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Abstract

By filling in missing values in datasets, imputation
allows these datasets to be used with algorithms
that cannot handle missing values by themselves.
However, missing values may in principle con-
tribute useful information that is lost through im-
putation. The missing-indicator approach can be
used in combination with imputation to instead
represent this information as a part of the dataset.
There are several theoretical considerations why
missing-indicators may or may not be beneficial,
but there has not been any large-scale practical ex-
periment on real-life datasets to test this question
for machine learning predictions. We perform this
experiment for three imputation strategies and a
range of different classification algorithms, on
the basis of twenty real-life datasets. In a follow-
up experiment, we determine attribute-specific
missingness thresholds for each classifier above
which missing-indicators are more likely than not
to increase classification performance. And in a
second follow-up experiment, we evaluate numer-
ical imputation of one-hot encoded categorical
attributes. We reach the following conclusions.
Firstly, missing-indicators generally increase clas-
sification performance. Secondly, with missing-
indicators, nearest neighbour and iterative impu-
tation do not lead to better performance than sim-
ple mean/mode imputation. Thirdly, for decision
trees, pruning is necessary to prevent overfitting.
Fourthly, the thresholds above which missing-
indicators are more likely than not to improve
performance are lower for categorical attributes
than for numerical attributes. Lastly, mean im-
putation of numerical attributes preserves some
of the information from missing values. Conse-
quently, when not using missing-indicators it can
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be advantageous to apply mean imputation to one-
hot encoded categorical attributes instead of mode
imputation.

1. Introduction
Missing values are a frequent issue in real-life datasets, and
the subject of a large body of ongoing research. Some
implementations of machine learning algorithms can han-
dle missing values natively, requiring no further action by
practitioners. But whenever this is not the case, a common
general strategy is to replace the missing value with an es-
timated value: imputation. An advantage of imputation is
that we obtain a complete dataset, to which we can apply
any and all algorithms that make no special provision for
missing values. However, missing values may be informa-
tive, and a disadvantage of imputation is that it removes this
information.

The missing-indicator approach (Cohen, 1968) is an old
proposal to represent and thereby preserve the information
encoded by missing values. For every original attribute,
it adds a new binary ‘indicator’ or ‘dummy’ attribute that
takes a value of 1 if the value for the original attribute is
missing, and 0 if not.1 The missing-indicator approach is
often presented as an alternative to imputation, but since it
does not resolve the missing values in the original attributes,
it can only be used in addition to, not instead of imputation.

It is an open question whether missing-indicators should
be used for predictive tasks in machine learning (Sperrin
et al., 2020). Both imputation and the missing-indicator
approach originate in the statistical literature. While im-
putation strategies have been the subject of a rich body of
research, the missing-indicator approach has not received a
large amount of attention, and is often dismissed or disre-
garded in overviews of approaches towards missing values.

In the context of machine learning, the effect of missing-
indicators can be framed as follows. On the one hand, the
addition of missing-indicators results in a more complete,
higher-dimensional representation of the data. On the other
hand, their omission corresponds to a form of dimensionality
reduction, which may increase the efficiency and effective-

1Some authors use the opposite convention, letting the indicator
express non-missingness.
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ness of a dataset by eliminating redundancy.

To determine whether this trade-off is useful, a key question
is to which extent missing values in a given dataset are in-
formative. If they are not, the phrase “missing at random”
(MAR) (Rubin, 1976) is used to indicate that the distribu-
tion of missing values is dependent on the known values,
while the stricter phrase “missing completely at random”
(MCAR) denotes values that are distributed truly randomly.
In contrast, informative missing values are often denoted as
“missing not at random” (MNAR).

For real-life datasets, unless we have specific knowledge
about the process responsible for the missing values, we
have to assume some degree of informativeness in prin-
ciple.2 However, it has been argued that in practice, the
attributes of a dataset can be sufficiently redundant that one
can get away with assuming its missing values are MAR
(Schafer, 1997). But even if this is so, imputation may not
always perform optimally, in which case missing-indicators
may still prove useful.

A more subtle point is that even when missing values are
informative, the information they encode need not be lost
completely through imputation. This is particularly evident
in the case of numerically encoded binary attributes, where
imputation can represent missing values as a third, inter-
mediary value. More generally, Le Morvan et al. (2021)
have recently observed that almost all deterministic imputa-
tion functions map records with missing values to distinct
manifolds in the attribute space that can in principle be
identified by sufficiently powerful algorithms. Nevertheless,
missing-indicators can potentially make this learning task
easier.

In light of these conflicting theoretical arguments, the use-
fulness of missing-indicators for real-life machine learning
problems is an interesting empirical question. However,
previous experiments in this direction have been limited
in scope and number. These limitations include the use
of only one or a handful of datasets, the use of datasets
from which values have been removed artificially, and not
comparing the same imputation strategies with and without
missing-indicators.

The purpose of the present paper is straightforward. On
the basis of twenty real-life classification problems with
naturally occurring missing values, we measure the per-
formance of a range of popular classification algorithms,
using three common types of imputation, with and without
missing-indicators. This allows us to evaluate the effect of

2This is acknowledged by authors working under the assump-
tion of MAR, e.g. “When data are missing for reasons beyond
the investigator’s control, one can never be certain whether MAR
holds. The MAR hypothesis in such datasets cannot be formally
tested unless the missing values, or at least a sample of them, are
available from an external source.” (Schafer, 1997)

using missing-indicators, as well as the choice of imputation
strategy.

Moreover, we conduct two follow-up experiments to gain a
better understanding of when and why missing-indicators
can be useful. In the first, we determine whether this is
influenced by the type (categorical or numerical) and the
amount of missing values of a given attribute. In the second
follow-up experiment, we test the hypothesis that numerical
imputation partially preserves the information from missing
values.

In Section 2, we provide a brief overview of the existing liter-
ature on missing-indicators, including previous experimen-
tal evaluations. In Section 3, we describe our experimental
setup. We report our results in Section 4 and conclude in
Section 5.

2. Background
We start with a brief discussion of the origins and reception
of the missing-indicator approach, as well as previous ex-
perimental evaluations of the use of missing-indicators in
prediction tasks.

2.1. Origins and Reception

The missing-indicator approach originates in the literature
on linear regression. It dates back to at least Cohen (1968),
who pointed out that values in real-life datasets are typi-
cally not missing completely at random, and that the distri-
bution of missing values may in particular depend on the
values of the attribute that is to be predicted. He proposed
that each attribute could be said to have two ‘aspects’, its
value, and whether that value is present to begin with, which
should be encoded with a pair of variables. For missing
attribute values, the first of these variables was to be filled in
with the mean of the known values, although other applica-
tions might call for different values. Cohen’s proposal was
subsequently expanded by Cohen & Cohen (1975), but re-
ceived only limited recognition in the following years (Kim
& Curry, 1977; Stumpf, 1978; Chow, 1979; Hutcheson &
Prather, 1981; Anderson et al., 1983; Orme & Reis, 1991).

