FalseKW 67 SPECIES unclear/very broad class

field road FieldRd 96 PLACES byway

fire extinguisher FireEx 106 MyNursingHome fire extinguisher

fireworks FireW 100 scraped -

forest path ForPth 100 PLACES unclear/very broad class

Franciscan wallflower Franci 100 SPECIES wallflower

French fries Fries 100 FOOD-101 french fries

GalÂapagos fur seal GFurS 91 SPECIES arcella

giant cuttlefish GCuttle 99 SPECIES cuttlefish

glass of milk GlMilk 89 scraped milk

gramophone Gramo 56 scraped gramophone

high heels HHeels 99 scraped -

Hindu temple HinTp 51 scraped unclear/very broad class

Horse Hoof clam HHClam 31 SPECIES seashell

Indo-Pacific bottlenose dolphin IPBNDol 100 SPECIES dolphin

long-tailed silverfish LTSilF 100 SPECIES silverfish

Lumholtz’s tree-kangaroo LTRoo 100 SPECIES tree wallaby

M. wesenbergii (cyanobacterium) MWesen 33 SPECIES microorganism

marbled newt MNewt 100 SPECIES newt

mbira Mbira 67 scraped -

Mexican lime cactus MLCact 100 SPECIES barrel cactus

Pampas deer PDeer 82 SPECIES buck

pyramid Pyra 100 caltech-101 Cheops

redbreast sunfish RBSunf 100 SPECIES sunfish

rosybells (flowering plant) Rosyb 100 SPECIES -

ruby octopus RubyOct 100 SPECIES octopus

scissors Sciss 100 caltech-101 scissors

shuttlecock ShCo 67 scraped shuttlecock

silver-haired bat SilverHB 99 SPECIES bat

skipper caterpillar SCaterp 100 iNat. Download caterpillar

sky Sky 68 PLACES sky

southern calamari SCalam 99 SPECIES squid

spaghetti bolognese SBolo 67 FOOD-101 spaghetti

stapler Stapl 100 caltech-101 stapler

sweet pea SwPea 100 SPECIES unclear/very broad class

two-toed amphiuma (salamander) 2TAmph 176 SPECIES amphiuma

waffles Waffle 61 FOOD-101 -

walker Walker 99 MyNursingHome walker

water dispenser (jugless) WDisp 100 MyNursingHome water cooler

Windsor chair WiChair 71 caltech-101 Windsor chair

yellow trumpets YTrump 100 SPECIES yellow trumpet
‘Åohelo ‘ai (flowering plant) ‘Åo‘ai 100 SPECIES -
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G. Details and recipes for OOD unit-tests

We provide 400 samples for each of 17 OOD unit-tests, mirroring the sizes and file formats of random ImageNet samples.

Their reproducible definitions are given as follows:

• uniform noise (Hendrycks & Gimpel, 2017): Each RBG colour channel of each pixel is independently sampled

uniformly between 0.0 or 1.0.

• Gaussian noise (Hendrycks & Gimpel, 2017): For each image, first σ is chosen randomly between

(0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.5).
Then each RBG colour channel of each pixel is independently sampled from N (0.5, σ).

• Rademacher noise (Hendrycks et al., 2019): Then each RBG colour channel of each pixel is independently set to 0.0
or 1.0 with 50% probability.

• IN pixel permutations (Hein et al., 2019): We choose a random IN-1K validation image and randomly shuffle its

pixels (no remixing of colours).

• black: All colour channels are set to 0.0.

• white: All colour channels are set to 1.0.

• shades of grey: All colour channels are set to the same value, sampled uniformly between 0.0 or 1.0.

• monochrome: All pixels are set to a uniformly random RGB-colour (sampled uniformly from [0.0, 1.0]3).

• tricolour: The image is split into three stripes of equal size, vertically or horizontally with probability 50%.

Each stripe is set to an independent uniformly random RGB-colour.

• primary tricolour: The image is split into three stripes of equal size, vertically or horizontally with probability 50%.

Each stripe is set to a colour where each RGB-channel value is chosen randomly as either 0.0 or 1.0.

• horizontal stripes: The image is split into a random number chosen between (4, 5, 7, 10, 15, 20) of horizontal stripes

of equal size.

Each stripe is set to an independent uniformly random RGB-colour.

• vertical stripes: The image is split into a random number chosen between (4, 5, 7, 10, 15, 20) of vertical stripes of

equal size.

Each stripe is set to an independent uniformly random RGB-colour.

• smooth noise (Hein et al., 2019; Bitterwolf et al., 2020; Meinke et al., 2022): For each image, first σ is chosen

randomly between (10, 15, 25, 40, 60, 85).
A uniform noise image is sampled.

Then we apply a Gaussian filter with a size of σ pixels.

Finally, the pixel values are scaled linearly such that the minimum brightness over all channels and pixels is 0.0 and the

maximum is 1.0.

• smooth noise+: For each image, first σ is chosen randomly between (10, 15, 25, 40, 60, 85).
A uniform noise image is sampled.

Then we apply a Gaussian filter with a size of σ pixels.

Finally, each RGB channel is scaled linearly such that its minimum brightness over all pixels is 0.0 and the maximum

is 1.0.

• smooth color: For each image, first σ is chosen randomly between (10, 15, 25, 40, 60, 85), δ uniformly between 0.1
and 0.3, and a uniformly random RGB-colour c.
A uniform noise image is sampled.

Then we apply a Gaussian filter with a size of σ pixels.

Finally, each RGB channel is scaled linearly such that c− δ is the 2.5th quantile of its values and c+ δ the 97.5th.
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• smooth IN pixel permutations (Hein et al., 2019): For each image, first σ is chosen randomly between

(1, 1.5, 2, 3, 4, 6, 8).
An IN pixel permutations image is sampled.

Then we apply a Gaussian filter with a size of σ pixels.

• blobs (Hendrycks et al., 2019): For each image, first σ is chosen randomly between (1.5, 2, 2.5, 3, 3.5, 4).
Each RBG colour channel of each pixel is independently set to 1.0 with 70% probability or 0.0 with 30%.

Then we apply a Gaussian filter with a size of σ pixels.

Finally, all channel values below 0.75 are set to 0.0.

Where necessary, the resulting channel values are clipped to [0, 1]. We show samples of each unit-test in the following

Appendix H in Figure 13.
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H. Examples images from each OOD class in NINCO and from OOD unit-tests

AFA bagpipe bluestriped grunt cable

California pitcher plant California slender salamander California two-spot octopus caracal

cat-faced spider Central American tapir chicken quesadilla common cuttlefish

crème brûlÂee cupcakes donuts door

dreamfish dune thistle dusky flathead E. micromeris

Eastern leaf-footed bug European paper wasp false killer whale field road

Figure 10. Samples of each class of the NINCO dataset (1/3).
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fire extinguisher fireworks forest path Franciscan wallflower

French fries GalÂapagos fur seal giant cuttlefish glass of milk

gramophone high heels Hindu temple Horse Hoof clam

Indo-Pacific bottlenose dolphin long-tailed silverfish Lumholtz’s tree-kangaroo M. wesenbergii

marbled newt mbira Mexican lime cactus Pampas deer

pyramid redbreast sunfish rosybells ruby octopus

Figure 11. Samples of each class of the NINCO dataset (2/3).
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scissors shuttlecock silver-haired bat skipper caterpillar

sky southern calamari spaghetti bolognese stapler

sweet pea two-toed amphiuma waffles walker

water dispenser Windsor chair yellow trumpets ‘Åohelo ‘ai

Figure 12. Samples of each class of the NINCO dataset (3/3).
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uniform noise Gaussian noise Rademacher noise IN pixel permutations

black white shades of grey monochrome

tricolour primary tricolour horizontal stripes vertical stripes

smooth noise smooth noise+ smooth color smooth IN pixel permutations

blobs

Figure 13. Samples of each OOD unit-test.

26



In or Out? Fixing ImageNet OOD Detection Evaluation

I. Tables - Unit tests

Table 10. FPR of pretrained transformers for unit-tests. The ViTs pretrained only on ImageNet-21k fail only few unit tests, the other

models struggle often with feature-based methods.

model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White
MSP 0 4.2 0.5 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 1.5 0.2 0.0 0.5 0.0 1.0 3.0 0.8

MaxLogit 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ViM 2 100.0 0.0 0.0 0.0 0.0 100.0 0.0 46.0 0.5 0.0 5.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0

Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Energy+React 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ViT-B-384-21k 86.0 Energy 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KL-Matching 0 4.8 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.5 1.2 0.0 0.0 0.0 0.0 4.8 0.0

knn 0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 1.8 4.8 0.0 0.0
Relative Mahalanobis 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0

MCM/RCos 0 3.5 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MSP 0 7.0 0.5 4.5 0.0 6.5 0.0 0.0 0.0 0.0 0.2 0.8 1.5 7.0 0.5 0.2 2.5 2.2 1.0

MaxLogit 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ViM 3 100.0 0.0 0.0 0.0 0.0 100.0 100.0 55.5 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.8 0.0 0.0

Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Energy+React 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

ViT-B-224-21k 84.5 Energy 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KL-Matching 2 16.2 0.5 3.2 0.0 7.0 0.0 0.0 0.0 0.0 0.2 0.2 12.0 16.2 0.5 0.2 1.8 3.5 0.0

knn 0 6.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 6.0 0.2 0.0
Relative Mahalanobis 0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 2.2 5.2 9.8 0.0 0.0 0.0 0.0 0.0

MCM/RCos 1 16.2 0.5 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cosine 0 1.8 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
MSP 4 28.0 0.0 0.0 0.0 7.2 0.0 0.0 0.0 0.0 2.5 3.0 1.2 12.0 22.5 28.0 5.2 11.0 0.0

MaxLogit 2 17.2 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 1.0 2.2 0.2 6.8 13.5 17.2 2.8 7.8 0.0
ViM 8 100.0 0.2 20.2 12.0 0.5 100.0 100.0 100.0 100.0 31.0 22.8 6.8 2.0 0.0 0.0 0.8 2.2 0.0

Mahalanobis 13 100.0 19.5 48.8 36.5 4.5 100.0 100.0 100.0 100.0 93.0 91.8 45.8 27.5 1.0 0.8 2.8 19.0 13.2
Energy+React 0 8.2 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.8 2.8 0.0 5.0 5.2 8.2 0.8 7.0 0.0

Swinv2-B-256-21k 86.3 Energy 2 14.2 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.2 2.5 0.0 7.5 11.8 14.2 2.2 9.0 0.0
KL-Matching 5 23.8 0.2 0.0 0.0 18.8 0.0 0.0 0.0 0.0 7.2 6.5 4.8 12.8 19.8 23.8 4.0 15.5 0.8

knn 0 3.5 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 3.5 1.8 1.8 0.0 0.0 0.0 0.0 0.2 0.0
Relative Mahalanobis 9 100.0 0.5 5.5 8.8 7.0 100.0 100.0 100.0 100.0 77.5 77.2 44.0 16.2 0.0 0.0 0.5 23.8 0.2

MCM/RCos 0 4.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 1.5 1.2 4.0 0.0 0.0 0.0 0.0 0.2 0.0
cosine 0 3.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 1.5 1.0 3.8 0.0 0.0 0.0 0.0 0.2 0.0
MSP 8 72.8 58.0 16.5 72.8 20.8 0.0 0.0 0.0 0.0 29.8 13.5 33.5 2.5 1.0 0.5 9.5 50.2 3.2

MaxLogit 7 75.5 62.5 17.8 75.5 13.5 0.0 0.0 0.0 0.0 17.2 6.0 12.0 0.0 0.5 0.5 8.0 39.2 2.0
ViM 7 100.0 0.0 0.0 0.0 0.5 0.0 100.0 27.0 36.2 56.0 73.8 30.0 5.8 0.2 0.0 2.2 27.5 0.0

Mahalanobis 6 100.0 0.0 0.0 0.0 0.8 0.0 100.0 15.5 5.5 39.5 50.2 42.0 2.5 0.0 0.0 0.8 29.8 0.0
Energy+React 3 60.5 35.8 8.2 60.5 3.8 0.0 0.0 0.0 0.0 8.2 3.5 6.8 0.0 0.0 0.0 6.8 24.8 0.8

Deit3-B-384-21k 86.7 Energy 5 84.2 73.5 24.2 84.2 11.8 0.0 0.0 0.0 0.0 8.5 4.0 6.8 0.0 0.2 0.0 8.2 31.2 2.0
KL-Matching 8 62.0 47.2 12.0 62.0 17.8 0.0 0.0 0.0 0.0 32.5 15.0 39.5 3.8 1.2 0.8 10.0 48.5 2.8

knn 2 20.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 14.2 3.0 20.2 0.2 0.0 0.0 0.5 1.5 0.0
Relative Mahalanobis 4 39.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.5 32.2 21.8 39.5 2.0 0.0 0.0 0.8 35.2 0.0

MCM/RCos 3 19.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 14.0 2.2 19.0 0.2 0.0 0.0 0.8 14.2 0.0
cosine 3 20.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 14.2 3.0 20.0 0.2 0.0 0.0 0.8 13.5 0.0
MSP 5 48.5 7.0 2.5 5.5 13.2 0.0 0.0 0.0 0.0 29.5 13.0 31.0 2.0 2.0 0.5 9.2 48.5 3.5

MaxLogit 2 39.0 6.5 2.5 4.5 9.8 0.0 0.0 0.0 0.0 11.5 5.8 9.8 0.2 0.8 0.0 6.0 39.0 1.2
ViM 6 100.0 0.5 0.2 0.0 0.2 0.0 100.0 53.8 9.0 61.5 82.2 39.0 1.5 0.5 0.2 3.5 15.2 0.0

Mahalanobis 6 100.0 0.5 0.0 0.0 0.2 0.0 100.0 61.3 8.2 64.0 73.8 43.5 2.0 0.0 0.0 1.5 16.8 0.0
Energy+React 1 27.0 2.2 0.8 2.0 5.5 0.0 0.0 0.0 0.0 5.8 1.5 5.0 0.2 0.0 0.0 2.5 27.0 0.0

Deit3-B-224-21k 85.7 Energy 1 36.2 8.8 3.0 6.5 8.5 0.0 0.0 0.0 0.0 6.2 1.8 5.5 0.2 0.5 0.0 5.2 36.2 0.8
KL-Matching 5 47.0 6.8 2.5 4.5 13.8 0.0 0.0 0.0 0.2 38.5 17.8 38.0 6.8 3.5 1.8 9.5 47.0 3.8

knn 2 18.8 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 13.8 3.5 18.8 0.0 0.0 0.0 1.0 3.8 0.0
Relative Mahalanobis 4 51.5 0.5 0.0 0.0 0.2 0.0 0.0 0.0 2.2 51.5 40.2 40.0 1.2 0.0 0.0 1.8 18.5 0.0

MCM/RCos 2 19.2 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 12.5 4.0 19.2 0.0 0.0 0.0 0.8 10.0 0.0
cosine 3 17.2 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 11.0 4.2 17.2 0.0 0.0 0.0 0.8 11.0 0.0
MSP 0 7.5 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 7.5 0.2

MaxLogit 0 4.5 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.2 0.0 4.5 0.0
ViM 5 100.0 0.2 0.0 18.0 0.5 100.0 100.0 97.0 14.8 0.8 2.2 0.0 1.2 0.5 0.0 1.2 1.5 0.0

Mahalanobis 16 100.0 83.0 43.8 99.8 4.2 100.0 100.0 100.0 100.0 99.8 99.5 37.5 80.2 18.0 14.8 19.2 38.8 38.8
Energy+React 0 3.8 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 3.8 0.0

ViT-B-384-l2b-12k 87.2 Energy 0 5.2 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 5.2 0.0
KL-Matching 0 8.5 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.8 2.8 8.5 3.2

knn 0 2.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.5 2.2 0.0
Relative Mahalanobis 10 100.0 3.2 4.5 44.2 5.8 100.0 100.0 100.0 53.5 30.5 56.2 2.5 16.5 10.0 8.5 10.0 12.2 24.5

MCM/RCos 0 1.2 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.8 1.2 0.0
cosine 0 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.0
MSP 1 12.8 0.0 0.0 0.0 8.8 0.0 0.0 0.0 0.0 0.2 1.0 0.2 0.0 2.0 3.8 1.5 12.8 0.5

MaxLogit 1 11.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 4.8 5.0 1.5 11.0 0.0
ViM 2 100.0 0.0 0.0 0.0 0.0 0.0 100.0 38.2 0.2 0.0 0.2 0.0 0.0 0.5 0.0 0.5 0.0 0.0

Mahalanobis 7 100.0 5.0 6.5 46.0 0.2 100.0 100.0 100.0 62.3 32.2 72.2 7.0 0.0 9.2 5.2 7.2 1.8 0.8
Energy+React 3 15.0 0.0 2.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 15.0 10.8 3.8 11.0 0.2

ViT-B-384-oai-12k 87.0 Energy 3 14.5 0.0 1.8 0.0 6.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 14.5 10.2 3.8 11.8 0.2
KL-Matching 0 9.8 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.5 2.8 1.0 0.2 2.2 4.5 5.5 7.5 2.2

knn 0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.8 0.2 0.5 0.0 0.0
Relative Mahalanobis 6 100.0 0.0 0.0 2.8 1.0 0.0 100.0 87.2 16.5 15.5 28.0 3.0 0.2 10.8 6.0 8.0 1.2 0.2

MCM/RCos 0 5.5 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.2 1.5 0.0 0.0 5.5 3.5 3.0 0.0 0.0
cosine 0 4.5 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.0 4.5 1.5 2.5 0.0 0.0
MSP 1 18.0 0.0 0.0 0.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.5 0.2 7.2 0.0

MaxLogit 1 11.5 0.0 0.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.5 0.2 0.2 3.2 0.0
ViM 1 25.5 0.0 0.0 0.0 0.2 0.0 0.0 25.5 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Mahalanobis 11 100.0 99.5 62.7 100.0 3.0 100.0 100.0 100.0 100.0 15.8 41.2 1.0 0.2 0.0 0.2 0.2 15.8 18.2
Energy+React 0 9.8 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 2.8 0.0

ViT-B-384-l2b 86.6 Energy 1 12.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 3.0 0.0
KL-Matching 1 12.8 0.0 0.0 0.0 12.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.2 0.2 8.5 0.0

knn 0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.5 0.0
Relative Mahalanobis 8 100.0 75.2 33.8 95.2 8.8 100.0 100.0 100.0 42.2 0.8 10.0 0.0 0.0 0.0 0.0 1.8 11.5 2.2

MCM/RCos 0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cosine 0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
MSP 1 17.5 0.0 0.0 0.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 9.0 0.0

MaxLogit 1 13.5 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 5.5 0.0
ViM 2 100.0 0.0 0.0 0.0 2.0 0.0 100.0 30.0 0.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Mahalanobis 11 100.0 15.5 6.0 47.5 1.5 100.0 100.0 100.0 100.0 95.0 90.8 26.5 26.8 0.0 0.2 1.8 8.5 21.2
Energy+React 1 12.2 0.0 0.2 0.0 12.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

ViT-B-384-oai 86.2 Energy 1 13.5 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0
KL-Matching 1 16.8 0.0 0.0 0.0 16.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 9.5 0.0

knn 0 4.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 1.2 0.8 1.2 0.0 0.0 0.0 0.0 3.8 0.0
Relative Mahalanobis 10 100.0 0.2 1.0 34.2 2.0 100.0 100.0 100.0 89.0 69.0 64.2 14.5 29.5 0.0 0.2 4.2 7.8 25.5

MCM/RCos 0 0.8 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
cosine 0 1.5 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

mcm-clip 1 17.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 4.0 4.2 0.0 17.0 0.0 0.0 0.0 0.0 0.0
clip-ViT-B-224 66.6 cosine-clip 15 100.0 100.0 99.5 100.0 98.0 0.0 100.0 1.5 53.2 14.2 31.5 23.5 72.5 83.8 87.8 60.2 72.2 38.2

mcm-clip 0 5.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.2 5.0 0.5 0.0 1.0 0.0 0.0 0.0 1.2 3.8
clip-ViT-L-336 74.3 cosine-clip 14 100.0 100.0 99.8 100.0 98.2 0.0 100.0 48.2 88.8 5.0 33.2 3.2 31.8 94.2 88.5 83.2 79.0 73.2
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Table 11. FPR of pretrained convolutional networks for OOD unit-tests.
model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White

MSP 1 13.5 0.0 0.0 0.0 0.2 0.0 13.5 2.2 5.5 2.0 5.8 0.0 0.5 2.5 8.2 0.2 0.2 0.0
MaxLogit 0 6.0 0.0 0.0 0.0 0.0 0.0 4.5 2.5 6.0 1.0 2.8 0.0 0.0 0.2 4.0 0.2 0.2 0.0

Energy 1 10.8 0.0 0.0 0.0 0.0 0.0 2.5 5.2 10.8 2.2 2.8 0.0 0.0 0.0 3.0 0.0 0.2 0.0
KL-Matching 2 29.2 0.0 0.0 0.0 2.0 0.0 29.2 2.5 2.0 2.5 6.2 0.0 1.2 4.2 10.8 0.2 0.0 0.0
Mahalanobis 4 100.0 0.8 42.5 100.0 0.0 100.0 0.0 0.0 0.0 0.0 2.0 2.8 0.0 0.0 5.0 0.2 0.0 100.0

CnvNxt-B-21k 86.3 Relative Mahalanobis 5 100.0 0.5 41.0 100.0 0.0 100.0 1.0 0.0 0.0 0.0 13.0 1.5 0.0 0.2 9.8 0.0 0.0 100.0
ViM 4 100.0 0.5 41.2 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 2.0 0.0 0.0 100.0

Energy+React 0 4.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 0.2 0.0
knn 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MSP 3 16.0 3.2 1.2 0.0 2.2 0.0 7.2 8.5 11.2 5.8 13.2 0.5 16.0 6.0 7.8 0.5 0.8 0.0
MaxLogit 4 24.8 17.0 16.5 0.0 0.2 0.0 1.0 3.5 5.2 3.8 9.5 0.0 11.0 1.8 1.5 24.8 0.2 0.0

Energy 3 60.2 29.8 60.2 0.0 0.2 0.0 0.5 0.8 2.5 2.8 7.2 0.0 9.5 0.8 0.2 38.2 0.0 0.0
KL-Matching 8 27.0 8.5 2.2 0.0 13.2 0.0 22.5 11.0 12.0 6.5 16.5 1.8 27.0 17.8 16.8 0.8 7.5 0.0
Mahalanobis 6 100.0 4.0 11.5 100.0 0.0 100.0 1.2 0.0 0.0 0.0 0.0 40.5 0.0 9.0 14.0 7.0 0.0 100.0

CnvNxt-T-21k 84.1 Relative Mahalanobis 4 100.0 0.5 7.5 100.0 0.0 100.0 1.5 0.0 0.0 0.2 1.2 17.0 1.0 3.0 9.5 5.0 0.0 100.0
ViM 4 100.0 1.0 7.0 100.0 0.0 100.0 0.2 0.0 0.0 0.0 0.0 13.0 0.0 1.2 5.2 5.5 0.0 100.0

Energy+React 3 34.8 22.2 34.8 0.0 0.0 0.0 0.5 0.0 1.2 1.8 5.0 0.0 5.2 0.2 0.0 28.7 0.0 0.0
knn 2 18.5 0.0 0.0 0.0 0.0 0.0 12.8 0.0 0.0 0.8 0.8 0.0 0.0 4.5 18.5 0.0 0.0 0.0

cosine 0 8.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.5 0.2 0.0 0.8 0.2 8.0 0.0 0.0 0.0
MCM/RCos 1 10.5 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.5 0.2 0.0 0.8 1.5 10.5 0.0 0.0 0.0

MSP 11 93.0 48.2 51.7 0.0 5.0 0.0 9.8 41.5 41.5 51.5 93.0 13.5 81.0 34.8 23.5 48.8 4.2 0.0
MaxLogit 10 87.8 36.0 40.0 0.0 1.2 0.0 1.8 40.0 42.2 49.5 87.8 6.2 71.5 13.2 11.2 35.2 1.8 0.0

Energy 10 86.8 33.8 32.0 0.0 1.0 0.0 0.8 65.2 68.0 62.5 86.8 6.0 72.0 11.2 12.8 27.3 5.2 0.0
KL-Matching 11 90.5 51.5 51.7 0.0 5.0 0.0 8.2 33.5 32.5 39.8 90.5 12.8 72.5 28.7 18.2 50.2 3.8 0.0
Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BiT-m 82.3 Relative Mahalanobis 0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.2 1.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ViM 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Energy+React 8 63.2 6.2 4.2 0.0 0.0 0.0 0.8 61.5 63.2 57.8 62.7 4.0 31.8 15.8 14.5 4.8 29.5 0.0
knn 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 1.5 1.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0

MSP 4 52.2 0.2 0.0 0.0 1.0 0.0 0.2 10.2 9.0 20.0 52.2 0.5 14.2 0.5 0.0 0.5 0.0 0.0
MaxLogit 3 48.8 0.5 0.0 0.0 0.8 0.0 0.2 6.2 6.0 14.0 48.8 1.2 14.5 0.0 0.0 0.5 0.0 0.0

Energy 4 57.0 11.0 0.0 0.0 10.0 0.0 0.2 9.2 8.2 16.5 57.0 3.2 27.0 0.0 0.0 1.5 0.0 0.0
KL-Matching 5 50.2 0.8 0.0 0.0 2.8 0.0 0.8 18.0 16.2 23.5 50.2 0.2 14.5 1.0 0.0 0.2 1.0 0.0
Mahalanobis 0 3.2 0.0 0.0 0.0 0.0 0.0 0.5 2.0 1.5 3.2 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0

EffNetv2-M-21k 85.6 Relative Mahalanobis 2 100.0 0.0 0.0 0.0 0.0 3.8 0.2 5.5 2.8 16.5 5.5 0.2 0.5 0.5 5.8 0.0 0.2 100.0
ViM 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Energy+React 14 100.0 91.5 99.5 0.0 100.0 1.0 59.2 98.8 99.5 92.5 98.2 27.8 83.2 30.8 25.5 98.5 80.0 0.0
knn 0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cosine 0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 1 12.5 0.0 0.0 0.0 0.0 0.0 0.2 1.2 0.8 12.5 0.2 0.0 0.2 0.0 3.5 0.0 0.0 0.0

MSP 0 9.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.2 0.2 0.0 5.2 0.0 0.0 0.0 9.5 0.0
MaxLogit 0 8.8 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 8.8 0.0

Energy 3 43.0 18.0 43.0 0.0 11.8 0.0 0.0 0.0 0.2 0.5 0.2 0.0 0.5 0.0 0.0 9.5 9.2 0.0
KL-Matching 2 26.5 0.2 0.0 0.0 1.2 0.0 3.8 0.0 1.2 0.5 5.2 0.0 26.5 0.5 0.2 0.8 11.0 0.0
Mahalanobis 15 100.0 36.5 1.0 100.0 14.5 100.0 100.0 68.0 64.5 88.2 70.8 100.0 60.8 100.0 98.5 6.8 99.8 100.0

EffNetb7-ns 86.8 Relative Mahalanobis 13 100.0 0.0 0.0 100.0 0.0 100.0 94.2 25.5 24.8 46.2 39.5 100.0 12.5 98.5 80.0 0.0 99.0 100.0
ViM 16 100.0 37.8 1.5 100.0 25.0 100.0 100.0 73.2 68.5 89.5 72.8 100.0 61.3 100.0 99.0 10.8 99.8 100.0

Energy+React 0 8.2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 8.2 0.0
knn 0 9.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 9.2 0.0 0.0 0.0 0.0 0.0

cosine 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
MCM/RCos 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

Table 12. FPR of transformers without pretraining for OOD unit-tests.
model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White

MSP 7 43.8 0.0 0.0 0.0 15.8 0.0 26.2 11.8 11.2 13.2 5.5 0.0 43.8 0.5 10.5 1.0 4.5 0.0
MaxLogit 2 19.2 0.0 0.0 0.0 4.0 0.0 16.8 5.2 6.2 6.5 1.0 0.0 19.2 0.2 7.8 0.0 2.2 0.0

Energy 2 17.0 3.0 0.0 0.0 1.2 0.0 17.0 2.8 2.8 5.8 0.5 0.0 12.2 0.8 8.8 0.0 2.8 0.0
KL-Matching 6 44.8 0.0 0.0 0.0 13.8 6.2 28.0 8.2 8.2 9.0 4.8 3.0 44.8 10.2 12.2 0.2 27.5 0.0
Mahalanobis 4 80.8 19.0 0.5 0.0 0.0 80.8 22.0 0.8 0.2 0.2 1.2 8.8 22.8 9.8 3.2 8.0 1.0 0.0

ViT-B-384 81.1 Relative Mahalanobis 10 100.0 6.8 0.0 100.0 0.8 100.0 26.8 1.0 1.0 1.8 15.2 49.8 24.0 49.8 17.0 0.2 12.2 100.0
ViM 5 94.8 74.5 12.2 0.0 0.0 0.0 28.0 4.8 4.0 0.5 2.2 0.0 27.5 0.5 1.8 94.8 0.0 0.0

Energy+React 2 21.0 1.0 0.0 0.0 1.5 0.0 21.0 2.8 3.2 6.2 0.5 0.2 12.8 0.8 8.8 0.0 3.5 0.0
knn 5 85.2 82.2 85.2 0.0 3.0 0.0 18.8 4.0 4.0 6.8 0.8 1.0 7.2 0.5 10.5 84.8 0.0 0.0

cosine 3 23.2 23.2 0.0 0.0 3.0 0.0 14.0 2.8 3.5 3.2 0.8 0.8 14.0 0.2 7.2 1.0 0.0 0.0
MCM/RCos 4 38.2 38.2 3.2 0.0 3.8 0.0 14.8 3.5 3.5 4.2 0.8 1.0 15.8 0.2 8.5 16.8 0.0 0.0

MSP 4 27.8 0.0 0.0 0.0 20.5 0.0 27.8 10.0 10.8 3.8 9.0 0.0 25.0 3.2 2.8 0.2 3.5 0.0
MaxLogit 2 22.8 0.0 0.0 0.0 18.0 0.0 8.2 6.0 5.0 2.0 5.0 0.0 22.8 0.8 1.5 0.0 2.2 0.0

Energy 2 31.5 0.0 0.0 0.0 20.8 0.0 4.0 2.8 2.8 1.0 3.8 0.0 31.5 0.0 0.5 0.0 2.8 0.0
KL-Matching 6 49.8 0.0 0.0 0.0 21.0 0.0 49.8 15.0 13.8 6.5 10.5 0.0 24.5 8.5 6.0 0.2 4.2 0.0
Mahalanobis 12 100.0 51.2 49.5 100.0 5.0 100.0 60.0 7.0 5.0 5.5 18.2 100.0 3.0 97.8 90.8 52.5 35.2 100.0

Swinv2-B-256 84.6 Relative Mahalanobis 12 100.0 22.8 44.2 100.0 1.5 100.0 61.5 5.5 3.8 3.2 13.5 100.0 2.8 97.2 86.5 48.8 34.5 100.0
ViM 12 100.0 20.8 45.2 100.0 1.0 100.0 53.8 9.0 5.8 8.0 13.0 100.0 4.5 97.5 96.5 48.8 33.8 100.0

Energy+React 1 10.2 0.0 0.0 0.0 10.2 0.0 0.8 2.0 1.5 1.0 2.5 0.0 8.5 0.0 0.2 0.0 0.2 0.0
knn 1 32.0 0.0 0.0 0.0 0.0 0.0 32.0 5.0 3.2 1.0 0.0 6.2 1.8 8.0 0.8 0.0 0.0 0.0

cosine 1 25.5 0.0 0.0 0.0 0.0 0.0 25.5 3.0 1.0 1.0 0.0 0.2 1.2 3.0 0.2 0.0 0.0 0.0
MCM/RCos 1 33.5 0.0 0.0 0.0 0.0 0.0 33.5 3.0 1.2 0.8 0.5 0.0 1.5 4.2 0.5 0.0 0.0 0.0

MSP 3 34.8 0.0 0.0 0.0 0.0 0.0 34.8 9.5 16.2 3.8 4.2 0.0 10.8 0.0 0.8 0.0 0.5 0.0
MaxLogit 1 15.8 0.0 0.0 0.0 0.0 0.0 15.8 3.8 8.5 2.5 1.2 0.0 8.0 0.0 0.5 0.0 0.0 0.0

Energy 0 7.0 0.0 0.0 0.0 0.0 0.0 4.0 2.8 6.0 3.0 1.5 0.0 7.0 0.0 0.0 0.0 0.0 0.0
KL-Matching 4 61.3 0.2 0.0 0.0 0.0 0.0 61.3 13.2 19.2 6.5 6.0 0.0 13.2 0.5 4.2 0.5 3.5 0.0
Mahalanobis 14 100.0 99.2 99.8 100.0 66.5 100.0 98.5 6.2 1.5 32.8 46.8 100.0 6.8 100.0 100.0 99.5 96.2 100.0

Deit3-B-384 85.1 Relative Mahalanobis 14 100.0 78.0 97.0 100.0 23.8 100.0 95.8 2.5 1.0 14.8 38.8 100.0 4.0 100.0 100.0 84.2 85.2 100.0
ViM 8 100.0 0.0 0.0 100.0 0.0 100.0 82.8 0.2 0.5 1.0 0.0 100.0 0.0 99.2 89.5 0.0 47.8 100.0

Energy+React 6 57.5 0.0 0.0 0.0 0.0 0.0 35.0 48.5 57.5 25.2 22.2 0.0 54.0 0.0 1.0 0.0 0.5 0.0
knn 14 100.0 91.8 99.8 100.0 53.2 100.0 96.5 8.5 2.5 31.5 12.8 100.0 2.5 99.8 96.0 98.5 52.5 100.0

cosine 7 100.0 20.0 0.5 100.0 0.0 66.5 88.2 0.5 0.5 2.8 4.5 96.8 1.5 51.2 21.5 0.2 0.8 0.0
MCM/RCos 1 10.8 0.0 0.0 0.0 0.0 0.0 10.8 0.0 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MSP 4 57.5 0.0 0.2 0.0 0.2 0.0 57.5 20.5 25.0 5.8 5.0 0.0 7.5 10.5 8.0 0.0 0.5 0.0
MaxLogit 3 51.5 0.0 0.0 0.0 0.0 0.0 51.5 15.2 23.2 4.8 3.8 0.0 4.5 4.0 4.2 0.0 0.2 0.0