Cohen’s proposal was subjected to a formal analysis by
Jones (1996), who showed that, if one assumes that missing
values are MAR, and the true linear regression model does
not contain any terms related to missingness, it produces
biased estimates of the regression coefficients (unless the
sample covariance between independent variables is zero).
However, these assumptions run directly counter to the po-
sition set out by Cohen & Cohen (1975) that a priori, the
missingness of each attribute is a possible explanatory fac-
tor, that it is safer not to assume that missing values are
distributed randomly, and that the usefulness of missing-
indicators is ultimately an empirical question.
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Allison (2001), motivated by Jones (1996) and working
under the general assumption of MAR, dismissed missing-
indicators as “clearly unacceptable”, before conceding that
they in fact produce optimal estimates when the missing
value is not just missing, but cannot exist, such as the mari-
tal quality of an unmarried couple. However, this semantic
distinction may not always be clear-cut in practice, and the
more pertinent question may be whether missing values
are informative. Allison (2010) later acknowledged that
missing-indicators may lead to better predictions and their
use for that purpose was acceptable. Missing-indicators
have also been dismissed by Pigott (2001); Schafer & Gra-
ham (2002); Graham (2009); Aste et al. (2015), and are
frequently omitted in overviews of missing data strategies
(Schafer, 1997; Enders, 2010; Eirola, 2014; Garcı́a et al.,
2015; Das et al., 2018).

2.2. Previous Experiments

Only a handful of experimental comparisons of missing
data approaches have included the missing-indicator ap-
proach, and these have been limited in scope. Vamplew &
Adams (1992) and Ng & Yusoff (2011) only use a single
dataset with randomly removed values, and base their evalu-
ation on the performance of a single algorithm (respectively
a neural network and linear regression). Pereira Barata
et al. (2019) use three classification algorithms and 22 data-
sets, but again with randomly removed values, explicitly
assuming an MCAR context. They conclude that imputation
outperforms missing-indicators, but the comparison is not
like-for-like, since it involves several forms of imputation
but only combines indicator attributes with zero imputation.
Van der Heijden et al. (2006) compare missing-indicators
with zero imputation against several other forms of impu-
tation without missing-indicators on one real dataset, for
logistic regression. However, they do not evaluate predictive
performance.

Ding & Simonoff (2010) conduct a more extensive investiga-
tion, using insights from a series of Monte Carlo simulations
to systematically remove values from 36 datasets to simulate
different forms of missingness. They use these datasets to
compare zero imputation3 with indicator attributes against
mean/mode imputation without, as well as a number of other
missing data approaches, for logistic regression. In addi-
tion, the authors evaluate a related representation of missing
values4 on the same set of 36 datasets, and on one real-life
dataset with missing values, for decision trees. They find

3Presumably, Ding & Simonoff (2010) use one-hot encoding
for categorical attributes, in which case zero imputation is equiva-
lent to treating missing values as a separate category, but they do
not state this explicitly.

4For categorical values, encoding missing values as a separate
category, for numerical values, encoding missing values as an
extremely large value that can always be split from the other values.

that there is strong evidence that representing missing values
is the best approach when they are informative; when this is
not the case their results show no strong difference.

The comparison by Grzymala-Busse & Hu (2000) is based
on 10 datasets with naturally occurring missing values. How-
ever, the setting is purely categorical — all attributes are
transformed into categorical attributes — the only form of
imputation is mode imputation, and the missing value ap-
proaches are evaluated on the basis of the LERS classifier
(Learning from Examples based on Rough Sets (Grzymala-
Busse, 1988)).

Marlin (2008) compares zero imputation with missing-
indicators (augmentation with response indicators) against
several forms of imputation without, for logistic regression
and neural networks, on the basis of an extensive series
of simulations, one dataset with artificially removed val-
ues, and three real datasets. For the real datasets, there is
no strong difference in performance between the different
approaches.

Most recently, building on earlier experiments with sim-
ulated regression datasets (Josse et al., 2020; Le Morvan
et al., 2021), Perez-Lebel et al. (2022) compare four dif-
ferent imputation techniques with and without missing-
indicators (missingness mask) on seven prediction tasks
derived from four real medical datasets, and conclude that
missing-indicators consistently improve performance for
gradient boosted trees, ridge regression and logistic regres-
sion.

We point out that the Missingness in Attribute (MIA) pro-
posal (Twala et al., 2008) for decision trees and decision tree
ensembles can be understood as an implicit combination
of missing-indicators with automatic imputation, and has
also been shown to outperform imputation without missing-
indicators in small-scale experimental studies (Josse et al.,
2020; Perez-Lebel et al., 2022).

Finally, even experimental comparisons of missing data that
do not feature the missing-indicator approach generally do
not involve more than a handful of real-life datasets with
naturally occurring missing values. We have only found
Luengo et al. (2012a;b), who use 21 datasets from the UCI
repository, but 12 of these are problematic.5

5The target column of the echocardiogram dataset (‘alive-at-1’)
is supposed to denote whether a patient survived for at least one
year, but it doesn’t appear to agree with the columns from which
it is derived, that denote how long a patient (has) survived and
whether they were alive at the end of that period. The audiology
dataset has a large number of small classes with complex labels
and should perhaps be analysed with multi-label classification. In
addition, it has ordinal attributes where the order of the values
is not entirely clear, and three different values that potentially
denote missingness (‘?’, ‘unmeasured’ and ‘absent’), and it is not
completely clear how they relate to each other. The house-votes-
84 dataset contains ‘?’ values, but its documentation explicitly
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Table 1: Classification Algorithms.