Energy 3 49.0 0.0 0.0 0.0 0.0 0.0 49.0 12.5 22.0 2.2 3.0 0.0 8.8 0.5 0.8 0.0 5.5 0.0
KL-Matching 7 70.5 0.2 2.2 0.0 4.0 0.0 70.5 25.2 30.0 11.8 6.0 0.0 12.8 34.2 26.0 2.0 7.2 0.0
Mahalanobis 16 100.0 100.0 100.0 100.0 61.8 100.0 87.8 29.8 26.0 60.8 55.2 100.0 2.8 100.0 100.0 99.8 85.2 100.0

Deit3-B-224 83.8 Relative Mahalanobis 16 100.0 93.2 90.2 100.0 36.5 100.0 84.5 16.0 15.0 29.5 40.0 100.0 1.2 100.0 100.0 85.5 69.5 100.0
ViM 8 100.0 0.2 0.0 100.0 0.0 100.0 68.5 2.0 5.2 0.5 0.8 97.8 0.2 49.0 63.0 0.0 26.2 100.0

Energy+React 5 46.0 1.2 0.2 0.0 0.5 0.0 46.0 21.5 27.8 5.2 10.8 0.0 28.2 0.2 1.5 0.2 0.0 0.0
knn 15 100.0 40.8 35.5 100.0 27.3 100.0 74.8 35.2 31.0 53.2 8.5 100.0 4.0 96.2 91.0 15.5 31.5 100.0

cosine 7 100.0 8.8 2.0 100.0 0.2 100.0 70.8 4.2 7.5 2.0 1.2 100.0 1.8 49.0 36.8 1.0 0.8 100.0
MCM/RCos 1 57.2 0.0 0.0 0.0 0.0 0.0 57.2 0.5 2.0 0.5 0.2 0.0 0.2 9.0 4.0 0.0 0.0 0.0
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Table 13. FPR of convolutional networks without pretraining for OOD unit-tests.
model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White

MSP 3 48.0 0.0 0.0 0.0 5.2 0.0 48.0 1.8 4.0 3.2 2.8 0.0 11.2 12.0 5.2 0.0 0.2 0.0
MaxLogit 1 40.2 0.0 0.0 0.0 2.2 0.0 40.2 2.0 4.2 1.5 1.0 0.0 6.0 6.5 3.2 0.0 0.0 0.0

Energy 4 56.0 0.0 0.0 0.0 1.0 0.0 56.0 18.2 32.2 4.0 1.8 0.0 10.5 5.5 6.5 0.0 3.0 0.0
KL-Matching 4 52.8 0.5 0.0 0.0 8.0 0.0 52.8 6.5 8.2 6.8 9.8 0.0 14.8 37.0 18.2 0.0 1.2 0.0
Mahalanobis 16 100.0 100.0 99.8 100.0 91.5 100.0 100.0 13.5 11.0 43.0 57.2 100.0 8.5 99.8 98.5 99.8 51.2 100.0

XCiT-M-224 82.6 Relative Mahalanobis 15 100.0 99.5 99.2 100.0 82.5 100.0 100.0 12.5 10.0 40.8 54.0 100.0 8.5 99.8 98.2 99.8 52.0 100.0
ViM 12 100.0 60.5 98.2 100.0 9.5 100.0 100.0 2.8 1.8 9.0 16.0 100.0 5.5 96.2 87.2 96.5 25.5 100.0

Energy+React 3 66.8 1.0 0.5 0.0 1.0 0.0 66.8 10.5 17.5 3.8 0.8 0.0 8.5 5.8 7.2 0.0 1.2 0.0
knn 4 68.8 2.5 44.5 0.0 7.5 0.0 49.5 0.5 0.2 1.0 0.2 68.8 3.2 21.0 7.5 2.5 0.0 0.0

cosine 1 24.8 0.0 0.0 0.0 5.0 0.0 24.8 0.5 0.0 1.5 0.2 0.0 2.2 8.2 1.2 0.0 0.0 0.0
MCM/RCos 2 54.2 0.0 0.0 0.0 6.0 0.0 54.2 0.5 0.0 1.8 1.0 0.0 2.5 17.8 7.2 0.0 0.5 0.0

MSP 9 100.0 21.0 45.0 0.0 1.2 54.2 60.5 6.5 9.0 6.2 18.5 3.2 36.8 10.2 8.5 36.8 0.2 100.0
MaxLogit 1 10.5 0.0 0.0 0.0 0.0 0.0 10.0 1.2 3.8 3.5 7.5 0.0 10.5 0.2 0.0 0.0 0.0 0.0

Energy 1 12.5 0.0 0.0 0.0 0.0 0.0 1.8 1.8 5.2 3.8 4.8 0.0 12.5 0.0 0.0 0.0 0.0 0.0
KL-Matching 12 100.0 41.0 48.0 100.0 4.2 82.5 82.8 5.0 5.2 6.5 22.2 14.0 39.5 36.0 25.2 42.8 1.8 100.0
Mahalanobis 12 100.0 24.0 95.0 100.0 5.0 100.0 85.2 1.5 1.2 4.8 12.2 100.0 4.5 100.0 97.2 50.2 46.5 100.0

XCiT-M-224-d 84.3 Relative Mahalanobis 12 100.0 11.5 75.8 100.0 1.2 100.0 84.5 2.0 1.5 3.8 13.5 85.2 4.5 98.8 95.0 24.8 45.5 100.0
ViM 10 100.0 10.0 65.2 100.0 0.0 100.0 77.5 0.0 0.0 0.2 2.8 96.0 1.0 97.0 79.5 27.3 37.2 100.0

Energy+React 0 9.2 0.2 2.0 0.0 0.0 0.0 2.5 0.0 0.2 2.8 3.8 0.0 9.2 0.0 0.0 0.0 0.0 0.0
knn 2 67.8 0.0 0.0 0.0 0.0 0.0 67.8 0.0 0.0 0.2 1.8 0.0 1.0 25.2 5.8 0.0 0.0 0.0

cosine 4 100.0 0.0 0.0 100.0 0.0 19.5 62.7 0.0 0.0 0.0 1.5 0.5 0.5 21.0 4.0 0.0 0.0 0.0
MCM/RCos 6 100.0 0.0 0.0 100.0 0.0 53.8 72.8 0.0 0.0 0.2 2.2 1.5 0.8 25.8 11.2 0.0 0.0 100.0

MSP 4 60.5 0.0 0.0 0.0 21.5 0.0 60.5 0.8 1.5 3.0 10.8 0.0 31.2 0.2 4.2 0.0 0.0 0.0
MaxLogit 4 69.2 2.5 0.0 0.0 25.0 0.0 69.2 2.5 4.5 7.2 12.5 0.0 52.5 0.2 4.8 0.0 0.0 0.0

Energy 12 100.0 66.2 52.5 0.0 86.2 0.0 90.0 97.8 100.0 86.8 50.7 3.0 98.0 7.8 38.0 49.8 58.2 0.0
KL-Matching 13 100.0 25.2 44.0 100.0 26.0 100.0 56.0 1.2 1.8 7.8 15.5 68.5 22.8 11.8 17.5 46.8 1.5 100.0
Mahalanobis 16 100.0 100.0 100.0 100.0 63.0 100.0 87.5 27.5 17.0 52.0 74.0 100.0 1.0 100.0 100.0 100.0 79.2 100.0

CnvNxt-B 84.4 Relative Mahalanobis 15 100.0 99.5 99.2 100.0 51.5 100.0 89.2 16.5 9.0 38.5 70.2 100.0 1.2 100.0 100.0 99.8 72.0 100.0
ViM 16 100.0 100.0 100.0 100.0 63.0 100.0 98.0 24.5 14.8 48.5 78.8 100.0 0.8 100.0 100.0 100.0 89.2 100.0

Energy+React 10 87.0 58.5 50.5 0.0 53.8 0.0 79.0 51.2 64.5 39.8 29.0 1.8 87.0 1.8 9.5 47.2 5.2 0.0
knn 12 100.0 84.5 58.8 0.0 7.2 56.2 81.2 13.8 8.5 29.0 2.2 88.5 0.2 100.0 97.2 84.2 65.0 100.0

cosine 1 27.5 0.0 0.0 0.0 0.0 0.0 27.5 0.0 0.0 0.0 0.5 0.0 0.0 0.2 0.0 0.0 0.0 0.0
MCM/RCos 1 49.0 0.0 0.0 0.0 0.2 0.0 49.0 0.0 0.0 0.0 1.2 0.0 0.2 0.2 1.8 0.0 0.0 0.0

MSP 8 89.0 4.8 13.8 0.0 89.0 0.0 76.0 37.2 36.8 10.0 9.0 6.5 47.0 10.5 8.2 7.5 68.5 0.0
MaxLogit 6 87.5 3.2 7.2 0.0 87.5 0.0 54.0 22.0 21.8 3.8 2.5 3.5 26.5 0.5 1.0 3.2 59.0 0.0

Energy 6 89.8 3.2 7.2 0.0 89.8 0.0 44.5 16.5 15.2 1.5 0.5 1.8 16.5 0.0 0.0 3.2 56.8 0.0
KL-Matching 16 100.0 5.0 27.0 100.0 50.0 100.0 73.0 18.8 15.5 21.8 12.2 91.0 24.0 48.5 51.7 12.0 71.5 100.0
Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BiT-s 78.0 Relative Mahalanobis 2 15.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 12.0 0.0 15.5 0.2 0.0 0.0 0.0 0.0
ViM 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Energy+React 3 75.8 0.8 2.5 0.0 75.8 0.0 20.0 0.2 0.0 0.0 0.2 0.0 0.5 0.0 0.0 1.5 39.8 0.0
knn 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 10 95.0 4.2 15.5 0.0 6.2 0.0 95.0 17.5 18.5 12.0 5.2 34.0 24.5 93.0 85.8 5.5 54.2 0.0

MSP 1 18.0 0.0 0.0 0.0 18.0 0.0 6.0 2.2 4.0 0.5 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0
MaxLogit 1 12.0 0.0 0.0 0.0 12.0 0.0 0.5 1.0 1.8 0.2 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0

Energy 0 5.5 0.0 0.0 0.0 5.5 0.0 0.5 0.5 0.8 1.8 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
KL-Matching 2 35.0 0.0 0.0 0.0 23.0 0.0 35.0 3.8 4.0 2.5 0.5 0.0 7.0 0.0 0.5 0.0 0.0 0.0
Mahalanobis 12 100.0 40.5 3.8 100.0 14.0 100.0 90.5 2.0 2.2 18.5 67.0 100.0 1.5 99.5 100.0 6.2 71.8 100.0

EffNetv2-M 85.1 Relative Mahalanobis 9 100.0 0.2 0.0 100.0 0.0 100.0 84.5 1.0 0.8 6.5 25.2 100.0 0.5 96.8 87.0 0.0 65.8 100.0
ViM 14 100.0 80.0 10.8 100.0 27.0 100.0 91.8 4.5 3.2 33.2 65.5 100.0 1.5 94.2 98.8 40.8 67.2 100.0

Energy+React 0 2.8 0.0 0.0 0.0 2.8 0.0 0.0 0.2 0.2 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
knn 7 100.0 0.0 0.0 100.0 0.8 100.0 60.2 0.5 1.2 1.8 0.8 39.0 0.2 22.2 16.2 0.0 2.0 100.0

cosine 1 35.2 0.0 0.0 0.0 0.5 0.0 35.2 0.2 0.8 0.0 0.0 0.0 0.2 4.0 3.0 0.0 0.0 0.0
MCM/RCos 1 10.2 0.0 0.0 0.0 0.0 0.0 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

MSP 3 17.8 0.0 0.0 0.0 1.5 0.0 17.8 12.5 14.0 4.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
MaxLogit 0 10.0 0.0 0.0 0.0 1.0 0.0 5.2 8.0 10.0 3.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

Energy 0 7.0 0.0 0.2 0.0 0.5 0.0 1.2 4.5 5.8 7.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0
KL-Matching 3 27.0 0.0 0.0 0.0 5.0 0.0 27.0 16.5 15.8 5.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Mahalanobis 16 100.0 32.8 11.8 100.0 94.2 100.0 99.2 76.2 67.5 75.8 88.5 100.0 14.5 100.0 100.0 6.5 99.5 100.0

EffNetb7 84.9 Relative Mahalanobis 14 100.0 1.8 5.2 100.0 30.8 100.0 97.5 35.5 30.5 32.8 88.2 100.0 12.5 100.0 99.2 3.8 98.5 100.0
ViM 14 100.0 17.0 10.0 100.0 82.2 100.0 99.2 74.8 63.5 76.0 76.5 100.0 8.0 100.0 100.0 3.8 99.5 100.0

Energy+React 0 6.0 0.0 0.0 0.0 0.5 0.0 0.2 5.0 6.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
knn 6 100.0 0.0 0.0 0.0 0.0 36.8 52.8 15.5 17.0 5.0 0.0 45.8 0.5 1.0 2.0 0.0 0.0 100.0

cosine 4 47.0 0.0 0.0 0.0 0.0 19.2 47.0 14.2 14.0 3.0 0.0 3.2 0.0 0.2 0.5 0.0 0.0 0.0
MCM/RCos 1 34.2 0.0 0.0 0.0 0.0 0.0 34.2 9.8 9.0 1.5 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0

MSP 5 28.5 0.0 0.0 0.0 4.0 0.0 18.8 23.2 28.5 14.5 1.8 0.0 22.5 0.0 0.8 0.0 2.2 0.0
MaxLogit 5 25.0 0.0 0.0 0.0 1.8 0.0 11.0 22.5 25.0 12.2 0.5 0.0 17.2 0.0 0.2 0.0 4.8 0.0

Energy 5 31.5 0.0 0.5 0.0 0.8 0.0 6.5 30.8 31.5 18.2 0.5 0.0 27.3 0.2 2.5 0.0 26.5 0.0
KL-Matching 17 100.0 27.5 56.5 100.0 21.8 100.0 74.2 43.2 44.2 29.8 25.5 89.2 24.8 96.0 65.5 37.5 69.0 100.0
Mahalanobis 17 100.0 100.0 100.0 100.0 99.8 100.0 93.0 57.5 50.2 70.2 99.2 100.0 19.2 100.0 99.8 100.0 75.0 100.0

EffNet-B0 77.7 Relative Mahalanobis 17 100.0 97.5 99.2 100.0 88.2 100.0 86.0 59.2 54.0 64.2 99.0 100.0 51.5 99.8 97.0 99.8 80.0 100.0
ViM 15 100.0 56.2 99.0 100.0 44.2 100.0 77.8 15.2 6.5 40.8 76.5 100.0 0.0 99.2 81.0 98.2 59.8 100.0

Energy+React 0 6.5 0.0 0.0 0.0 0.2 0.0 0.0 3.0 5.2 5.0 0.0 0.0 0.0 0.0 0.8 0.0 6.5 0.0
knn 1 27.0 1.5 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.5 0.2 0.0 0.0 2.0 0.0 0.0

cosine 0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.8 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
MCM/RCos 9 96.8 39.5 96.8 0.0 6.2 33.0 13.8 25.0 29.5 9.0 0.8 15.2 7.2 8.5 20.0 94.5 4.2 0.0

MSP 3 73.2 0.0 0.0 0.0 23.5 0.0 73.2 5.5 9.0 7.2 6.8 0.0 12.5 4.2 3.5 0.0 2.0 0.0
MaxLogit 8 86.0 0.0 0.0 0.0 25.8 0.0 86.0 11.0 14.8 11.0 12.0 0.0 19.8 9.8 12.2 0.0 7.8 0.0

Energy 17 100.0 97.8 94.5 100.0 87.8 100.0 99.8 64.8 60.0 83.2 96.0 100.0 48.8 99.2 97.0 96.8 83.0 100.0
KL-Matching 4 81.5 0.0 0.0 0.0 23.8 0.0 81.5 3.2 5.2 8.0 5.8 0.0 10.0 11.5 10.5 0.0 6.2 0.0
Mahalanobis 17 100.0 100.0 100.0 100.0 66.8 100.0 83.2 46.2 49.2 71.2 88.5 95.8 14.5 95.5 100.0 100.0 96.2 100.0

ResNet50 80.4 Relative Mahalanobis 17 100.0 100.0 100.0 100.0 89.5 100.0 98.2 82.5 81.2 99.0 99.8 100.0 99.0 100.0 99.8 100.0 100.0 100.0
ViM 16 100.0 44.5 43.2 100.0 34.5 100.0 77.8 20.2 17.0 36.0 60.0 87.2 1.2 73.2 89.2 52.5 36.0 100.0

Energy+React 17 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
knn 3 28.0 11.0 12.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 28.0 0.0 0.0

cosine 0 8.8 0.0 0.0 0.0 0.0 0.0 8.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
MCM/RCos 1 33.5 0.0 0.0 0.0 0.0 0.0 33.5 0.5 0.0 1.2 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0
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J. Effect of ID contamination on all models

In Table 14 we show the FPR values averaged across the cleaned subsampled datasets on which Table 1 in the main paper is

based.

Detailed results on the individual datasets are shown in Tables 15-18. There, we show results on the uncleaned full (-f) and

cleaned subsampled (-c) datasets: PLACES (Pl), SPECIES (Spc), IMAGENET-O (IN), TEXTURES (txt) & TEXTURES43,

OPENIMAGE-O (OpO), INATURALIST OOD PLANTS (iNat), IMAGENET-1K-OOD (IN1K), 360OPENSETCLASSES (OS),

SEMANTIC SHIFT BENCHMARK EASY (SBe) & HARD (SBh), and COOD (CO).