Name Description

NN-1 Nearest neighbours (Fix & Hodges, 1951) with (Boscovich) 1-distance
NN-2 Nearest neighbours with (Euclidean) 2-distance
NN-1-D Nearest neighbours with 1-distance, distance-weighted (Dudani, 1976)
NN-2-D Nearest neighbours with 2-distance, distance-weighted
SVM-L Soft-margin Support Vector Machine (Cortes & Vapnik, 1995) with linear kernel
SVM-G Soft-margin Support Vector Machine with Gaussian kernel
LR Multinomial logistic regression (Cox, 1966)
MLP Multilayer perceptron (Rosenblatt, 1961) with ReLu activation (Fukushima, 1969), Glorot

initialisation (Glorot & Bengio, 2010) and Adam optimisation (Kingma & Ba, 2015)
CART Classification and Regression Tree (Breiman et al., 1984)
RF Random Forest (Breiman, 2001)
ERT Extremely Randomised Trees (Geurts et al., 2006)
ABT Ada-boosted trees (Freund & Schapire, 1995) with SAMME (stagewise additive modeling

using a multi-class exponential loss function) (Zhu et al., 2009)
GBM Gradient Boosting Machine (Friedman, 2001)

3. Experimental Setup
To evaluate the effect of the missing-indicator approach on
classification performance, we conduct a series of exper-
iments, using the Python machine learning library scikit-
learn (Pedregosa et al., 2011).

3.1. Questions

The aim of our experiments is to answer the following ques-
tions:

• Do missing-indicators increase performance, and does
it matter which imputation strategy they are paired
with?

• When do missing-indicators start to become useful in
terms of missingness?

• Does using mean imputation instead of mode impu-
tation allow for more information to be learned from
missing categorical values?

3.2. Evaluation

We preprocess datasets by standardising numerical attributes
and one-hot encoding categorical attributes (as required by
the implementations in scikit-learn).

states that these values are not unknown, but indicate different
forms of abstention. The ozone dataset is a time-series problem,
while the task associated with the sponge and water-treatment
datasets is clustering, with no obvious target for classification
among their respective attributes. Finally, the breast-cancer (9),
cleveland (7), dermatology (8), lung-cancer (5), post-operative (3)
and wisconsin (16) datasets contain only very few missing values,
and any performance difference between missing value approaches
on these datasets may to a large extent be coincidental.

We measure classification performance by performing strat-
ified five-fold cross-validation, repeating this for five differ-
ent random states (which determine both the dataset splits
and the initialisation of algorithms with a random com-
ponent), and calculating the mean area under the receiver
operator curve (AUROC). For multi-class datasets, we use
the extension of AUROC defined by Hand & Till (2001).

To compare two alternatives A and B, we consider the p-
value of a one-sided Wilcoxon signed-rank test (Wilcoxon,
1945) on the mean AUROC scores for our selection of
datasets. When we compare A vs B, a score below 0.5
means that A increased performance on our selection of
datasets; the lower the scores, the more confident we can be
that this generalises to other similar datasets. Conversely, a
score higher than 0.5 means that A decreased performance
on our selection of datasets.

3.3. Imputation Strategies

We consider the following three imputation strategies:

• Mean/mode imputation replaces missing values of nu-
merical and categorical attributes by, respectively, the
mean and the mode of the non-missing values.

• Nearest neighbour imputation (Troyanskaya et al.,
2001) replaces missing values of numerical and cat-
egorical attributes by, respectively, the mean and the
mode of the 5 nearest non-missing values, with dis-
tance determined by the corresponding non-missing
values for the other attributes.

• Iterative imputation, as implemented in scikit-learn,
based on Van Buuren & Groothuis-Oudshoorn (2011),
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Table 2: Real-life Classification Datasets with Missing Values from the UCI Repository for Machine Learning.

Dataset Records Classes Attributes Missing value rate
Num Cat Total Num Cat Total

adult 48842 2 5 8 13 0.0 0.017 0.010
agaricus-lepiota 8124 2 1 21 22 0.0 0.015 0.014
aps-failure 76000 2 170 0 170 0.083 0.083
arrhythmia 443 10 279 0 279 0.0032 0.0032
bands 540 2 19 15 34 0.054 0.054 0.054
ckd 400 2 14 10 24 0.14 0.059 0.11
crx 690 2 6 9 15 0.0060 0.0068 0.0065
dress-sales 500 2 3 9 12 0.20 0.19 0.19
exasens 399 4 7 0 7 0.43 0.43
hcc 165 2 49 0 49 0.10 0.10
heart-disease 1611 2 13 1 14 0.18 0.0 0.17
hepatitis 155 2 19 0 19 0.057 0.057
horse-colic 368 2 19 1 20 0.25 0.39 0.26
mammographic-masses 961 2 2 2 4 0.042 0.041 0.042
mi 1700 8 111 0 111 0.085 0.085
nomao 34465 2 89 29 118 0.38 0.37 0.38
primary-tumor 330 15 16 1 17 0.029 0.20 0.039
secom 1567 2 590 0 590 0.045 0.045
soybean 683 19 22 13 35 0.099 0.096 0.098
thyroid0387 9172 18 7 16 23 0.22 0.0021 0.069

predicts missing values of one attribute on the basis
of the other attribute values using a round-robin ap-
proach. For numerical attributes, this uses Bayesian
ridge regression (Tipping, 2001), initialised with mean
imputation, while for categorical attributes, we use
logistic regression, initialised with mode imputation.

The scikit-learn implementations of nearest neighbour and
iterative imputation can currently only impute numerical
features, so we had to adapt them for categorical imputation.
In all other aspects, we follow the default settings of scikit-
learn.6

3.4. Classification Algorithms

We consider the classification algorithms listed in Table 1,
as implemented in scikit-learn. Hyperparameters take their
default values, except for SVM-L, LR and MLP, where we
increase the maximum number of iterations to 10 000 to
increase the probability of convergence.

For a number of these algorithms, specific ways have been
proposed to handle missing values: e.g. NN-2-D (Dixon,
1979), SVM-G (Śmieja et al., 2019), MLP (Tresp et al.,
1994; Śmieja et al., 2018; Ipsen et al., 2020) and CART
(Quinlan, 1989; Twala et al., 2008). The purpose of the

6For the nomao dataset, iterative imputation diverged, so we
had to restrict imputation to the interval [−100, 100].

present experiment is to evaluate the general approach of us-
ing imputation with missing-indicators when these solutions
have not been implemented, as is the case in scikit-learn.

3.5. Datasets

We use twenty real-life datasets with naturally occurring
missing values from the UCI repository for machine learning
(Dua & Graff, 2019) (Table 2). These datasets are quite
varied — they cover a number of different domains and
contain between 155 and 76 000 records, between 4 and 590
attributes, between 2 and 21 decision classes and missing
value rates between 0.0032 and 0.43.

We have preprocessed these datasets in the following man-
ner. We have removed attributes that were non-informative
according to the accompanying documentation, as well as
identifiers and alternative target values. When it was clear
from the description that an attribute was categorical, we
have treated it as such, even if it was originally represented
with numerals. Conversely, where the possible values of an
attribute admitted a semantic order, we have encoded them
numerically. We have left binary attributes in their origi-
nal encoding (categorical or numerical). To enable 5-fold
cross-validation, we have removed classes with fewer than
5 records.

The individual datasets are described in Appendix A.
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Table 3: One-sided p-values, Imputation With Missing-
Indicators versus Without.

Classifier Imputation strategy
Mean/mode Neighbours Iterative

NN-1 0.0088 0.0015 0.0017
NN-2 0.015 0.0024 0.00048
NN-1-D 0.0045 0.0019 0.0011
NN-2-D 0.0019 0.0031 0.00027
SVM-L 0.13 0.27 0.099
SVM-G 0.0032 0.0027 0.0021
LR 0.079 0.063 0.068
MLP 0.0027 0.0063 0.0056
CART 0.44 0.39 0.40
RF 0.038 0.051 0.17
ERT 0.28 0.0099 0.026
ABT 0.089 0.078 0.47
GBM 0.17 0.012 0.36

4. Results and Discussion
Using the experimental setup detailed in the previous sec-
tion, we now try to answer the questions listed in Subsec-
tion 3.1. Full AUROC scores are provided in Appendix B.

4.1. Do Missing-Indicators Increase Performance, and
Does It Matter Which Imputation Strategy They
Are Paired With?

The p-values obtained by comparing imputation with
and without missing-indicators are displayed in Table 3.
Missing-indicators generally lead to increased performance
— with the notable exception of CART, to which we return
below. The more complicated imputation strategies do not
result in much better results than mean/mode imputation
when we pair imputation with missing-indicators (Table 4).
At best, nearest neighbour and iterative imputation only
lead to a modest improvement, and for many classifiers,
they actually decrease performance. Therefore, we focus on
mean/mode imputation for the remainder of this section.

A possible reason for the failure of missing-indicators to
increase performance with CART, is that by default, the
scikit-learn implementation of this classifier does not per-
form pruning, making it prone to overfitting. To test
this hypothesis, we repeat our experiment for CART and
mean imputation, but this time we apply cost complex-
ity pruning (α = 0.01). This clearly improves perfor-
mance (p = 0.0069 without missing-indicators, p = 0.015
with missing-indicators), and now missing-indicators have
a slight advantage (p = 0.23).

We have also taken a closer look at ERT and GBM, for
which the performance increase from missing-indicators is

Table 4: One-sided p-values, Missing-Indicators with Itera-
tive and Nearest Neighbour versus Mean/Mode Imputation.

Classifier Imputation strategy
Neighbours Iterative

NN-1 0.94 0.15
NN-2 0.78 0.19
NN-1-D 0.97 0.55
NN-2-D 0.84 0.23
SVM-L 0.53 0.61
SVM-G 0.47 0.94
LR 0.40 0.83
MLP 0.30 0.55
CART 0.69 0.79
RF 0.61 0.86
ERT 0.61 0.64
ABT 0.33 0.78
GBM 0.93 0.85

0 100 200
Iterations

0.86

0.88

0.90

0.92
AU

RO
C

(a) adult

0 100 200
Iterations

0.84

0.86

AU
RO

C

(b) mammographic-masses

Figure 1: GBM test AUROC for two illustrative datasets, us-
ing mean/mode imputation without missing-indicators, for
one random state and one cross-validation fold. The default
hyperparameter value of 100 iterations leads to under- (a)
and overfitting (b).

not very significant. For ERT, this may be due to underfitting.
If we increase the number of trees from the default 100
to 1000, this improves performance (p = 0.0011 without
missing-indicators, p = 0.0032 with missing-indicators),
and makes the advantage of missing-indicators somewhat
clearer (p = 0.092).

For GBM, the default choice of 100 iterations of gradient
descent can lead to both under- or overfitting, depending on
the dataset (Fig. 1). We believe that it is generally preferable
to continue training until an early-stopping criterion is met.
However, applying the same criterion as with MLP7 does not
improve performance over the default of 100 (p = 0.81 with-
out missing-indicators, p = 0.85 with missing-indicators)
and does not change the relative advantage due to missing-
indicators (p = 0.20).

7Setting aside 10% of the data for validation, stopping when
validation loss has not decreased by at least 0.0001 for ten itera-
tions, with a maximum of 10 000 iterations.
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Table 5: Thresholds above Which Missing-Indicators Are
More Likely Than Not to Increase AUROC, in Terms of the
Absolute Number of Missing Values or the Missing Rate.

Classifier Missing values Missing rate
Cat Num Cat Num

NN-1 1 302
NN-2 2 130
NN-1-D 1 291
NN-2-D 1 73
SVM-L 0.0 0.0
SVM-G 0.0 0.40
LR 0.0 0.0
CART 0.0 0.12
ERT 0.0 1.0
ABT 1 23200
GBM 0.0 0.0

4.2. When Do Missing-Indicators Start to Become
Useful in Terms of Missingness?

The theoretical motivation for representing missing values
through missing-indicators is that this allows classifiers to
learn the information encoded in their distribution. In prin-
ciple, this should be easier when there are more examples
to learn from. We can use this to obtain a better under-
standing of when missing-indicators might be useful on a
per-attribute level.

We test this with the following additional experiment. For
each attribute with missing values in each dataset, we re-
duce the original dataset by removing all other attributes
with missing values. We thus obtain 1148 derived datasets,
on which we again apply each of our classifiers (with prun-
ing for CART, 1000 trees for ERT and early-stopping for
GBM) and consider whether missing-indicators increase or
decrease AUROC (we dismiss ties). Finally, for each clas-
sifier we fit a logistic regression model with cluster robust
covariance (clustered by the originating dataset), with the
following potential parameters: categoricalness (whether
the attribute is categorical) and either the number of miss-
ing values (log-transformed) or the missing rate. We use
the Akaike information criterion (Akaike, 1971) to decide
whether to select these parameters.

We find that for most classifiers, either the absolute or the
relative number of missing values is an informative param-
eter with positive coefficient. For MLP, neither parameter
is informative, while for RF, the number of missing val-
ues is an informative parameter with negative coefficient,
for which we have no explanation at present. For every
classifier, categoricalness is an informative parameter with
positive coefficient, meaning that missing-indicators are
more beneficial for categorical than for numerical attributes.

Table 6: One-sided p-values, Mean Imputation after One-hot
Encoding versus Mode Imputation of Missing Categorical
Values.