Since TEXTURES and INATURALIST are fairly easy test OOD datasets, the FPR values of most models in Table 14 are

lower than on NINCO. In general, the results allow similar conclusions: Feature-based methods outperform methods not

explicitly accessing pre-logit feature-information, yet still fail for some models, and pretraining only on IN-21k yields the

best OOD-detectors. Again, Cosine and MCM/RCos improve fairly consistently over MSP, and are in some cases even the

best-performing method.

Table 14. Mean FPR on subsampled datasets (averaged).
pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 39.7 27.0 −13 25.7 −14 38.4 −1 22.4 −17 25.5 −14 22.4 −17 27.5 −12 48.2 +8 30.6 −9 30.4 −9

84.5 ViT-B-224 43.3 30.8 −13 29.3 −14 42.7 −1 23.8 −19 28.2 −15 24.7 −19 32.6 −11 53.3 +10 37.0 −6 36.1 −7

86.3 Swinv2-B-256 41.9 32.3 −10 31.5 −10 46.4 +4 47.4 +5 40.4 −2 37.5 −4 27.8 −14 43.1 +1 35.5 −6 34.2 −8

86.7 Deit3-B-384 53.4 45.4 −8 46.4 −7 52.5 −1 40.8 −13 37.8 −16 41.2 −12 39.9 −13 40.1 −13 36.3 −17 36.0 −17

85.7 Deit3-B-224 55.1 46.9 −8 47.2 −8 56.1 +1 46.6 −9 42.6 −12 47.5 −8 42.0 −13 45.1 −10 41.4 −14 40.4 −15

86.3 CnvNxt-B 38.6 32.9 −6 35.3 −3 43.6 +5 36.3 −2 30.5 −8 29.9 −9 31.1 −8 37.0 −2 30.0 −9 29.5 −9

84.1 CnvNxt-T 44.1 37.6 −7 35.7 −8 50.7 +7 36.2 −8 37.0 −7 27.7 −16 34.0 −10 44.1 −0 40.2 −4 38.9 −5

82.3 BiT-m 59.9 52.0 −8 52.6 −7 55.3 −5 30.9 −29 32.7 −27 26.9 −33 46.3 −14 37.2 −23 32.9 −27 38.2 −22

85.6 EffNetv2-M 43.4 42.5 −1 49.7 +6 46.3 +3 43.7 +0 41.1 −2 37.0 −6 89.0 +46 50.2 +7 32.4 −11 38.5 −5

none

81.1 ViT-B-384 63.5 59.4 −4 58.8 −5 59.6 −4 49.1 −14 48.2 −15 61.4 −2 55.4 −8 64.0 +0 59.1 −4 60.9 −3

84.6 Swinv2-B-256 63.5 63.0 −1 68.6 +5 60.9 −3 49.4 −14 46.0 −17 52.0 −11 60.5 −3 57.0 −6 52.1 −11 50.4 −13

85.1 Deit3-B-384 60.0 64.8 +5 83.2 +23 57.8 −2 51.2 −9 48.5 −11 44.9 −15 89.2 +29 65.6 +6 57.2 −3 43.8 −16

83.8 Deit3-B-224 60.4 62.2 +2 76.1 +16 58.9 −1 57.6 −3 52.8 −8 48.9 −11 80.4 +20 73.7 +13 64.4 +4 49.5 −11

82.6 XCiT-M-224 65.8 65.2 −1 71.4 +6 65.4 −0 58.3 −7 55.7 −10 55.4 −10 66.9 +1 63.1 −3 57.3 −8 56.4 −9

84.3 XCiT-M-224-d 63.9 61.6 −2 69.9 +6 61.0 −3 55.4 −8 52.8 −11 50.4 −13 66.4 +3 59.5 −4 53.6 −10 52.3 −12

84.4 CnvNxt-B 63.1 72.3 +9 92.1 +29 62.8 −0 55.5 −8 52.1 −11 53.7 −9 88.7 +26 60.8 −2 53.6 −9 50.6 −12

78.0 BiT-s 75.3 77.7 +2 79.8 +5 59.8 −15 68.9 −6 51.2 −24 60.1 −15 65.8 −10 71.2 −4 56.0 −19 84.0 +9

85.1 EffNetv2-M 59.0 59.4 +0 70.5 +12 56.8 −2 48.2 −11 42.9 −16 57.4 −2 59.9 +1 54.7 −4 50.2 −9 43.5 −16

84.9 EffNetb7 60.1 63.4 +3 75.7 +16 56.0 −4 57.9 −2 47.6 −13 63.4 +3 66.6 +6 58.4 −2 52.7 −7 44.4 −16

77.7 EffNet-B0 69.3 69.9 +1 77.3 +8 68.2 −1 75.9 +7 68.6 −1 65.7 −4 67.8 −1 77.0 +8 51.7 −18 63.8 −6

80.4 ResNet50 68.3 70.0 +2 76.6 +8 64.5 −4 81.0 +13 75.9 +8 73.0 +5 97.6 +29 65.9 −2 51.7 −17 55.0 −13

JFT 86.8 EffNetb7-ns 53.8 49.9 −4 62.5 +9 52.7 −1 79.5 +26 53.2 −1 82.4 +29 57.0 +3 55.0 +1 47.0 −7 46.5 −7

clip

+12k

87.2 ViT-B-384-l2b 37.3 33.7 −4 35.6 −2 40.5 +3 43.6 +6 36.9 −0 36.7 −1 31.6 −6 35.0 −2 29.5 −8 29.3 −8

87.0 ViT-B-384-oai 38.7 33.1 −6 32.9 −6 40.7 +2 45.9 +7 37.4 −1 38.4 −0 31.2 −8 33.7 −5 29.2 −9 29.1 −10

clip
86.6 ViT-B-384-l2b 54.2 52.5 −2 57.2 +3 51.0 −3 40.2 −14 40.4 −14 38.4 −16 54.0 −0 44.0 −10 40.0 −14 39.5 −15

86.2 ViT-B-384-oai 56.7 55.0 −2 59.0 +2 53.9 −3 40.6 −16 40.8 −16 41.4 −15 56.0 −1 45.6 −11 41.3 −15 40.3 −16

clip

z. shot

74.3 clip-ViT-L-336 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 64.4 51.8

66.6 clip-ViT-B-224 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 71.4 60.0
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Table 15. Comparing the cleaned and original datasets in terms of FPR. The best method per model and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-f OpO-c iNat-f iNat-c IN1K-f IN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 60.5 37.9 65.8 41.9 63.0 58.3 54.2 52.3 43.4 28.2 27.2 10.5 8.9 83.0 61.3 71.0 32.6 70.7 33.8 77.6 53.4 48.5 38.2
MaxL 50.6 27.5 65.2 33.7 46.0 40.8 36.5 33.5 21.2 12.2 12.2 3.5 2.1 75.2 54.9 58.9 21.2 59.0 16.6 66.7 43.8 33.2 22.6
ViM 49.9 26.1 53.8 22.1 38.2 35.3 24.0 21.2 12.2 12.5 11.7 1.5 0.5 78.8 57.4 54.8 14.4 60.2 17.9 59.9 32.2 26.8 16.0

Maha 57.5 34.6 47.5 15.7 35.2 29.1 28.7 25.7 15.6 9.5 9.5 2.0 0.8 74.5 52.8 54.8 12.3 65.9 17.9 64.6 41.8 29.0 16.5
E+R 53.3 30.7 60.2 32.0 43.8 38.5 34.5 31.6 20.1 10.5 10.1 2.8 1.6 83.0 63.8 54.8 17.8 63.1 15.9 68.8 50.5 32.5 21.7

ViT-B-384-21k 86.0 Ener 49.1 25.5 64.2 30.8 43.2 38.5 35.0 32.4 20.8 11.0 10.6 3.2 1.8 75.8 57.4 58.9 17.4 60.2 16.6 64.6 42.3 31.5 21.2
KL-M 64.4 43.1 68.5 39.5 57.5 53.7 50.7 48.8 38.5 26.8 25.8 8.5 6.8 82.4 62.1 69.4 29.2 71.9 33.8 77.1 51.4 48.8 37.7
KNN 69.4 50.3 81.5 59.9 50.2 46.0 38.2 36.2 25.3 36.5 37.5 40.8 41.0 91.5 86.0 64.5 42.4 67.9 24.5 75.0 71.2 54.2 46.2

RMaha 55.8 30.1 52.0 20.3 42.8 36.6 37.8 35.1 23.3 12.2 12.2 2.0 0.8 72.7 53.2 61.3 16.9 68.7 19.9 71.4 44.2 37.8 23.1
RCos 56.8 33.3 67.8 35.5 40.8 35.3 34.5 31.4 19.1 17.0 16.8 7.2 6.0 83.0 67.2 64.5 24.2 62.7 17.2 72.4 51.0 39.5 28.8
Cos 57.0 32.7 67.0 33.7 42.5 36.6 36.2 33.2 20.8 15.5 15.2 6.2 5.0 83.0 66.0 66.1 25.4 62.7 19.9 72.4 51.4 40.0 30.2
MSP 59.5 39.9 66.2 40.7 67.8 62.8 51.2 49.3 38.5 35.2 36.1 15.2 14.1 89.7 65.5 69.4 39.4 79.5 35.8 81.8 58.7 53.2 44.3
MaxL 50.1 28.1 65.5 35.5 50.7 45.3 38.0 35.7 24.0 18.0 18.2 6.8 5.2 81.2 59.6 62.1 23.7 65.9 21.9 74.0 48.1 39.2 28.8
ViM 48.4 27.5 58.0 26.2 41.0 36.9 23.0 20.1 12.8 14.5 13.6 3.0 1.8 79.4 57.4 58.1 19.1 61.0 17.2 64.1 38.5 29.0 20.3

Maha 58.3 32.0 49.5 16.3 39.8 34.6 27.0 24.7 13.2 10.2 10.1 2.0 0.5 78.2 54.0 58.1 14.4 69.9 21.9 68.2 43.8 32.2 20.8
E+R 53.1 27.5 64.8 36.6 50.7 45.3 38.8 35.9 25.3 17.0 17.1 7.2 5.7 87.3 69.4 60.5 24.6 65.5 24.5 75.5 54.8 38.0 27.8

ViT-B-224-21k 84.5 Ener 48.9 26.8 65.2 34.9 46.8 41.7 35.8 33.2 22.2 14.0 13.9 6.8 5.2 78.8 60.4 63.7 23.3 63.1 20.5 68.8 47.6 37.0 25.9
KL-M 64.4 43.8 69.0 38.4 62.3 58.3 50.5 48.5 37.8 34.2 35.3 12.5 10.7 87.9 63.4 66.9 35.2 77.5 41.1 83.9 60.1 53.8 45.3
KNN 70.4 53.6 83.5 65.7 56.5 52.1 37.2 35.7 26.0 44.5 45.7 39.5 39.2 90.9 86.8 72.6 49.6 75.9 29.8 81.8 75.0 65.0 62.7

RMaha 60.2 37.9 51.0 17.4 47.5 41.7 39.0 36.2 24.0 16.0 15.8 2.2 0.5 77.0 54.9 62.1 20.3 77.5 25.8 76.0 46.2 40.8 25.5
RCos 61.7 39.9 71.2 42.4 45.2 41.1 36.2 33.8 22.6 23.0 23.6 12.8 11.2 83.6 70.2 71.0 30.9 71.1 22.5 78.6 57.7 45.0 35.4
Cos 60.0 39.2 70.5 41.9 51.5 46.9 35.8 33.2 22.6 22.0 22.6 11.5 10.2 85.5 71.1 70.2 31.8 71.5 22.5 77.6 59.6 48.0 38.2
MSP 58.8 37.9 65.0 44.2 62.0 59.9 53.5 51.5 44.1 34.5 34.5 19.8 17.5 80.6 61.7 70.2 33.1 67.9 35.8 76.6 54.3 48.0 38.2
MaxL 53.8 30.7 61.3 36.6 48.5 45.6 50.7 48.8 41.3 25.2 25.0 13.2 11.2 75.2 47.7 64.5 22.9 69.5 27.2 64.6 42.8 35.2 24.5
ViM 49.9 25.5 65.0 32.6 59.0 53.4 37.8 36.2 25.7 14.2 14.1 1.8 1.0 92.1 86.8 66.9 29.2 67.9 32.5 82.3 74.0 44.5 37.7
Maha 58.8 36.6 67.8 38.4 71.0 68.0 47.0 45.6 36.5 22.2 22.3 3.5 2.6 93.3 87.7 70.2 44.1 71.5 49.0 89.6 84.6 56.5 51.9
E+R 46.9 21.6 59.2 30.8 42.0 38.8 49.0 46.6 37.8 21.8 21.5 9.0 7.3 75.2 48.1 55.6 17.8 65.5 23.8 62.5 37.5 27.8 20.3

Swinv2-B-256-21k 86.3 Ener 54.8 30.7 62.0 35.5 43.0 40.1 54.8 52.8 45.5 30.8 29.9 13.8 12.0 73.9 44.3 62.1 21.2 70.7 30.5 64.6 34.6 31.8 22.2
KL-M 64.2 47.7 70.0 44.8 66.0 64.1 52.5 50.9 42.0 33.2 33.7 20.0 17.8 86.7 70.6 67.7 39.4 69.9 36.4 82.3 66.3 56.2 47.6
KNN 60.2 35.3 73.5 44.8 63.2 58.6 38.8 37.3 27.4 20.2 20.1 7.8 6.5 95.2 90.2 66.1 34.7 70.3 29.8 84.4 79.8 53.0 46.7

RMaha 57.5 35.3 62.7 32.0 67.8 64.7 44.5 42.9 34.0 17.5 17.4 4.2 3.1 87.9 71.1 66.9 33.1 71.9 40.4 87.5 70.7 51.0 42.5
RCos 56.3 32.7 65.8 36.6 55.2 50.5 36.0 33.8 22.9 14.8 14.4 4.2 2.9 87.3 69.8 61.3 26.7 69.1 21.9 82.8 62.5 45.0 34.9
Cos 52.1 26.1 67.0 37.8 57.5 53.4 34.5 32.7 22.2 14.2 14.1 4.0 2.6 89.7 74.5 62.1 28.4 69.5 26.5 84.9 67.3 47.0 37.7
MSP 67.2 52.9 72.8 54.7 73.5 72.2 64.8 63.5 55.9 49.5 48.9 30.0 27.9 90.9 66.8 78.2 41.5 76.7 47.0 83.9 65.9 62.3 53.3
MaxL 61.5 41.8 72.8 46.5 59.5 57.0 63.5 61.7 53.1 43.8 43.5 29.0 27.2 83.0 60.0 70.2 37.3 76.3 33.1 78.1 53.4 54.5 46.2
ViM 50.1 28.1 68.8 43.6 63.7 61.5 50.2 48.3 38.9 20.5 19.8 3.8 1.8 92.7 86.4 66.1 32.6 62.7 29.1 79.7 72.6 45.5 38.7
Maha 52.6 29.4 66.0 40.1 66.2 63.8 48.2 46.1 37.5 22.2 22.0 5.8 3.7 90.3 79.1 66.1 33.5 65.1 32.5 82.3 68.8 46.5 38.7
E+R 56.0 32.7 73.0 45.9 51.7 49.5 58.2 55.8 45.5 34.8 33.7 23.2 21.9 81.2 62.6 63.7 34.7 69.1 22.5 73.4 53.4 44.0 36.3

Deit3-B-384-21k 86.7 Ener 62.7 43.1 76.5 53.5 53.2 51.1 67.0 64.9 56.6 47.2 47.0 39.8 38.6 81.8 56.6 66.9 36.0 75.1 31.8 75.5 53.4 51.7 42.5
KL-M 67.9 50.3 72.0 52.3 69.5 68.9 59.0 57.4 49.7 47.8 47.3 28.2 26.1 91.5 71.9 75.8 41.9 72.7 45.0 85.9 69.7 62.5 54.7
KNN 53.3 28.1 72.0 45.9 59.2 56.0 44.8 42.1 32.6 20.5 20.1 9.0 7.0 92.7 81.3 65.3 33.5 63.1 27.2 82.3 70.2 45.0 38.7

RMaha 51.6 28.1 64.2 39.0 62.0 59.5 46.2 43.4 34.0 21.5 21.2 6.8 4.7 90.3 71.9 64.5 30.1 64.3 29.1 80.7 62.0 43.5 36.3

RCos 52.8 27.5 67.8 41.3 57.0 54.7 42.2 39.7 29.5 21.2 20.7 6.5 4.7 90.3 68.9 65.3 28.0 65.1 24.5 81.8 59.1 43.5 37.3
Cos 52.8 26.8 68.0 41.3 58.5 55.7 42.8 40.2 29.9 21.5 20.9 6.5 4.7 90.3 69.8 65.3 28.0 64.7 25.8 82.8 59.6 43.8 37.3
MSP 65.4 48.4 73.2 53.5 73.5 72.5 66.8 64.6 59.4 47.2 45.9 36.2 35.0 89.7 70.2 75.8 51.7 75.1 49.0 82.8 67.3 61.5 53.3
MaxL 61.0 43.8 72.0 48.3 61.0 58.6 64.5 62.5 55.6 41.2 39.9 36.5 35.5 84.8 58.7 63.7 41.1 69.9 36.4 76.0 56.2 54.5 42.0
ViM 54.8 34.0 74.8 50.0 68.2 66.7 53.2 51.5 43.1 25.5 25.5 7.5 5.2 92.7 91.5 68.5 39.0 67.9 41.1 84.9 79.3 52.5 47.6
Maha 53.3 33.3 71.0 45.9 70.2 68.9 52.5 50.9 42.7 26.0 26.1 8.0 5.7 92.7 85.5 70.2 39.0 69.9 43.0 84.9 74.0 53.2 48.1
E+R 57.0 34.6 73.0 47.7 52.2 50.5 59.0 56.8 48.6 33.8 33.4 38.8 37.6 83.6 56.6 60.5 36.9 65.1 26.5 72.9 52.9 49.0 37.3

Deit3-B-224-21k 85.7 Ener 63.5 47.1 74.2 51.2 55.0 52.8 63.5 61.4 54.2 44.2 43.8 53.0 52.5 81.2 53.2 63.7 38.6 67.9 33.1 70.8 51.0 53.2 42.5
KL-M 68.1 51.6 74.5 55.8 71.8 70.9 63.0 61.1 55.6 48.2 46.5 34.2 32.9 91.5 75.7 74.2 55.5 75.1 47.7 84.9 69.2 63.7 55.7
KNN 56.3 35.9 75.8 51.2 62.7 60.2 47.8 45.3 36.8 24.2 23.9 14.8 12.8 93.9 83.8 70.2 42.8 65.9 29.1 85.4 73.6 51.0 45.8

RMaha 52.1 31.4 67.8 41.9 66.8 65.7 52.0 50.4 42.7 23.2 23.1 7.8 5.7 90.9 76.6 69.4 34.3 67.5 37.1 84.4 67.8 49.8 42.5
RCos 53.3 32.0 71.0 44.8 60.2 58.6 47.2 44.8 36.1 23.8 23.1 9.0 7.0 89.7 73.2 65.3 35.6 66.7 29.8 84.9 65.9 47.5 38.2
Cos 53.6 32.7 71.8 45.9 60.5 59.2 47.8 45.3 37.2 24.2 23.6 9.2 7.3 89.1 74.9 67.7 36.9 65.9 31.1 84.9 66.8 48.0 39.6
MSP 55.8 38.6 64.0 42.4 54.5 49.5 47.5 45.0 36.1 26.5 26.4 16.0 14.1 80.6 60.0 64.5 28.8 69.9 29.1 69.8 54.3 41.2 30.7
MaxL 55.1 35.9 65.0 39.5 52.2 46.6 46.0 43.7 34.0 24.8 24.5 13.0 11.2 78.8 54.9 60.5 24.2 65.9 25.2 63.0 48.1 36.5 26.4

ViM 43.5 17.0 64.0 34.3 60.2 55.7 41.2 38.6 27.1 14.0 13.6 4.5 3.1 83.0 78.3 67.7 37.7 63.5 35.1 78.6 66.8 42.2 35.4
Maha 48.9 26.1 67.2 40.1 65.2 61.5 46.0 43.2 32.6 20.0 19.3 8.2 6.8 87.9 84.7 69.4 45.3 68.3 45.7 83.3 75.0 49.8 42.0
E+R 52.8 34.0 69.2 43.0 45.0 41.4 43.0 40.5 30.6 24.2 24.2 12.8 11.5 77.0 51.9 62.1 21.2 63.1 21.2 60.9 40.9 36.5 27.4

ViT-B-384-l2b-12k 87.2 Ener 60.0 41.2 71.0 45.9 49.5 46.0 50.0 48.0 39.6 29.2 28.3 16.2 14.9 77.0 52.8 62.1 22.5 67.9 27.2 60.4 42.3 40.2 31.1
KL-M 55.8 37.9 64.2 40.7 56.5 52.8 43.8 41.0 33.0 27.5 27.4 19.0 17.0 84.2 70.6 63.7 33.1 71.9 33.1 76.6 62.0 46.5 37.7
KNN 46.7 25.5 67.8 38.4 54.8 49.8 34.8 31.6 19.8 15.8 14.9 7.0 5.7 89.7 80.4 59.7 29.2 65.1 21.2 78.1 67.8 41.8 32.5

RMaha 49.4 22.9 63.5 34.3 60.5 56.6 42.2 39.7 28.5 16.5 15.8 6.0 4.4 86.7 77.9 64.5 33.9 65.1 32.5 83.3 65.4 44.5 34.0
RCos 46.4 22.9 60.5 29.7 50.0 45.3 35.2 32.2 19.4 12.2 11.7 4.5 2.9 84.2 66.0 58.9 22.9 65.1 19.2 76.0 55.8 38.0 26.9
Cos 46.9 22.9 60.5 29.7 50.0 45.3 35.0 31.9 19.1 12.2 11.7 4.5 2.9 84.2 66.8 58.1 23.3 65.1 19.9 75.5 56.2 38.0 26.9
MSP 57.0 39.9 65.0 41.3 55.0 52.8 50.7 48.8 40.3 30.2 30.4 17.0 14.9 80.0 61.7 65.3 27.5 70.3 27.8 72.9 51.9 45.0 37.7
MaxL 55.6 36.6 65.0 39.5 48.0 45.3 47.0 44.8 35.1 26.5 26.4 14.5 12.3 75.8 51.9 61.3 19.5 66.3 23.8 65.6 45.2 36.8 28.8
ViM 53.1 27.5 64.0 33.1 62.7 61.2 37.8 35.7 24.7 16.0 16.3 5.5 3.9 86.7 83.8 62.9 34.3 65.5 29.1 78.6 69.2 44.0 39.2
Maha 60.0 37.9 66.2 37.8 68.5 67.0 41.0 39.1 27.4 22.5 22.8 11.2 9.9 87.9 84.7 68.5 47.0 74.7 44.4 82.3 76.4 54.8 50.0
E+R 55.6 37.3 67.0 39.0 43.2 40.1 46.8 44.8 34.4 23.8 23.4 12.5 10.7 75.8 51.9 58.1 17.4 62.2 22.5 60.4 40.9 34.0 25.5

ViT-B-384-oai-12k 87.0 Ener 56.3 38.6 68.8 40.7 45.0 41.4 50.5 48.5 39.2 26.8 26.6 14.5 12.8 73.9 51.9 60.5 18.6 64.7 25.2 58.9 41.8 35.0 24.5

KL-M 61.7 43.1 67.0 41.9 55.2 53.7 48.0 46.4 37.8 29.0 29.1 16.2 14.1 84.2 67.7 66.9 30.1 70.3 30.5 77.6 58.7 48.2 40.6
KNN 57.5 34.6 67.8 39.0 47.2 44.0 30.2 27.9 15.3 15.0 15.2 8.0 6.3 89.1 77.0 62.1 28.0 61.0 17.2 75.5 60.6 40.2 33.0

RMaha 58.0 35.3 62.3 32.0 60.8 58.3 40.8 38.6 27.1 16.8 17.1 8.0 6.5 86.1 73.6 61.3 31.8 71.5 29.1 80.2 61.5 48.5 39.2
RCos 54.8 29.4 61.5 29.1 46.2 41.7 33.0 30.6 18.4 12.0 12.5 6.5 5.0 84.8 64.7 58.9 22.9 63.9 17.2 70.8 52.4 37.5 27.4
Cos 55.3 30.7 61.5 29.1 46.0 41.4 32.5 30.0 17.7 12.0 12.5 6.5 5.0 84.8 66.0 58.9 22.0 63.9 18.5 70.8 51.4 37.0 27.4
MSP 63.7 50.3 67.8 48.8 78.2 76.1 55.2 52.5 44.1 43.5 44.3 37.2 35.8 83.6 70.2 72.6 53.4 73.9 49.0 77.6 69.7 60.2 54.2
MaxL 62.0 44.4 71.2 51.7 73.2 71.2 55.0 52.0 43.4 38.2 39.4 37.2 36.3 83.0 67.2 71.0 51.3 75.5 49.7 77.6 69.7 60.2 52.8
ViM 50.9 23.5 66.2 37.2 59.5 57.6 40.2 37.3 25.7 18.0 18.8 11.0 9.4 84.8 77.9 65.3 41.1 61.8 21.9 74.5 68.8 48.2 40.1
Maha 56.3 32.7 65.0 36.6 63.0 61.2 39.0 36.2 26.0 19.0 19.8 10.8 8.9 84.2 77.4 62.1 40.3 63.1 28.5 76.0 69.7 49.5 40.6
E+R 59.5 38.6 78.0 58.7 70.8 68.6 57.5 54.7 45.8 38.8 39.9 45.2 44.6 84.8 71.1 74.2 50.8 74.3 47.7 78.1 70.7 60.2 57.5

ViT-B-384-l2b 86.6 Ener 62.5 44.4 79.0 61.6 72.2 70.2 60.5 57.6 49.3 42.8 44.3 52.0 51.7 86.1 71.5 77.4 53.4 76.3 51.7 79.2 70.2 64.8 61.3
KL-M 64.7 48.4 67.2 44.8 69.0 68.9 49.2 46.1 37.5 39.0 39.7 33.2 31.9 81.8 71.5 66.1 45.8 72.7 48.3 81.2 70.2 59.0 53.8
KNN 56.3 33.3 69.5 43.6 63.2 63.4 37.8 35.1 24.7 21.2 21.5 15.8 14.1 87.3 82.1 66.1 43.6 64.7 33.8 83.3 78.4 52.8 45.3

RMaha 58.3 32.0 64.5 39.5 64.0 61.5 40.0 37.3 26.4 19.0 19.8 12.2 10.4 83.0 71.9 64.5 39.4 62.7 33.1 78.6 68.3 49.8 41.5
RCos 54.8 32.0 64.2 37.8 64.0 61.8 35.2 32.2 20.5 20.5 21.5 13.5 11.7 81.8 73.6 65.3 39.0 64.3 32.5 79.2 64.4 48.0 39.6

Cos 55.1 33.3 65.2 37.8 63.7 61.8 37.0 34.0 22.9 19.5 20.4 13.0 11.2 84.2 75.3 65.3 39.4 64.7 30.5 80.2 67.3 48.8 40.1
MSP 64.7 49.7 69.2 54.1 78.2 76.1 54.2 52.5 44.4 52.2 52.2 40.8 39.7 84.8 74.9 76.6 52.5 74.3 51.0 86.5 72.1 63.2 56.6
MaxL 63.5 49.7 71.8 54.7 73.2 70.9 55.2 53.6 45.1 49.2 49.5 37.8 36.8 85.5 72.8 75.8 48.7 75.1 49.7 85.9 73.1 59.5 54.2
ViM 50.9 28.1 66.5 37.8 66.5 64.4 41.2 38.6 29.5 24.0 23.6 12.8 11.2 87.3 77.9 68.5 38.1 63.1 34.4 79.2 68.3 50.0 41.5
Maha 53.1 29.4 65.2 37.2 65.0 62.1 41.2 38.9 29.2 23.2 24.2 14.0 12.3 86.1 73.2 66.1 37.7 67.1 33.8 81.8 65.9 51.2 41.5
E+R 63.2 48.4 75.2 56.4 71.0 69.3 60.0 58.4 51.4 45.8 46.7 38.5 38.4 86.1 76.6 73.4 48.7 72.3 50.3 84.9 72.6 61.8 57.1

ViT-B-384-oai 86.2 Ener 65.7 52.3 76.2 58.1 73.8 72.5 62.7 61.1 54.5 51.7 52.4 44.5 44.1 86.7 75.7 78.2 52.5 75.1 53.0 84.9 74.5 64.5 59.0
KL-M 66.2 51.0 72.0 54.7 71.5 69.6 49.2 47.5 39.2 48.8 48.6 38.8 37.3 87.3 75.3 71.0 47.5 72.7 47.7 85.4 69.2 61.0 52.8
KNN 53.3 30.7 73.5 47.1 64.8 62.5 40.5 38.1 27.8 28.7 29.3 21.5 20.1 88.5 83.4 69.4 44.1 67.1 32.5 85.4 74.5 55.8 49.5

RMaha 55.1 32.0 64.5 38.4 67.8 66.0 43.2 41.0 31.6 26.0 26.9 15.8 14.1 81.8 69.4 66.1 36.0 68.3 33.8 81.8 63.0 48.5 37.7

RCos 55.3 30.1 65.8 39.5 63.2 60.2 37.2 34.6 23.6 24.5 25.3 16.8 15.1 83.6 71.1 67.7 36.0 68.3 33.1 83.9 66.8 51.0 42.0
Cos 55.3 30.1 67.8 40.1 64.5 61.5 39.2 36.7 25.7 25.5 26.4 16.8 15.1 85.5 74.5 67.7 37.3 67.5 32.5 85.4 68.3 51.2 42.5

31



In or Out? Fixing ImageNet OOD Detection Evaluation

Table 16. Comparing the cleaned and original datasets in terms of FPR. The best method per model and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-f OpO-c iNat-f iNat-c IN1K-f IN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 58.3 35.9 63.5 40.1 61.3 58.3 51.2 48.8 38.5 32.0 30.2 18.0 16.2 80.6 56.6 70.2 30.5 71.5 30.5 77.1 51.0 46.5 36.8
MaxL 59.5 37.9 61.0 37.2 53.8 49.8 47.2 44.8 31.9 28.2 25.8 18.5 17.0 76.4 49.8 66.9 22.5 64.7 25.2 67.2 35.6 40.5 28.8
ViM 49.6 24.2 56.2 30.2 44.2 40.5 29.0 26.0 14.6 12.0 10.9 1.8 0.8 86.1 75.7 57.3 24.6 65.1 25.2 73.4 56.2 35.5 26.4

Maha 55.3 28.8 57.8 29.1 59.0 56.3 32.0 29.5 18.1 15.5 14.4 3.0 1.8 84.2 75.3 65.3 35.2 68.7 41.7 83.3 63.5 45.2 34.9
E+R 57.5 33.3 60.2 33.1 49.0 44.0 48.2 46.1 34.4 26.8 24.7 18.2 17.0 71.5 50.2 63.7 17.8 65.9 23.2 60.4 34.1 39.5 29.7

CnvNxt-B-21k 86.3 Ener 63.0 41.2 63.5 39.5 49.5 45.0 55.2 53.9 43.8 36.0 34.0 26.0 25.1 72.1 48.5 66.9 21.6 67.9 27.8 60.9 31.2 41.0 30.7
KL-M 65.7 42.5 69.5 44.2 59.8 57.6 49.0 46.4 36.5 33.2 32.9 19.0 16.4 84.2 66.0 68.5 37.3 73.5 37.7 82.8 63.0 55.5 45.8
KNN 66.9 47.7 69.5 41.9 48.2 43.4 31.5 28.7 17.0 19.5 19.0 7.8 6.3 90.3 79.1 63.7 28.4 60.6 19.2 81.8 67.3 45.5 37.3

RMaha 57.8 32.0 56.5 27.3 54.5 50.5 33.5 30.6 18.4 16.2 15.5 2.8 1.3 80.0 56.6 60.5 24.2 68.7 27.8 76.6 54.3 40.5 27.8
RCos 59.0 30.7 62.7 32.0 50.0 45.6 32.0 29.0 16.3 15.2 14.9 4.5 2.9 84.8 61.3 63.7 23.7 62.2 17.2 75.0 51.0 40.2 28.3
Cos 59.3 32.7 63.5 32.6 49.2 44.3 32.0 29.2 16.3 14.8 14.7 4.0 2.6 85.5 64.3 64.5 23.3 62.2 17.2 76.6 51.9 41.5 29.7
MSP 63.7 40.5 69.0 46.5 68.0 65.7 52.2 50.4 42.0 38.0 38.0 15.8 13.6 89.7 68.9 70.2 33.9 73.1 39.1 80.7 55.8 49.2 41.5
MaxL 61.0 37.9 67.8 41.3 58.8 56.0 47.5 45.8 36.5 32.2 32.1 12.2 9.9 84.2 61.7 65.3 25.8 68.7 30.5 73.4 48.6 41.8 33.0
ViM 48.6 24.2 53.0 25.6 47.5 43.7 27.8 24.9 15.3 11.5 10.3 2.5 1.0 84.8 68.5 53.2 16.1 64.3 21.2 69.8 53.8 34.2 25.0

Maha 55.6 31.4 56.8 29.7 64.2 61.8 31.0 28.7 17.4 15.8 15.2 3.8 2.3 84.8 75.7 64.5 28.4 71.1 37.7 79.2 66.8 42.5 31.6
E+R 57.8 34.6 67.5 38.4 51.2 47.2 45.0 43.4 33.7 28.5 27.7 8.2 5.7 82.4 59.1 64.5 23.3 68.7 29.8 71.9 45.2 37.0 29.2

CnvNxt-T-21k 84.1 Ener 61.0 40.5 67.8 39.5 51.5 47.6 47.5 46.1 36.8 31.8 31.2 12.0 9.4 82.4 58.7 64.5 24.6 69.5 29.8 71.9 43.3 38.8 31.1
KL-M 70.4 52.3 72.8 49.4 71.2 71.5 51.0 49.1 41.0 42.5 42.4 19.5 17.2 89.7 73.2 70.2 43.2 73.5 53.0 83.9 67.3 56.0 47.2
KNN 72.3 52.3 73.0 47.1 59.8 55.7 36.0 33.2 21.5 28.7 28.8 20.0 18.3 90.3 84.3 71.8 36.0 69.5 26.5 82.3 74.0 49.0 41.0