Classifier Without — With missing-indicators

NN-1 0.020 0.077
NN-2 0.14 0.031
NN-1-D 0.016 0.12
NN-2-D 0.16 0.031
SVM-L 0.43 0.57
SVM-G 0.17 0.56
LR 0.81 0.057
MLP 0.16 0.60
CART 0.44 0.30
RF 0.046 0.57
ERT 0.030 0.95
ABT 0.48 0.62
GBM 0.077 0.54

The fitted logistic regression models allow us to calculate
attribute-specific thresholds above which missing-indicators
are more likely than not to increase AUROC, for all classi-
fiers except MLP and RF (Table 5). In many cases, these
thresholds are 1 or 0.0, indicating that missing-indicators
are always likely to increase AUROC.

4.3. Does Using Mean Imputation Instead of Mode
Imputation Allow for More Information to Be
Learned from Missing Categorical Values?

As indicated above, missing-indicators are generally more
likely to increase performance for categorical than for nu-
merical attributes. A potential explanation for this is the fact
that the mode of a categorical attribute is one of the non-
missing values, whereas the mean of a numerical attribute is
generally not equal to one of the non-missing values. There-
fore, categorical imputation renders missing values truly
indistinguishable from non-missing values, whereas numer-
ical imputation does not — the information expressed by
missing values may be partially recoverable, as argued by
Le Morvan et al. (2021) and discussed in the Introduction.

We can achieve a similar partial representation of miss-
ing categorical values by changing the order in which we
perform imputation and one-hot encoding, i.e. by perform-
ing numerical imputation on one-hot encoded categorical
attributes with missing values. For imputation without
missing-indicators, this indeed leads to better performance
for some classifiers, while in combination with missing-
indicators, it does not make much of a difference (Table 6)8.

8LR is an exception here, we have no explanation for this.

7



5. Conclusion
We have presented the first large-scale experimental eval-
uation of the effect of the missing-indicator approach on
classification performance, conducted on real datasets with
naturally occurring missing values, paired with three dif-
ferent imputation techniques. The central question was
whether, on balance, more benefit can be derived from the
additional information encoded in a representation of miss-
ing values, or from the lower-dimensional projection of the
data obtained by omitting missing-indicators.

On the whole, missing-indicators increase performance for
the classification algorithms that we considered. An ex-
ception was CART, which suffers from overfitting in its
default scikit-learn configuration. When pruning is applied,
missing-indicators do increase performance. For ERT, the
advantage of missing-indicators becomes more significant
when underfitting is controlled.

We also found that, in the presence of missing-indicators,
nearest neighbour and iterative imputation do not signifi-
cantly increase performance over simple mean/mode impu-
tation. This is a useful finding, because implementations of
more sophisticated imputation strategies may not always be
available to practitioners working in different frameworks,
or easy to apply.

In a follow-up experiment, we determined attribute-specific
missingness thresholds above which missing-indicators are
more likely than not to increase performance. For categori-
cal attributes, this threshold is generally very low, while for
numerical attributes, there is more variation among classi-
fiers, in particular as to whether this threshold is absolute or
relative to the total number of records.

The greater usefulness of missing-indicators for categorical
than for numerical attributes can be explained by the fact that
the mean of a numerical attribute is not generally identical
to any of the non-missing values, and that mean imputation
therefore preserves some of the information of missing val-
ues. This is supported by the results of a further experiment,
which showed that, in the absence of missing-indicators,
applying mean imputation to one-hot encoded categorical
attributes results in somewhat better performance than mode
imputation.

We conclude that the combination of mean/mode impu-
tation with missing-indicators is a safe default approach
towards missing values in classification tasks. While over-
or underfitting is a concern for certain classifiers, it is a con-
cern for these classifiers with or without missing-indicators.
However, practitioners may want to omit missing-indicators
when the classification algorithm to be used has a special
provision for missing values, when the missingness thresh-
olds that we determined are not met, or on the basis of
specific information about the distribution of missing val-

ues in the dataset. The use of missing-indicators can also
be combined with dimensionality reduction algorithms to
increase the information density of the resulting dataset.

While we have considered the use of missing-indicators with
imputation, they can in principle also be used to supplement
other, learner-specific solutions for missing-values. Whether
this makes sense and increases performance will differ from
case to case, and we leave this as an open question. In
any case, we believe that going forward, any experimental
evaluation of such learner-specific proposals should take
missing-indicators into account.

The problem of missing data has been the subject of a rich
body of theoretical literature. We hope to have contributed
with this paper to the practical evaluation of some of that
theory. In particular, we are happy to have identified twenty
real-life datasets with missing values, and hope that in the
future, more such datasets will be collected.
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A. Datasets
We have used the following twenty datasets in our exper-
iments, all from the UCI repository for machine learning
(Dua & Graff, 2019).

adult (Kohavi, 1996)

48 842 1994 census records of American adults. The task is
to predict whether each person earns more than $50 000 per
year (11 687) or not (37 155), based on 13 census questions.

We have removed the ‘fnlwgt’ attribute, the weight that
needs to be applied to each record to obtain a representative
socio-economic sample within each US state.

The version of the dataset used by Kohavi (1996) has 45 222
records — these are the records without missing values.

The data was extracted from the 1994 census database by
Barry Becker.

agaricus-lepiota (Schlimmer, 1987)

8124 mushrooms from the Agaricus and Lepiota families,
to be classified as edible (4208) or poisonous (3916) on the
basis of 22 physical characteristics.

It is unclear whether the missing values, all in ‘stalk-root’,
represent actually missing information, or a missing stalk-
root.

This dataset was created on the basis of the information
provided by Lincoff (1981). The version of the dataset
used by Schlimmer (1987) contained only 3078 mushrooms
(from 23 species). Although Schlimmer (1987) claims 23
attributes, he lists only 22, so this is most likely a mistake
(possibly due to the number of mushroom species).

aps-failure (Ferreira Costa & Nascimento, 2016)

76 000 component failures in Scania trucks. The task is to
predict whether a specific component in the air pressure
system (APS) has failed (1375) or some other component
(74 625), based on 170 measurements.

This dataset was provided by Tony Lindgren of the De-
partment of Computer and Systems Sciences at Stockholm
University and Jonas Biteus at Scania for the industrial chal-
lenge at the 15th International Symposium on Intelligent
Data Analysis (IDA) in 2016.

arrhythmia (Güvenir et al., 1997)

452 patients in 13 classes, indicating the presence and type
of arrhythmia. The 279 attributes consist of the age, sex,
height and weight of the patients as well as a large number
of characteristics of their ECG recordings.
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This dataset is strongly imbalanced: 245 patients have no
arrhythmia, while there are five classes with fewer than 10
records.

bands (Evans & Fisher, 1994)

540 rotogravure printing cylinders, displaying banding (228)
or not (312), to be classified on the basis of 34 attributes
describing the printing press and its use.

We have preprocessed this dataset by removing the ‘times-
tamp’, ‘cylinder number’, ‘customer’ and ‘job number’ at-
tributes, which do not really form categories, as well as the
‘ink color’ attribute, which only has one value. None of
these attributes are used by Evans & Fisher (1994).

There are additional differences with respect to the variant
of this dataset used by Evans & Fisher (1994). That variant
does not have the ‘cylinder division’, ‘press type’, ‘paper
mill location’, ‘callper’ and ‘roller durometer’ attributes, but
does have additional ‘blade oscillation’ and ‘basis weight’
attributes, for a total of 31. It also covers a shorter time
period than is contained in the final version of the dataset.

ckd (Rubini & Eswaran, 2015)

400 people, 250 of which with chronic kidney disease
(CKD), 150 without, to be classified on the basis of 24
measurements.

The origin of this dataset is not explained by Rubini &
Eswaran (2015).

crx (Quinlan, 1987)

690 credit card applications, 307 of which were approved
and 383 of which were not.

The data was provided by a large bank. The meaning of the
15 attributes is confidential.

dress-sales

500 dresses offered for sale by AliExpress between August
and October 2013, recommended (210) or not (290) on the
basis of 12 properties.

We have preprocessed this dataset by eliminating spelling
variations and interpreting certain values as missing values.

This dataset was created by Muhammad Usman and Adeel
Ahmed at the Air University in Islamabad, who do not
appear to have used it in any publication. It is unclear
what the meaning of the two classes is. The documentation
suggests that there is a connection with the number of sales
of each dress, which are also provided, but there doesn’t
appear to be any direct link.

exasens (Soltani Zarrin et al., 2020)

399 patients of the medical clinic in Borstel, near Sülfeld,
Germany, and healthy controls, to be classified as healthy
(160) or having chronic obstructive pulmonary disease
(COPD, 79), asthma (80) or a respiratory infection (80)
based on 7 attributes: age, gender, smoking status and four
values expressing saliva permittivity.

The dataset used by Soltani Zarrin et al. (2020) only contains
the healthy and COPD patients.

hcc (Santos et al., 2015)

165 hepatocellular carcinoma (HCC) patients of the Coim-
bra University Hospital. The task is to predict 1-year sur-
vival (102) or not (63) on the basis of 49 attributes express-
ing risk factors, comorbidies and a range of tests.

heart-disease (Detrano et al., 1989)

1611 patients from five hospitals, with (903) or without
(708) heart disease, defined as more than 50% narrowing of
any major bloodvessel. There are 14 attributes, including
the hospital, the age and sex of the patient and the results of
a number of tests.

We have preprocessed this dataset by reducing the id-
attribute to only identify the source hospital.

This dataset has a complicated history. The data was col-
lected by Dr Robert Detrano at the Cleveland Clinic and at
the Veterans Administration Medical Center in Long Beach,
Dr Andras Janosi at the Hungarian Institute of Cardiology
in Budapest, Dr William Steinbrunn at the University Hos-
pital in Zürich, and Dr Matthias Pfisterer at the University
Hospital in Basel.

On the basis of the id-attribute, it is possible to identify
several batches of records: one batch from Cleveland (303
records), two batches from Budapest (428 and 351 records),
two batches from Long Beach (200 and 201 records), one
batch from Zürich (58 records) and one batch from Basel (73
records). On the basis of these numbers, we can deduce that
the dataset used by Detrano et al. (1989) does not contain
the second batches from Budapest and Long Beach, nor
three records at the end of the first batch from Budapest.
It contains 85 records from Basel, which means that 12
records are missing. The pilot study by Detrano et al. (1984)
used only 154 patients from Cleveland.

The first batch of Long Beach records appears to have three
duplicate pairs of records, with the same or nearly the same
name, social security number, age, sex and other attribute
values. Given that four of the clinical attribute values are
slightly different, it is unclear whether these are truly dupli-
cate records or separate examinations of the same patients.
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Nevertheless, we have decided to remove the second record
of each pair during preprocessing.

hepatitis (Efron & Gong, 1981)

155 chronic hepatitis patients, 33 of which died and 122 of
which lived. There are 19 attributes, consisting of patient
characteristics, symptoms and test results.

The data was collected by Dr Peter Gregory.

horse-colic (McLeish & Cecile, 1990)

368 horses with colic presented to the Ontario Veterinary
College hospital in Guelph. The task is to predict whether
(in retrospect) the lesion was surgical (232) or not (136),
based on 20 symptoms and measurements.

We have preprocessed this dataset by deleting two non-
informative attributes and five attributes that are alternative
prediction targets (according to the documentation). It is
not clear whether McLeish & Cecile (1990) used the exact
same attribute set.

mammographic-masses (Elter et al., 2007)

961 full-field digital mammograms, to be classified as be-
nign (516) or malignant (445) on the basis of 4 attributes:
the patient’s age and the shape, margin and density of the
masses.

The data was collected at the Institute of Radiology of the
University of Erlangen-Nuremberg between 2003 and 2006.

mi (Golovenkin et al., 2020)

1700 patients with myocardial infarction (MI). The 8 classes
describe whether the patient died, and if so, what the cause
of death was. The 111 attributes consist of patient character-
istics, comorbidies, test outcomes and symptoms.

This dataset is very imbalanced, as the class with surviving
patients contains 1429 records.

The data was collected at the Krasnoyarsk Interdistrict Clin-
ical Hospital between 1992 and 1995. Earlier versions of
this dataset were used by e.g. Rossiev et al. (1995).

nomao (Candillier & Lemaire, 2012)

34 465 pairs of place records. The task is to predict whether
the two records refer to the same place (24 621) or to differ-
ent places (9844), on the basis of 118 attributes expressing
the similarity or difference of the attributes of the two origi-
nal records.

The data for this dataset was provided by Nomao for the
‘Nomao Challenge’ of the 2012 Active Learning in Real-
world Applications ECML-PKDD Workshop.

primary-tumor (Cestnik et al., 1987)

339 cancer patients. The task is to identify the site of the
primary tumor out of 21 possibilities, based on 17 attributes.
Most attributes are boolean and refer to body parts. Their
meaning is slightly unclear, it is possible that they refer to
the locations that the cancer has spread to.

Many of the classes are very small. There are six classes
with fewer than 5 records. In fact, by design the number of
classes is 22, but one class is empty.

The data was collected at the University Medical Centre in
Ljubljana by M Zwitter and M Soklic.

secom (McCann et al., 2008)

1567 produced wafers at a production line of a semiconduc-
tor fabrication plant, 1463 of which passed testing and 104
of which failed, to be classified on the basis of 590 signals.