RMaha 59.3 41.8 59.0 32.0 63.7 61.2 38.0 35.7 25.3 21.2 21.5 5.2 3.4 84.8 67.2 65.3 26.3 74.3 31.8 79.2 62.0 43.5 34.0
RCos 63.0 39.9 65.2 36.0 62.0 58.3 38.2 36.2 25.3 24.2 24.5 10.8 8.9 86.7 71.5 67.7 30.5 69.1 32.5 81.8 65.4 44.0 35.4
Cos 64.4 41.2 67.0 39.5 62.0 58.3 37.8 35.7 24.7 26.0 26.4 11.8 10.2 86.7 73.2 66.9 32.2 70.3 31.8 80.7 67.8 44.5 36.8
MSP 74.3 56.9 72.5 54.7 83.2 82.2 72.8 71.8 68.1 52.5 52.2 28.7 26.1 86.7 76.2 79.0 50.0 78.3 59.6 90.6 76.0 64.2 57.1
MaxL 69.6 47.7 65.8 41.3 80.2 79.3 66.5 65.4 59.7 43.5 43.5 17.0 14.1 83.6 74.0 77.4 36.9 78.3 57.0 87.0 68.3 58.2 50.0
ViM 54.1 28.1 47.0 22.7 38.2 34.6 5.5 5.1 2.1 14.2 12.2 2.2 1.0 85.5 67.2 64.5 13.6 73.9 33.1 79.2 57.7 39.2 24.1

Maha 64.4 41.8 52.5 25.0 36.8 33.3 6.5 5.9 2.1 19.0 16.0 4.5 2.9 84.2 68.1 69.4 17.8 80.3 39.1 83.9 62.5 48.0 31.6
E+R 64.2 44.4 46.5 29.1 75.8 74.8 67.8 67.3 64.6 44.2 43.8 10.2 8.4 77.0 57.9 74.2 29.7 82.7 62.9 70.3 48.6 55.5 45.3

BiT-m 82.3 Ener 70.9 51.0 66.5 42.4 79.8 79.0 69.0 68.4 62.8 43.5 42.9 15.2 12.8 84.8 76.6 77.4 36.4 80.7 57.6 85.9 66.8 59.0 50.0
KL-M 72.6 54.2 74.8 54.1 74.0 73.5 64.0 63.3 58.7 45.0 45.1 28.2 25.6 83.0 74.9 79.0 43.6 76.3 55.0 89.6 71.6 61.5 51.9
KNN 69.4 47.7 58.8 32.6 42.2 39.5 11.2 10.5 4.9 19.0 16.0 4.5 2.6 93.3 88.9 76.6 21.2 83.9 38.4 87.0 80.3 54.5 37.3

RMaha 65.2 45.8 49.5 20.3 56.2 54.4 23.8 22.3 13.9 23.0 22.0 4.0 2.6 73.3 55.3 72.6 19.5 80.7 37.1 78.6 56.7 49.2 31.6
RCos 66.2 39.9 62.5 36.0 64.5 61.8 31.2 29.5 18.4 24.2 23.4 6.0 4.4 83.6 72.8 73.4 28.4 74.3 33.8 82.8 65.9 49.8 35.8
Cos 63.7 37.3 58.8 30.2 50.5 46.9 16.5 14.5 6.6 18.5 17.1 4.2 2.6 83.0 71.5 70.2 21.6 74.7 29.1 83.9 65.4 48.5 33.5
MSP 61.5 39.9 67.0 45.3 65.2 62.5 52.2 50.4 42.4 36.8 36.7 19.5 17.5 85.5 62.6 76.6 40.3 76.7 34.4 83.9 54.8 51.7 41.0
MaxL 63.2 45.8 68.8 45.9 61.5 58.6 52.8 50.4 41.7 35.0 34.8 20.8 19.1 86.1 59.1 77.4 34.3 77.1 35.8 86.5 51.9 50.2 40.6
ViM 63.2 39.2 65.8 34.3 47.2 42.1 21.8 19.0 10.8 20.5 19.0 3.8 2.3 87.9 86.8 69.4 34.3 73.5 23.2 81.8 76.0 47.8 38.7
Maha 69.1 47.1 68.2 39.0 58.0 53.1 27.5 25.5 16.0 28.7 28.0 7.8 6.0 87.9 88.9 66.9 41.9 73.5 31.1 83.9 82.2 56.8 47.2
E+R 94.3 93.5 93.2 90.7 89.2 89.3 87.2 88.7 89.2 87.5 87.0 89.2 89.3 95.8 93.6 91.9 80.1 90.0 90.1 94.8 86.5 90.0 89.6

EffNetv2-M-21k 85.6 Ener 69.6 54.9 75.0 54.7 64.5 63.1 65.5 63.5 56.9 40.2 39.4 26.2 24.5 90.3 63.8 79.8 39.0 83.9 47.7 90.1 56.7 55.2 45.8
KL-M 65.9 45.8 70.2 47.1 64.5 63.1 51.7 50.4 42.4 37.8 38.6 23.0 21.4 84.2 69.4 76.6 42.4 75.5 32.5 83.9 63.0 54.2 43.4
KNN 83.5 71.9 75.5 52.9 45.5 41.4 26.0 24.7 14.6 40.8 38.3 13.2 11.5 95.2 95.3 74.2 40.3 88.0 47.7 93.8 86.1 65.0 52.4

RMaha 70.1 53.6 61.5 34.3 59.8 56.0 34.8 33.0 24.0 27.0 26.6 9.0 7.0 84.8 75.3 66.9 35.2 77.5 29.8 82.3 71.2 53.0 39.6
RCos 63.2 39.9 63.0 38.4 57.2 53.7 39.0 36.7 27.1 25.0 25.3 6.8 5.5 84.2 71.5 68.5 33.9 72.7 25.8 85.4 66.3 47.5 35.8
Cos 60.5 37.3 59.8 29.7 41.8 37.5 23.8 22.0 12.8 22.0 21.5 5.2 3.9 83.6 71.1 67.7 26.3 73.9 18.5 83.9 63.9 45.2 34.0

MSP 54.6 34.0 69.5 53.5 69.2 67.3 56.0 54.2 48.3 42.5 41.6 38.8 37.1 84.8 69.4 75.8 62.3 73.9 53.6 83.3 69.7 63.0 55.2
MaxL 46.9 31.4 67.8 49.4 66.0 64.4 53.2 51.2 44.8 33.0 33.2 35.2 33.2 81.8 64.3 77.4 58.5 71.5 55.6 79.7 62.5 59.8 51.4
ViM 96.5 93.5 92.0 85.5 77.5 77.0 87.5 86.9 85.4 91.8 91.8 83.0 82.8 90.9 95.3 73.4 69.9 80.7 60.3 87.0 88.5 75.5 76.9
Maha 95.8 92.2 89.0 80.2 76.5 75.7 82.8 82.0 79.2 88.2 88.3 76.5 76.2 90.9 93.6 75.8 67.4 79.9 59.6 87.5 88.5 73.5 73.1
E+R 57.8 37.9 76.2 61.6 67.5 67.6 59.8 57.9 51.7 41.5 42.1 50.7 49.3 81.8 71.9 80.6 65.7 71.9 55.6 81.2 66.8 60.8 56.6

EffNetb7-ns 86.8 Ener 52.3 39.9 75.5 62.2 77.2 77.3 64.8 63.0 58.0 48.0 48.1 56.8 55.6 79.4 67.2 83.9 77.5 79.9 71.5 82.3 64.4 70.2 66.0
KL-M 62.5 37.9 74.0 54.7 62.3 59.9 53.2 51.7 45.5 40.8 40.5 32.8 30.8 87.3 78.3 69.4 55.1 69.9 51.0 85.4 73.1 62.5 53.3
KNN 63.7 41.8 83.5 67.4 65.2 63.8 43.2 41.0 29.5 45.5 46.5 36.5 35.0 90.3 91.9 77.4 55.9 67.5 36.4 83.3 79.3 59.5 57.1

RMaha 80.5 63.4 70.2 48.3 71.5 70.6 64.8 63.5 57.3 47.2 46.2 20.0 17.8 82.4 71.1 73.4 45.3 73.9 45.7 83.3 69.2 59.2 50.0
RCos 57.8 32.0 73.8 54.7 61.3 59.5 41.0 38.9 27.4 36.5 36.1 22.8 20.9 88.5 80.0 66.1 46.2 65.1 36.4 79.7 71.6 54.2 46.7

Cos 57.0 31.4 75.2 55.2 61.5 58.9 40.0 37.8 26.0 35.0 35.3 24.2 22.5 89.1 83.0 68.5 47.0 65.5 37.1 78.1 72.6 54.5 48.1
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Table 17. Comparing the cleaned and original datasets in terms of FPR. The best method per model and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-f OpO-c iNat-f iNat-c IN1K-f IN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 71.6 58.8 78.2 61.6 82.8 81.9 62.5 60.9 54.2 54.0 54.1 46.8 45.7 92.7 81.3 76.6 64.0 77.1 55.6 87.0 78.4 66.0 63.2
MaxL 68.9 52.9 75.5 54.7 80.8 80.6 55.5 54.2 46.2 44.5 44.8 37.8 36.8 90.9 85.5 75.8 57.2 75.1 51.7 85.9 82.2 63.2 61.3
ViM 73.3 62.1 73.5 55.8 82.8 81.9 54.2 54.2 46.9 49.0 49.2 39.5 38.9 84.8 80.4 73.4 59.3 76.7 61.6 84.9 77.4 67.2 62.3
Maha 70.4 56.2 62.5 35.5 79.2 78.0 47.0 45.8 39.6 36.0 35.1 16.5 14.9 78.2 65.1 77.4 44.1 77.5 57.0 81.8 63.9 61.3 50.5

E+R 68.6 52.9 70.8 46.5 80.8 79.6 50.5 49.3 41.7 39.0 38.9 27.8 26.9 87.3 79.1 73.4 53.8 75.1 55.0 82.3 77.9 60.8 57.5
ViT-B-384 81.1 Ener 69.6 53.6 75.2 55.2 80.0 78.6 50.5 49.3 41.3 42.2 42.4 35.5 34.2 89.1 86.8 75.0 56.4 75.1 53.0 83.3 82.7 63.5 62.7

KL-M 72.8 60.8 72.2 52.3 77.8 76.4 59.5 58.2 52.8 51.0 51.4 36.2 35.0 86.7 76.6 76.6 58.1 76.3 59.6 83.3 75.5 63.7 57.5
KNN 74.8 64.7 81.5 64.0 78.5 77.0 48.8 47.2 41.3 49.0 49.7 55.2 54.3 92.7 88.5 75.8 66.9 72.7 45.7 89.1 85.6 66.5 66.0

RMaha 68.9 53.6 59.5 33.1 79.2 78.3 48.8 47.5 41.3 38.8 38.0 13.0 11.2 77.6 59.1 78.2 41.1 79.5 60.3 78.6 62.0 60.5 51.9
RCos 73.3 60.8 77.2 58.7 79.8 79.3 51.7 50.7 42.7 46.0 46.5 45.2 43.9 92.7 86.8 75.8 57.6 74.7 47.7 87.0 82.2 64.5 63.2
Cos 71.4 58.8 76.0 56.4 79.5 79.0 49.8 48.5 41.0 44.8 45.1 41.8 40.2 91.5 86.0 75.0 55.9 73.5 45.7 86.5 80.8 63.0 61.3
MSP 68.6 52.3 78.0 64.0 83.8 84.1 66.0 64.9 58.0 58.2 57.3 47.8 46.7 91.5 77.9 80.6 59.7 75.5 57.0 88.0 77.4 67.8 63.7
MaxL 69.4 54.9 76.5 62.2 79.2 79.3 56.2 55.8 48.6 58.5 57.3 45.5 44.6 90.9 79.6 77.4 59.3 79.5 62.3 85.9 78.8 69.5 65.6
ViM 63.2 45.1 76.5 54.7 75.8 75.1 48.5 46.9 38.2 31.8 32.3 22.5 21.1 90.9 87.7 73.4 44.1 67.5 41.1 81.8 83.2 55.2 50.0
Maha 59.8 41.2 73.2 50.0 77.5 77.0 51.7 50.1 41.0 31.2 31.0 20.2 18.5 90.3 77.9 74.2 43.6 67.9 39.7 80.7 75.0 55.5 48.1
E+R 67.2 49.0 81.5 66.3 76.0 75.7 47.8 46.6 38.9 49.8 49.7 44.8 43.9 90.9 84.7 75.8 57.2 75.9 53.6 82.8 81.2 68.2 65.6

Swinv2-B-256 84.6 Ener 76.8 66.7 82.5 73.8 76.2 76.4 56.2 55.2 50.7 64.0 63.0 54.8 54.6 87.9 84.3 83.9 66.1 84.3 67.5 86.5 80.8 74.0 71.2
KL-M 72.6 56.9 75.0 58.7 79.5 80.3 63.0 62.2 55.6 51.7 50.8 45.0 44.1 91.5 77.0 77.4 56.8 72.3 53.0 83.9 76.4 65.2 60.4
KNN 64.7 47.7 79.5 60.5 79.2 78.3 49.5 47.7 39.2 37.5 38.6 40.5 39.2 93.3 90.6 78.2 53.0 66.7 39.7 83.3 84.6 59.8 55.2

RMaha 58.8 39.2 69.5 44.2 77.0 76.4 50.7 49.1 38.9 30.0 29.6 17.5 15.7 87.9 69.4 72.6 38.6 67.9 39.1 79.2 70.2 53.2 45.3

RCos 62.7 42.5 75.5 53.5 76.8 75.7 44.8 42.9 33.7 32.5 33.2 24.8 23.2 90.3 81.3 74.2 44.1 67.1 41.1 81.2 77.9 55.8 48.1
Cos 63.5 43.1 76.2 55.2 77.2 76.7 47.0 45.0 36.1 33.5 34.0 28.7 27.4 90.9 83.4 75.0 47.0 67.5 39.1 81.2 80.3 56.8 50.9
MSP 64.7 52.3 76.5 60.5 80.8 79.9 58.0 55.8 50.0 57.2 57.6 41.5 40.7 90.3 75.7 77.4 61.4 76.7 55.0 86.5 72.6 59.2 54.2
MaxL 70.4 58.2 80.0 62.8 82.2 82.5 54.8 52.5 47.9 65.0 64.7 50.0 49.9 91.5 78.3 82.3 69.1 81.9 60.3 85.4 75.0 65.5 63.7
ViM 58.0 34.6 70.5 44.2 71.2 69.3 42.0 39.9 31.9 34.2 35.1 16.8 15.1 82.4 70.2 71.0 41.9 65.5 35.8 77.1 70.2 51.5 45.3
Maha 63.5 46.4 71.0 45.9 76.5 74.1 59.0 57.6 50.7 37.2 39.1 20.8 19.3 88.5 80.9 72.6 45.8 67.5 35.8 83.3 77.4 55.5 48.1
E+R 93.6 90.8 94.5 93.6 90.8 92.6 81.5 81.0 78.5 91.5 90.8 91.0 91.4 91.5 85.5 94.4 91.5 94.0 94.0 90.1 84.6 89.2 87.7

Deit3-B-384 85.1 Ener 88.4 81.7 91.5 86.0 86.0 87.1 66.5 65.4 61.5 83.8 82.3 83.2 83.0 94.5 91.9 88.7 85.2 92.8 84.8 90.1 87.0 84.5 84.9
KL-M 69.9 54.9 77.2 58.1 74.5 73.1 56.5 54.4 49.3 51.5 51.9 39.2 38.6 89.7 77.0 76.6 55.9 73.5 51.0 84.9 72.1 57.8 53.8
KNN 66.4 51.0 84.8 69.8 82.5 81.6 64.2 62.7 55.2 50.5 53.3 59.8 59.5 93.3 93.6 75.0 63.6 67.5 43.0 83.9 85.1 65.5 66.0

RMaha 61.5 43.8 70.2 44.2 76.0 73.8 57.0 55.5 48.3 35.0 36.7 17.2 15.7 85.5 74.0 71.8 42.8 67.1 38.4 82.3 70.2 53.2 45.8
RCos 70.4 51.6 69.0 41.9 66.2 63.1 39.5 37.5 29.2 29.0 29.6 16.8 15.4 85.5 69.8 71.8 37.3 67.1 35.8 82.3 66.8 51.5 41.5

Cos 64.0 47.1 79.0 58.7 79.5 77.3 57.0 55.2 46.2 40.8 42.7 38.2 37.3 91.5 89.8 73.4 54.2 66.3 40.4 83.3 80.3 59.5 55.7
MSP 65.2 47.7 73.2 58.1 88.8 88.0 58.0 56.0 51.0 52.5 51.9 41.5 40.2 87.9 74.5 78.2 56.4 75.1 57.6 86.5 76.4 63.5 62.7
MaxL 64.4 46.4 74.0 58.1 86.8 85.4 55.0 52.8 47.2 56.0 55.7 46.8 45.7 92.7 79.1 78.2 61.9 79.5 60.9 86.5 78.8 66.0 65.1
ViM 57.8 36.6 67.2 40.7 80.8 79.3 44.0 42.6 35.8 35.5 35.1 18.8 17.5 81.2 72.3 73.4 47.5 72.3 47.7 81.8 74.0 58.2 51.9
Maha 67.4 49.0 75.2 52.3 85.8 84.1 65.2 64.6 60.8 41.5 42.4 28.5 27.2 86.1 81.3 72.6 50.8 72.7 47.0 82.3 80.3 62.7 58.0
E+R 83.2 75.8 84.5 72.7 84.8 86.1 69.5 68.1 63.5 79.8 80.2 78.2 78.1 95.8 94.0 87.9 81.8 88.8 80.1 92.7 89.9 81.2 82.5