This dataset was created for the ‘Causality Challenge’ of
the 2008 NIPS Workshop on Causality.

soybean (Michalski & Chilausky, 1980)

683 soybean plants, displaying 19 different diseases, to be
classified on the basis of 35 symptoms.

Michalski & Chilausky (1980) omitted the four smallest
classes, using only 630 records.

thyroid0387 (Quinlan et al., 1986)

9172 thyroid patients at St Vincent’s Hospital in Sydney
between August 1984 and January 1987. The task is to
predict the diagnosis out of 18 classes, based on 29 patient
characteristics and test scores.

This dataset is strongly imbalanced: 6771 patients have no
diagnosis, while there are three classes with fewer than ten
records.

The variant of this dataset used by Quinlan et al. (1986)
only had 3066 records, and didn’t have the ‘I131 treatment’,
‘hypopituitary’, ‘psych’ and ‘referral source’ attributes.

We have had to preprocess this dataset because a small num-
ber of records belonged to multiple classes. When one diag-
nosis was indicated as being more likely than another, we
retained the more likely diagnosis. Otherwise, we resolved
this by retaining the most specific class. Furthermore, the
provided file already contained missing-indicators, which
we have removed to properly evaluate imputation without
missing-indicators.
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B. Full Classification Results
We list here the results of our experiments in greater detail. Table 7 contains the mean AUROC across five-fold cross-
validation and five random states for each classifier, each dataset, each imputation strategy, without and with missing-
indicators. Table 8 contains the mean AUROC for CART, GBM and ERT with updated hyperparameter values (as discussed
in Subsection 4.1). Table 9 contains the mean AUROC obtained by imputing missing categorical values with the mean, after
one-hot encoding (Subsection 4.3).

Table 7: AUROC, Main Experiment. Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

NN-1 adult 0.857 0.858 0.858 0.858 0.858 0.858
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.928 0.926 0.926 0.922 0.928 0.923
arrhythmia 0.760 0.760 0.760 0.760 0.760 0.760
bands 0.836 0.838 0.834 0.847 0.836 0.848
ckd 0.993 0.992 0.989 0.990 0.992 0.989
crx 0.908 0.909 0.904 0.908 0.909 0.910
dress-sales 0.548 0.555 0.540 0.545 0.527 0.531
exasens 0.710 0.726 0.703 0.713 0.717 0.726
hcc 0.699 0.760 0.707 0.745 0.712 0.753
heart-disease 0.846 0.847 0.841 0.844 0.843 0.846
hepatitis 0.849 0.841 0.841 0.850 0.839 0.847
horse-colic 0.716 0.733 0.738 0.734 0.726 0.738
mammographic-masses 0.821 0.827 0.821 0.825 0.824 0.831
mi 0.572 0.579 0.564 0.580 0.569 0.579
nomao 0.983 0.982 0.978 0.981 0.983 0.982
primary-tumor 0.675 0.687 0.678 0.693 0.676 0.687
secom 0.641 0.651 0.641 0.643 0.646 0.653
soybean 0.993 0.993 0.992 0.993 0.993 0.993
thyroid0387 0.876 0.883 0.852 0.876 0.873 0.884

NN-2 adult 0.860 0.861 0.861 0.861 0.861 0.860
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.920 0.922 0.918 0.920 0.921 0.921
arrhythmia 0.733 0.733 0.734 0.734 0.733 0.733
bands 0.830 0.832 0.818 0.835 0.825 0.836
ckd 0.995 0.992 0.990 0.991 0.991 0.991
crx 0.899 0.900 0.898 0.899 0.900 0.901
dress-sales 0.554 0.547 0.541 0.539 0.532 0.527
exasens 0.709 0.716 0.699 0.706 0.712 0.718
hcc 0.690 0.696 0.695 0.709 0.698 0.705
heart-disease 0.831 0.835 0.828 0.837 0.829 0.836
hepatitis 0.861 0.851 0.846 0.850 0.860 0.862
horse-colic 0.684 0.710 0.724 0.706 0.695 0.704
mammographic-masses 0.820 0.825 0.821 0.824 0.822 0.828
mi 0.561 0.563 0.555 0.560 0.563 0.563
nomao 0.980 0.982 0.976 0.980 0.980 0.981
primary-tumor 0.667 0.673 0.670 0.675 0.666 0.677
secom 0.607 0.612 0.614 0.617 0.607 0.613
soybean 0.986 0.988 0.987 0.988 0.986 0.988

Continued on next page
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Table 7: AUROC, Main Experiment. Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

thyroid0387 0.871 0.878 0.848 0.875 0.866 0.876
NN-1-D adult 0.838 0.838 0.837 0.839 0.837 0.838

agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.929 0.926 0.927 0.922 0.928 0.923
arrhythmia 0.764 0.764 0.763 0.763 0.764 0.764
bands 0.871 0.875 0.865 0.879 0.870 0.880
ckd 0.994 0.992 0.989 0.990 0.992 0.989
crx 0.907 0.908 0.905 0.908 0.908 0.909
dress-sales 0.544 0.560 0.538 0.545 0.528 0.535
exasens 0.629 0.641 0.625 0.634 0.632 0.640
hcc 0.728 0.786 0.733 0.772 0.738 0.773
heart-disease 0.847 0.848 0.843 0.845 0.843 0.847
hepatitis 0.857 0.853 0.841 0.855 0.841 0.853
horse-colic 0.743 0.751 0.762 0.752 0.749 0.757
mammographic-masses 0.802 0.806 0.798 0.805 0.803 0.808
mi 0.572 0.580 0.564 0.580 0.569 0.579
nomao 0.984 0.983 0.979 0.982 0.984 0.983
primary-tumor 0.665 0.676 0.667 0.684 0.665 0.677
secom 0.644 0.652 0.644 0.645 0.647 0.655
soybean 0.993 0.993 0.992 0.993 0.993 0.993
thyroid0387 0.878 0.884 0.853 0.878 0.874 0.885