Deit3-B-224 83.8 Ener 75.3 63.4 82.5 74.4 85.8 85.8 63.7 62.5 58.3 74.2 74.5 69.8 69.5 95.2 87.7 91.1 79.7 88.4 78.8 90.6 86.5 81.2 78.8
KL-M 73.1 53.6 72.8 55.2 83.2 81.6 58.2 56.8 51.7 50.5 50.5 38.5 37.1 87.9 77.0 71.8 52.5 75.1 50.3 85.4 76.0 63.2 62.7
KNN 78.5 66.0 89.2 79.1 87.8 86.7 63.2 61.7 57.3 63.2 65.2 74.2 74.2 93.3 94.9 76.6 75.8 73.9 51.7 86.5 86.1 73.8 74.1

RMaha 64.7 45.8 68.0 43.6 85.5 84.1 62.3 61.7 58.3 37.8 38.3 21.8 20.1 84.2 74.5 71.0 44.5 71.5 43.7 81.2 73.6 59.8 54.2
RCos 68.4 49.7 70.0 45.9 74.0 71.2 45.0 43.4 37.2 38.8 39.4 25.0 23.8 83.0 68.9 73.4 47.0 73.1 44.4 81.8 68.3 56.2 49.1

Cos 72.8 53.6 82.2 66.3 84.2 82.8 57.0 55.2 49.7 52.0 53.3 51.0 50.4 92.1 92.3 73.4 64.8 72.3 48.3 83.3 84.6 64.8 62.7
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Table 18. Comparing the cleaned and original datasets in terms of FPR. The best method per model and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-f OpO-c iNat-f iNat-c IN1K-f IN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 70.1 58.8 79.8 69.2 86.0 84.1 61.5 59.8 54.2 59.0 59.8 49.0 48.0 92.1 84.3 79.0 64.8 75.9 58.3 88.5 78.4 64.8 63.7
MaxL 70.9 60.1 80.0 68.6 82.8 81.6 58.0 56.3 50.0 58.5 59.2 47.2 46.0 90.9 85.1 79.0 62.3 75.9 59.6 87.0 80.8 66.2 63.7
ViM 64.7 48.4 74.0 52.9 84.0 81.2 58.2 56.8 49.3 43.0 42.9 26.8 25.6 89.7 84.3 71.8 47.0 71.9 47.7 83.9 79.8 56.5 50.5

Maha 63.7 47.7 75.0 54.7 85.8 83.5 65.2 64.1 57.3 46.8 47.3 29.2 28.2 87.9 85.5 72.6 50.0 71.5 51.0 82.8 82.2 60.0 53.8
E+R 70.6 60.1 82.0 67.4 83.0 82.2 61.5 60.1 53.5 59.0 59.8 49.8 49.1 92.7 87.7 78.2 64.4 76.3 60.9 85.4 82.2 69.2 68.9

XCiT-M-224 82.6 Ener 77.8 70.6 82.2 72.7 85.0 84.5 62.5 61.7 55.9 64.0 64.7 59.0 57.7 92.1 87.7 83.9 69.9 82.3 66.9 87.5 83.7 74.0 71.7
KL-M 72.3 59.5 78.8 70.3 83.8 82.2 61.5 60.1 55.2 60.5 60.6 52.0 51.2 89.1 82.6 77.4 64.0 79.5 56.3 88.0 78.4 64.2 59.0
KNN 65.9 51.0 82.5 65.7 84.2 82.8 55.0 53.6 45.5 50.7 51.6 49.5 48.8 93.3 93.2 74.2 61.0 71.5 48.3 83.3 83.7 63.5 62.7

RMaha 64.4 45.8 72.2 50.6 85.5 83.2 64.2 63.0 55.9 42.2 42.9 25.2 24.0 87.3 81.3 71.0 47.9 71.9 51.0 83.3 79.3 58.0 50.9
RCos 62.5 45.1 76.2 57.0 83.2 81.2 55.0 53.6 45.8 42.8 43.8 32.0 31.1 90.9 86.0 71.0 52.1 71.5 47.7 85.4 78.8 58.2 51.4
Cos 62.0 45.1 77.5 58.1 83.2 81.2 54.2 52.5 44.8 44.5 45.4 33.8 32.9 91.5 87.7 71.8 53.0 71.1 47.7 84.4 81.2 58.8 53.3
MSP 72.8 58.2 74.2 61.6 87.5 87.7 60.2 58.7 53.1 55.5 55.2 49.8 49.1 91.5 79.6 79.0 64.4 75.5 55.6 83.3 76.9 65.2 61.3
MaxL 70.1 56.2 73.5 59.9 86.2 85.8 52.2 50.7 44.4 55.5 55.4 40.0 38.9 88.5 80.9 78.2 61.9 75.9 58.3 83.3 75.5 64.2 60.8
ViM 69.4 49.0 70.2 43.6 84.0 82.5 49.0 47.5 38.2 33.5 32.9 18.8 17.0 87.3 77.9 72.6 47.5 70.3 41.1 82.8 73.1 59.2 51.9
Maha 71.4 52.3 73.2 51.2 88.2 87.1 55.5 53.9 45.5 41.5 41.3 26.0 24.5 87.9 79.6 74.2 53.0 71.5 44.4 83.9 74.0 62.5 56.6
E+R 74.1 58.8 81.8 69.8 85.5 84.8 54.8 53.4 45.5 58.5 58.4 48.8 47.5 91.5 87.7 78.2 68.6 75.5 59.6 86.5 81.7 67.8 67.9

XCiT-M-224-d 84.3 Ener 77.0 63.4 80.8 73.8 86.8 86.1 58.8 57.1 50.7 66.5 66.3 50.0 49.1 90.9 86.4 81.5 68.2 85.5 72.2 88.5 81.7 74.2 70.8
KL-M 75.3 63.4 76.0 60.5 83.0 83.5 56.2 54.4 46.9 56.2 56.0 45.2 44.6 90.3 76.6 75.8 58.9 73.5 49.0 82.8 74.5 63.2 57.5
KNN 73.1 54.9 82.2 65.7 86.0 84.8 47.0 45.0 35.4 41.5 42.4 41.8 40.7 93.9 90.2 79.8 58.5 69.1 40.4 84.4 81.7 62.3 59.9

RMaha 71.6 51.0 69.8 46.5 87.8 86.4 54.8 53.1 45.1 39.2 38.9 22.5 20.9 86.7 72.3 74.2 50.4 71.1 43.0 84.4 71.2 61.0 54.7
RCos 67.2 44.4 73.0 51.2 84.8 84.1 48.0 46.1 36.8 36.5 36.7 25.2 23.8 92.1 80.9 75.8 51.3 69.1 41.1 83.3 75.0 58.2 50.5

Cos 68.6 48.4 75.0 53.5 84.8 83.2 48.0 46.1 36.1 39.0 38.9 28.5 26.9 91.5 82.6 76.6 50.4 67.5 39.7 83.9 76.9 58.8 52.8
MSP 69.4 55.6 66.8 50.6 91.5 91.3 69.5 67.3 61.8 62.7 63.0 39.2 37.9 85.5 74.9 79.8 62.3 78.7 59.6 83.3 72.6 68.2 64.2
MaxL 77.8 66.7 72.2 60.5 94.0 93.9 75.8 75.1 69.8 78.0 78.3 49.8 49.1 84.8 74.0 88.7 74.6 88.8 79.5 87.5 75.5 77.0 73.1
ViM 66.7 44.4 74.2 51.7 84.8 83.8 51.2 49.3 39.9 37.2 37.8 32.8 31.3 87.9 80.0 70.2 48.3 73.5 43.7 85.4 77.4 59.0 52.4
Maha 66.2 43.8 74.8 55.2 87.8 87.1 54.5 52.8 44.1 37.8 39.1 39.5 37.6 87.9 80.4 71.8 50.4 71.5 41.7 84.4 76.0 60.2 55.2
E+R 92.1 88.9 84.2 86.0 95.8 95.5 89.8 89.8 87.8 92.5 92.7 76.8 76.5 87.3 86.0 97.6 89.8 94.4 96.7 89.6 83.2 92.8 92.5

CnvNxt-B 84.4 Ener 94.3 94.8 86.2 90.7 96.2 96.1 93.2 93.6 92.4 95.8 95.9 85.8 85.6 89.1 85.5 98.4 93.6 96.8 98.0 90.6 85.1 96.2 95.8
KL-M 74.3 57.5 79.0 62.8 85.2 85.8 61.3 59.5 52.4 53.5 54.1 48.0 46.0 88.5 82.6 73.4 58.1 71.9 51.0 82.8 79.8 63.7 60.8
KNN 74.8 56.9 82.0 65.1 84.5 83.2 48.8 46.6 36.1 43.8 44.8 46.8 46.2 93.3 88.9 76.6 60.6 71.9 44.4 90.1 83.2 62.3 59.0

RMaha 64.7 42.5 70.8 50.6 87.8 87.1 54.2 52.5 43.8 35.2 36.4 29.8 27.7 84.8 71.5 71.8 47.0 70.3 42.4 83.9 71.2 57.5 52.8
RCos 65.9 41.8 70.0 48.8 84.2 83.2 49.0 46.9 36.5 34.8 35.9 26.5 25.1 89.7 79.1 75.8 44.1 69.9 40.4 84.4 73.1 55.2 49.1

Cos 67.4 43.1 72.8 53.5 85.5 84.8 49.2 47.2 37.2 35.8 36.4 33.0 31.9 89.7 83.4 76.6 44.5 69.9 42.4 85.9 78.8 58.0 53.3
MSP 78.8 65.4 84.2 74.4 97.0 96.8 76.0 74.8 71.9 71.8 72.8 60.8 59.8 89.1 90.6 79.8 73.3 80.7 60.3 87.0 88.9 75.2 73.6
MaxL 75.3 60.1 85.0 74.4 98.0 98.1 72.2 70.8 68.4 71.0 72.3 75.0 75.2 89.7 92.8 82.3 77.5 79.1 64.9 88.0 91.3 77.8 80.2
ViM 69.1 58.2 80.8 66.3 64.8 62.8 6.2 5.6 3.5 44.5 42.4 53.5 53.5 94.5 94.9 87.1 62.7 87.1 57.6 97.4 91.3 75.5 67.5
Maha 80.5 72.5 83.2 70.3 70.8 67.6 17.0 16.1 13.9 62.5 60.3 61.3 60.6 93.9 97.0 96.0 71.6 93.6 79.5 95.8 90.4 82.0 74.1
E+R 56.0 39.2 76.8 61.6 90.8 90.6 51.0 49.3 45.1 53.8 53.3 48.2 48.6 83.6 87.2 83.9 66.1 81.9 70.9 86.5 88.9 73.2 71.7

BiT-s 78.0 Ener 75.6 61.4 85.2 75.6 97.8 97.7 73.0 71.6 68.1 70.2 71.2 79.0 80.2 89.7 92.8 84.7 78.4 79.9 76.2 90.1 94.2 79.5 81.6
KL-M 76.5 62.7 70.0 52.9 87.8 87.7 52.2 50.9 46.2 51.0 51.6 31.5 29.8 80.6 72.3 79.8 58.9 82.3 62.3 83.3 72.1 69.2 60.8
KNN 84.0 74.5 85.2 73.3 65.5 63.1 13.0 13.1 9.4 61.3 59.2 79.2 79.9 94.5 96.2 91.9 75.8 93.6 78.8 97.9 96.2 84.5 77.4

RMaha 80.0 69.3 56.0 34.3 77.8 77.7 24.2 22.5 15.3 42.2 40.8 24.2 22.5 77.0 68.9 83.1 47.9 87.6 67.5 84.9 63.5 70.5 56.1

RCos 90.1 85.6 87.8 83.7 93.5 93.5 66.2 65.1 60.8 75.5 77.2 87.8 88.3 86.7 92.8 87.9 88.6 89.6 76.2 89.1 93.8 85.8 84.0
Cos 68.9 53.6 74.5 57.6 67.2 64.4 11.8 10.5 7.6 45.0 42.1 39.0 38.6 87.3 90.2 87.1 58.5 90.4 57.6 91.1 89.4 68.2 56.1

MSP 66.9 50.3 72.0 52.9 87.5 87.4 54.8 53.4 47.2 53.2 54.3 45.2 44.4 85.5 77.0 77.4 56.4 74.3 53.6 84.9 71.2 59.2 54.2
MaxL 69.1 52.3 73.0 54.1 86.5 87.1 53.8 52.0 45.5 56.2 56.8 45.2 44.4 87.3 77.4 79.8 56.4 75.1 51.0 85.9 73.1 60.5 55.7
ViM 68.1 51.6 74.8 52.9 80.2 79.0 47.8 45.6 37.5 37.8 38.3 33.0 32.4 90.9 90.2 69.4 55.1 71.9 48.3 82.3 85.1 61.8 61.3
Maha 66.9 48.4 68.2 41.9 75.5 73.8 40.2 38.1 29.5 30.8 31.0 18.2 17.0 86.1 79.1 69.4 45.3 69.1 41.1 76.0 74.5 53.2 48.6
E+R 69.9 49.7 78.5 59.3 79.8 79.0 45.5 43.4 35.1 47.8 47.8 43.2 42.8 88.5 88.9 74.2 58.9 70.7 50.3 85.9 82.2 65.8 64.6

EffNetv2-M 85.1 Ener 76.8 64.7 80.8 69.8 86.5 87.7 61.5 60.3 54.9 66.0 66.8 63.5 63.4 87.9 83.0 82.3 72.5 78.7 62.3 89.1 78.4 71.2 72.6
KL-M 71.1 56.9 70.8 50.6 81.5 81.6 54.5 53.6 46.9 49.8 49.5 41.0 40.2 84.8 71.5 73.4 51.7 71.1 51.0 82.8 71.2 61.8 53.8
KNN 69.9 51.6 74.8 51.7 80.5 79.3 43.5 41.0 32.6 38.5 39.9 35.5 34.5 89.7 84.7 75.8 51.3 69.1 44.4 83.3 79.3 55.8 52.4

RMaha 64.4 43.8 62.7 34.9 75.5 74.1 38.8 36.5 27.8 27.8 28.3 15.0 13.6 81.2 65.5 67.7 36.9 67.5 39.1 76.6 65.4 50.5 42.9

RCos 59.3 35.9 65.8 39.5 74.8 72.8 34.5 32.2 22.9 29.5 29.6 18.2 16.7 86.7 72.3 70.2 39.4 67.9 38.4 80.2 67.3 50.2 43.4
Cos 65.9 43.8 71.2 47.7 80.2 79.3 43.0 40.8 31.6 33.8 34.8 27.0 25.8 87.9 77.4 73.4 44.9 68.7 44.4 81.8 72.6 54.5 49.5
MSP 66.7 59.5 68.5 50.6 86.5 86.4 55.5 53.6 46.5 52.2 52.7 44.2 43.1 84.2 77.9 77.4 57.6 73.9 57.6 83.9 73.1 60.8 56.6
MaxL 69.4 60.8 76.8 60.5 85.8 85.8 57.5 55.5 47.6 57.0 57.6 50.5 49.6 84.8 79.1 82.3 63.1 78.3 60.3 85.4 73.6 62.3 59.0
ViM 74.6 63.4 79.8 64.5 73.5 72.5 61.5 60.6 55.6 49.8 50.3 41.2 40.7 89.1 91.5 67.7 61.0 77.5 49.7 84.4 84.6 66.5 63.7
Maha 73.3 59.5 73.5 52.3 73.5 73.5 59.8 58.7 53.1 41.8 42.7 29.2 28.2 87.9 87.7 71.0 54.2 77.5 45.0 86.5 83.2 63.2 57.1
E+R 76.5 65.4 82.0 65.7 80.2 80.6 54.2 52.3 42.4 58.0 59.2 56.8 56.1 91.5 88.9 76.6 69.1 79.1 58.3 85.4 78.8 70.2 68.4

EffNetb7 84.9 Ener 83.5 77.1 87.0 76.2 87.2 88.0 65.8 64.1 56.6 73.8 74.2 72.2 71.8 89.1 85.5 87.1 77.5 87.1 72.2 89.6 77.4 76.8 76.4
KL-M 69.4 57.5 70.2 48.8 79.0 78.3 50.2 48.3 42.4 44.0 45.1 38.0 36.3 86.1 75.7 69.4 50.8 73.5 54.3 82.8 73.6 61.0 53.3
KNN 75.1 59.5 77.8 58.1 77.0 76.7 47.5 45.0 35.4 42.2 44.3 44.2 43.1 87.9 86.0 71.8 58.1 69.5 43.0 84.9 81.2 59.8 56.6

RMaha 71.4 56.9 63.2 37.2 74.8 73.5 51.0 49.3 42.4 31.0 32.1 20.8 19.6 82.4 64.3 71.0 42.4 75.5 43.7 82.8 66.3 56.2 45.3

RCos 63.0 39.9 65.5 39.5 72.0 70.2 39.0 37.0 27.8 29.5 30.7 18.2 17.0 83.0 74.0 73.4 39.8 69.9 35.1 84.4 68.8 53.2 45.3

Cos 70.4 51.6 71.8 50.0 76.5 74.4 51.0 48.8 39.2 34.5 36.1 30.8 29.5 84.8 78.7 72.6 47.0 69.5 48.3 84.4 73.1 56.5 51.9
MSP 77.0 67.3 80.2 69.8 95.2 94.5 66.8 65.4 62.5 65.0 64.9 54.0 53.3 92.1 79.6 79.8 67.8 79.1 64.2 89.1 75.5 68.0 63.2
MaxL 80.7 70.6 83.5 73.8 93.8 93.2 66.5 65.1 60.1 67.0 66.8 61.5 60.8 88.5 73.2 83.9 69.9 80.7 66.9 85.9 71.2 69.2 62.7
ViM 84.2 75.2 79.5 65.7 74.5 71.5 24.8 23.6 17.0 56.8 55.2 54.8 53.8 90.3 93.2 81.5 74.6 83.5 53.0 91.1 90.9 77.2 73.1
Maha 90.1 85.0 83.0 72.7 77.8 76.1 44.2 44.2 37.8 70.5 70.9 65.2 64.0 92.7 95.3 89.5 87.3 90.0 69.5 94.8 92.8 84.5 83.5
E+R 82.5 72.5 83.5 71.5 84.0 82.5 50.0 49.6 44.1 64.8 64.1 63.5 62.9 90.9 74.5 86.3 68.6 85.9 71.5 85.9 72.1 72.0 61.8

EffNet-B0 77.7 Ener 86.9 77.8 86.2 79.1 91.5 91.9 72.8 72.4 69.4 77.2 76.9 75.8 75.7 87.9 74.9 89.5 78.0 85.9 85.4 87.0 70.7 76.8 70.3
KL-M 80.7 68.0 77.0 64.5 90.8 90.9 61.8 61.1 58.0 59.8 59.5 45.2 44.1 86.7 83.0 81.5 66.1 82.7 70.9 88.0 82.2 70.5 63.2
KNN 94.1 90.8 87.8 83.1 70.2 67.0 30.2 29.0 22.2 74.0 72.8 75.5 75.2 98.2 96.6 96.8 82.6 96.0 84.1 97.9 92.8 86.8 79.7

RMaha 83.2 69.3 71.8 57.6 89.0 88.0 55.0 54.2 50.3 61.8 61.7 46.5 45.2 87.9 83.0 86.3 71.2 83.1 69.5 90.1 88.9 77.0 70.3
RCos 77.5 62.1 64.8 48.8 89.5 89.3 53.0 51.7 45.5 56.2 56.0 38.2 37.1 86.7 80.0 83.1 66.9 82.7 67.5 88.0 84.1 71.8 64.2
Cos 71.6 54.2 59.0 41.9 73.2 72.2 23.0 21.7 14.2 41.5 38.6 24.2 22.5 88.5 79.1 80.6 49.2 83.5 61.6 85.9 80.8 65.0 54.7

MSP 73.1 58.2 79.5 69.2 96.0 95.5 63.7 62.5 58.3 62.3 62.5 51.0 49.9 92.7 83.0 83.1 67.4 83.1 60.9 90.1 81.2 66.5 65.1
MaxL 75.8 64.1 79.2 67.4 96.5 96.1 67.5 66.0 62.2 65.2 64.9 54.0 53.0 92.1 83.4 83.1 67.4 83.5 62.3 90.1 80.3 68.8 68.9
ViM 86.9 79.7 84.8 75.6 89.0 88.3 40.8 39.9 33.7 64.8 66.6 74.0 73.6 88.5 87.7 81.5 77.1 83.9 55.6 88.0 89.9 75.2 75.0
Maha 94.1 90.2 89.8 84.3 79.8 78.3 53.2 53.1 49.7 77.5 78.5 85.8 85.4 92.7 89.8 87.1 83.5 89.2 73.5 90.1 92.3 86.2 85.8
E+R 99.8 100.0 99.2 99.4 92.0 92.2 98.2 98.1 98.3 96.5 97.0 99.8 99.7 98.2 99.1 92.7 97.9 91.6 92.7 96.9 98.6 95.8 98.1

ResNet50 80.4 Ener 83.7 78.4 81.5 72.1 96.0 95.5 76.0 75.3 74.0 72.0 72.6 68.5 67.6 90.9 84.3 88.7 74.6 85.5 68.2 88.0 81.7 74.5 74.1
KL-M 75.3 62.1 75.0 62.8 93.2 92.2 58.8 57.1 51.7 57.2 57.1 44.5 43.6 91.5 77.4 82.3 62.3 83.1 60.3 84.9 77.4 66.5 62.3
KNN 84.2 73.9 82.2 69.2 68.5 65.0 24.0 23.1 16.0 58.2 57.3 58.8 58.7 89.1 88.9 84.7 70.3 89.2 67.5 89.6 87.5 78.8 70.8

RMaha 93.1 89.5 70.8 62.2 79.5 79.3 75.5 75.6 73.6 75.0 76.4 83.2 82.8 86.1 66.4 85.5 76.7 88.4 79.5 79.7 73.1 81.8 75.5
RCos 79.8 64.7 65.2 47.1 82.5 79.9 39.0 36.7 27.8 47.5 48.6 30.8 29.2 80.0 70.6 82.3 49.2 84.3 60.9 80.2 73.1 65.8 53.3
Cos 76.3 60.8 67.2 47.1 78.0 75.7 32.2 30.0 21.2 43.0 42.9 25.2 23.8 80.0 74.0 83.1 44.9 83.1 52.3 81.2 73.6 63.0 52.8
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K. Results on NINCO classes with and without overlap with IN-21K

Since the classes of NINCO can be distinguished by whether they belong to an IN-21k class or not, we present results

on both of these groups here. We note that they should be taken with care, since the groups differ both in size (9 vs. 55

classes) and difficulty of the individual classes. Most models and methods perform better on the classes with IN-21k overlap,

and ViT+Maha is the best OOD-detector in both cases. While RMaha and (Relative) Cosine yield the most consistent

improvements over MSP in both cases, ViM performs comparably better on the classes without overlap. Pretraining only on

IN-21k yields the best OOD-detectors in both cases.

Table 19. Mean FPR for classes without 21k overlap.
pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 56.5 41.8 −15 39.6 −17 51.7 −5 31.7 −25 36.9 −20 32.2 −24 40.9 −16 67.3 +11 46.7 −10 42.2 −14

84.5 ViT-B-224 64.8 50.6 −14 48.3 −17 60.2 −5 34.1 −31 43.7 −21 34.8 −30 50.2 −15 68.5 +4 54.8 −10 53.5 −11

86.3 Swinv2-B-256 66.3 58.7 −8 59.1 −7 62.0 −4 40.1 −26 42.7 −24 34.3 −32 50.3 −16 54.8 −11 47.5 −19 47.3 −19

86.7 Deit3-B-384 72.9 71.1 −2 73.3 +0 68.6 −4 43.0 −30 43.6 −29 44.1 −29 64.4 −9 49.3 −24 47.2 −26 46.8 −26

85.7 Deit3-B-224 75.1 72.8 −2 72.6 −3 69.5 −6 47.7 −27 48.7 −26 47.1 −28 67.5 −8 56.3 −19 52.9 −22 53.5 −22

86.3 CnvNxt-B 61.4 60.0 −1 67.0 +6 57.6 −4 31.0 −30 37.4 −24 27.5 −34 61.6 +0 47.0 −14 40.6 −21 39.7 −22

84.1 CnvNxt-T 62.9 57.2 −6 54.4 −9 61.6 −1 34.7 −28 42.2 −21 30.6 −32 52.9 −10 53.3 −10 49.1 −14 46.2 −17

82.3 BiT-m 69.7 62.2 −7 63.9 −6 62.6 −7 40.9 −29 42.1 −28 31.5 −38 60.2 −10 39.1 −31 36.0 −34 42.1 −28

85.6 EffNetv2-M 55.9 51.8 −4 56.3 +0 55.7 −0 48.6 −7 46.9 −9 40.9 −15 96.5 +41 55.3 −1 33.8 −22 42.4 −14

none

81.1 ViT-B-384 70.0 64.5 −5 61.1 −9 65.0 −5 56.6 −13 56.2 −14 62.8 −7 59.7 −10 66.3 −4 63.0 −7 63.5 −6

84.6 Swinv2-B-256 72.4 67.7 −5 68.2 −4 68.2 −4 58.9 −13 56.9 −15 57.6 −15 65.8 −7 67.8 −5 62.2 −10 60.5 −12

85.1 Deit3-B-384 70.4 75.1 +5 85.4 +15 64.4 −6 59.3 −11 57.4 −13 51.5 −19 91.2 +21 70.7 +0 65.1 −5 49.2 −21

83.8 Deit3-B-224 76.4 77.1 +1 83.3 +7 69.5 −7 62.3 −14 60.0 −16 57.9 −18 83.9 +8 75.7 −1 69.4 −7 55.8 −21

82.6 XCiT-M-224 79.5 79.1 −0 82.4 +3 76.1 −3 71.6 −8 69.7 −10 69.2 −10 78.5 −1 76.6 −3 73.3 −6 73.0 −7

84.3 XCiT-M-224-d 72.6 71.7 −1 78.8 +6 66.6 −6 63.4 −9 60.8 −12 60.0 −13 75.3 +3 69.6 −3 62.7 −10 60.9 −12

84.4 CnvNxt-B 74.1 82.3 +8 94.5 +20 63.9 −10 59.3 −15 56.8 −17 56.2 −18 90.8 +17 65.7 −8 59.2 −15 58.0 −16

78.0 BiT-s 74.2 74.5 +0 76.5 +2 58.2 −16 83.2 +9 56.8 −17 64.4 −10 71.3 −3 81.3 +7 66.8 −7 77.2 +3

85.1 EffNetv2-M 70.0 69.5 −1 74.4 +4 65.3 −5 52.1 −18 51.4 −19 59.6 −10 61.7 −8 60.3 −10 56.6 −13 53.0 −17

84.9 EffNetb7 69.0 70.5 +2 81.3 +12 62.5 −7 55.5 −14 50.4 −19 59.2 −10 71.0 +2 61.7 −7 58.0 −11 50.4 −19

77.7 EffNet-B0 75.0 75.9 +1 84.0 +9 68.7 −6 71.0 −4 66.8 −8 62.2 −13 75.0 +0 85.8 +11 58.7 −16 62.8 −12

80.4 ResNet50 76.0 76.6 +1 77.5 +1 69.0 −7 77.0 +1 66.4 −10 75.1 −1 94.8 +19 64.0 −12 57.6 −18 56.6 −19

JFT 86.8 EffNetb7-ns 71.3 64.8 −7 67.5 −4 66.5 −5 83.7 +12 72.0 +1 85.2 +14 65.8 −6 70.3 −1 64.2 −7 63.8 −7

clip

+12k

87.2 ViT-B-384-l2b 53.7 51.1 −3 55.9 +2 52.7 −1 37.8 −16 40.2 −14 31.7 −22 47.3 −6 41.1 −13 37.3 −16 37.0 −17

87.0 ViT-B-384-oai 56.0 51.8 −4 54.6 −1 53.6 −2 40.9 −15 39.8 −16 36.9 −19 50.4 −6 36.6 −19 33.8 −22 34.1 −22

clip
86.6 ViT-B-384-l2b 65.8 63.5 −2 62.5 −3 59.0 −7 49.6 −16 50.4 −15 46.1 −20 61.0 −5 53.8 −12 49.5 −16 48.3 −18

86.2 ViT-B-384-oai 65.8 64.1 −2 67.7 +2 62.4 −3 52.4 −13 54.7 −11 48.1 −18 65.4 −0 57.1 −9 53.9 −12 53.4 −12

clip

z. shot

74.3 clip-ViT-L-336 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 55.7 55.8

66.6 clip-ViT-B-224 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 56.9 62.8
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Table 20. Mean FPR for classes with 21k overlap.
pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 51.1 37.2 −14 36.5 −15 50.1 −1 26.8 −24 30.2 −21 32.7 −18 38.1 −13 61.9 +11 45.9 −5 45.5 −6

84.5 ViT-B-224 56.8 45.8 −11 45.7 −11 56.7 −0 31.6 −25 35.7 −21 39.0 −18 49.3 −8 68.9 +12 54.6 −2 54.4 −2

86.3 Swinv2-B-256 48.6 38.2 −10 36.9 −12 55.0 +6 66.5 +18 55.7 +7 58.2 +10 35.3 −13 63.1 +15 52.0 +3 48.3 −0

86.7 Deit3-B-384 60.0 53.5 −6 53.6 −6 59.0 −1 55.7 −4 49.6 −10 59.0 −1 49.5 −10 54.1 −6 48.6 −11 47.8 −12

85.7 Deit3-B-224 63.1 57.0 −6 55.8 −7 64.5 +1 62.0 −1 54.7 −8 65.0 +2 53.1 −10 59.1 −4 54.4 −9 53.1 −10

86.3 CnvNxt-B 44.9 38.0 −7 39.4 −5 54.4 +10 52.6 +8 43.2 −2 43.8 −1 37.0 −8 52.6 +8 44.8 −0 43.0 −2

84.1 CnvNxt-T 53.3 46.4 −7 44.0 −9 60.6 +7 48.9 −4 46.4 −7 38.5 −15 42.7 −11 57.1 +4 51.5 −2 49.7 −4

82.3 BiT-m 67.5 62.0 −6 63.0 −4 65.3 −2 51.5 −16 45.6 −22 42.2 −25 56.6 −11 61.1 −6 54.2 −13 56.5 −11

85.6 EffNetv2-M 49.9 47.8 −2 53.8 +4 54.4 +4 65.3 +15 52.4 +2 55.6 +6 88.7 +39 69.5 +20 47.3 −3 51.9 +2

none

81.1 ViT-B-384 69.4 68.2 −1 69.3 −0 67.0 −2 60.6 −9 57.2 −12 70.4 +1 66.8 −3 74.8 +5 69.6 +0 70.8 +1

84.6 Swinv2-B-256 69.5 67.6 −2 72.9 +3 67.4 −2 64.7 −5 60.6 −9 67.9 −2 69.3 −0 69.5 −0 63.7 −6 62.3 −7

85.1 Deit3-B-384 66.8 72.4 +6 87.9 +21 64.6 −2 64.8 −2 59.7 −7 61.3 −5 90.0 +23 75.0 +8 67.5 +1 58.1 −9

83.8 Deit3-B-224 69.3 71.1 +2 82.1 +13 68.2 −1 70.1 +1 64.9 −4 64.4 −5 83.0 +14 81.2 +12 73.6 +4 62.9 −6

82.6 XCiT-M-224 71.5 72.3 +1 78.6 +7 71.1 −0 65.4 −6 62.5 −9 64.2 −7 76.0 +4 71.1 −0 66.1 −5 64.9 −7

84.3 XCiT-M-224-d 67.6 65.2 −2 72.2 +5 66.9 −1 66.9 −1 62.1 −6 62.7 −5 72.0 +4 70.6 +3 64.9 −3 62.9 −5

84.4 CnvNxt-B 63.2 69.7 +7 88.2 +25 68.7 +6 66.8 +4 61.2 −2 67.0 +4 85.1 +22 71.2 +8 61.7 −2 58.7 −5

78.0 BiT-s 79.6 82.3 +3 83.9 +4 70.0 −10 83.6 +4 65.3 −14 75.0 −5 78.9 −1 83.5 +4 73.0 −7 85.3 +6

85.1 EffNetv2-M 64.5 64.6 +0 74.6 +10 62.4 −2 64.2 −0 55.5 −9 74.7 +10 70.9 +6 65.1 +1 60.0 −4 54.6 −10

84.9 EffNetb7 66.4 68.7 +2 81.6 +15 62.7 −4 70.2 +4 55.3 −11 74.9 +8 77.2 +11 67.7 +1 61.0 −5 54.3 −12

77.7 EffNet-B0 71.6 71.9 +0 78.9 +7 72.8 +1 85.3 +14 75.2 +4 77.3 +6 75.1 +4 87.1 +16 61.8 −10 70.9 −1

80.4 ResNet50 71.8 73.9 +2 78.0 +6 69.0 −3 87.3 +16 70.0 −2 79.2 +7 97.9 +26 80.2 +8 63.8 −8 63.0 −9

JFT 86.8 EffNetb7-ns 61.8 54.2 −8 60.5 −1 64.1 +2 88.0 +26 68.2 +6 89.8 +28 61.1 −1 74.3 +13 65.4 +4 63.7 +2

clip

+12k

87.2 ViT-B-384-l2b 49.6 46.8 −3 49.4 −0 52.1 +3 55.0 +5 48.5 −1 48.1 −2 44.5 −5 46.2 −3 40.6 −9 40.7 −9

87.0 ViT-B-384-oai 47.7 42.3 −5 42.3 −5 48.9 +1 60.4 +13 49.8 +2 55.1 +7 40.9 −7 46.3 −1 40.2 −7 39.9 −8

clip
86.6 ViT-B-384-l2b 61.2 61.3 +0 66.4 +5 57.3 −4 53.2 −8 50.5 −11 52.6 −9 63.6 +2 57.5 −4 51.0 −10 49.2 −12

86.2 ViT-B-384-oai 64.7 65.1 +0 70.1 +5 61.7 −3 56.3 −8 53.6 −11 58.3 −6 67.7 +3 62.0 −3 57.0 −8 54.4 −10

clip

z. shot

74.3 clip-ViT-L-336 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 75.2 68.9

66.6 clip-ViT-B-224 Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- Ð- 82.8 82.6
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