NN-2-D adult 0.842 0.843 0.842 0.843 0.842 0.843
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.920 0.922 0.918 0.921 0.922 0.922
arrhythmia 0.735 0.736 0.736 0.736 0.735 0.735
bands 0.859 0.861 0.844 0.863 0.850 0.863
ckd 0.995 0.993 0.990 0.991 0.991 0.991
crx 0.898 0.899 0.898 0.900 0.900 0.901
dress-sales 0.548 0.548 0.543 0.538 0.534 0.532
exasens 0.628 0.635 0.623 0.629 0.629 0.634
hcc 0.710 0.723 0.716 0.737 0.719 0.729
heart-disease 0.833 0.838 0.830 0.839 0.831 0.839
hepatitis 0.862 0.856 0.847 0.852 0.859 0.865
horse-colic 0.712 0.731 0.745 0.730 0.719 0.729
mammographic-masses 0.802 0.805 0.799 0.804 0.802 0.807
mi 0.560 0.563 0.556 0.560 0.564 0.565
nomao 0.981 0.983 0.977 0.981 0.981 0.982
primary-tumor 0.659 0.666 0.660 0.667 0.657 0.669
secom 0.606 0.610 0.612 0.615 0.606 0.611
soybean 0.986 0.988 0.987 0.988 0.986 0.988
thyroid0387 0.873 0.880 0.850 0.877 0.868 0.877

SVM-L adult 0.905 0.906 0.905 0.906 0.905 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.966 0.969 0.961 0.969 0.963 0.966
arrhythmia 0.818 0.843 0.819 0.843 0.818 0.843
bands 0.796 0.817 0.791 0.809 0.760 0.801
ckd 1.000 1.000 0.999 1.000 0.999 1.000

Continued on next page
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Table 7: AUROC, Main Experiment. Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

crx 0.922 0.920 0.920 0.920 0.922 0.921
dress-sales 0.598 0.593 0.594 0.588 0.591 0.597
exasens 0.762 0.780 0.761 0.769 0.761 0.780
hcc 0.757 0.738 0.781 0.756 0.746 0.733
heart-disease 0.866 0.865 0.866 0.867 0.867 0.868
hepatitis 0.848 0.824 0.857 0.831 0.856 0.833
horse-colic 0.790 0.784 0.798 0.784 0.770 0.762
mammographic-masses 0.865 0.867 0.862 0.865 0.864 0.864
mi 0.641 0.666 0.639 0.669 0.636 0.671
nomao 0.986 0.988 0.986 0.988 0.985 0.988
primary-tumor 0.769 0.769 0.772 0.770 0.778 0.777
secom 0.626 0.629 0.671 0.659 0.631 0.628
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.957 0.965 0.951 0.963 0.939 0.957

SVM-G adult 0.895 0.897 0.896 0.896 0.896 0.897
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.967 0.968 0.960 0.965 0.965 0.966
arrhythmia 0.848 0.848 0.848 0.848 0.848 0.848
bands 0.855 0.865 0.858 0.870 0.857 0.869
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.926 0.927 0.924 0.927 0.926 0.928
dress-sales 0.618 0.620 0.620 0.619 0.607 0.612
exasens 0.772 0.780 0.767 0.780 0.773 0.780
hcc 0.778 0.790 0.785 0.793 0.770 0.783
heart-disease 0.865 0.864 0.863 0.864 0.864 0.864
hepatitis 0.893 0.892 0.888 0.887 0.893 0.890
horse-colic 0.768 0.771 0.784 0.786 0.767 0.769
mammographic-masses 0.840 0.845 0.838 0.841 0.839 0.842
mi 0.635 0.643 0.637 0.645 0.639 0.648
nomao 0.991 0.992 0.988 0.991 0.989 0.991
primary-tumor 0.762 0.765 0.764 0.767 0.766 0.767
secom 0.699 0.694 0.702 0.698 0.689 0.685
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.976 0.978 0.965 0.977 0.966 0.970

LR adult 0.905 0.906 0.906 0.906 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.971 0.979 0.971 0.980 0.967 0.978
arrhythmia 0.860 0.860 0.860 0.860 0.859 0.860
bands 0.819 0.833 0.811 0.830 0.808 0.828
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.924 0.923 0.923 0.923 0.924 0.924
dress-sales 0.620 0.620 0.619 0.624 0.614 0.620
exasens 0.774 0.783 0.768 0.775 0.773 0.782
hcc 0.778 0.760 0.796 0.774 0.772 0.755
heart-disease 0.867 0.868 0.867 0.869 0.867 0.869
hepatitis 0.863 0.856 0.871 0.862 0.870 0.862
horse-colic 0.789 0.786 0.793 0.786 0.769 0.764
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17



Table 7: AUROC, Main Experiment. Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

mammographic-masses 0.866 0.868 0.863 0.865 0.865 0.865
mi 0.654 0.685 0.645 0.685 0.650 0.688
nomao 0.986 0.988 0.986 0.988 0.985 0.988
primary-tumor 0.773 0.776 0.772 0.775 0.780 0.783
secom 0.686 0.678 0.687 0.680 0.676 0.673
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.970 0.974 0.966 0.974 0.967 0.974

MLP adult 0.890 0.890 0.891 0.889 0.891 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.928 0.942 0.931 0.943 0.931 0.942
arrhythmia 0.831 0.846 0.831 0.845 0.831 0.845
bands 0.871 0.879 0.873 0.885 0.868 0.882
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.902 0.906 0.901 0.905 0.900 0.905
dress-sales 0.549 0.553 0.560 0.561 0.544 0.545
exasens 0.759 0.762 0.746 0.755 0.757 0.763
hcc 0.778 0.781 0.791 0.796 0.777 0.781
heart-disease 0.819 0.815 0.816 0.811 0.818 0.816
hepatitis 0.861 0.861 0.870 0.865 0.872 0.866
horse-colic 0.714 0.744 0.727 0.756 0.719 0.734
mammographic-masses 0.845 0.840 0.841 0.836 0.847 0.840
mi 0.659 0.695 0.656 0.697 0.660 0.697
nomao 0.991 0.991 0.987 0.990 0.990 0.991
primary-tumor 0.768 0.782 0.765 0.778 0.769 0.785
secom 0.693 0.701 0.699 0.704 0.686 0.697
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.986 0.988 0.979 0.987 0.980 0.986

CART adult 0.776 0.775 0.776 0.775 0.776 0.774
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.855 0.858 0.858 0.857 0.854 0.857
arrhythmia 0.712 0.710 0.712 0.702 0.714 0.702
bands 0.716 0.713 0.697 0.716 0.706 0.717
ckd 0.971 0.977 0.981 0.985 0.979 0.978
crx 0.818 0.812 0.813 0.810 0.815 0.809
dress-sales 0.524 0.548 0.526 0.529 0.534 0.532
exasens 0.618 0.616 0.618 0.608 0.621 0.626
hcc 0.593 0.603 0.619 0.617 0.614 0.601
heart-disease 0.702 0.703 0.701 0.700 0.703 0.706
hepatitis 0.660 0.657 0.691 0.673 0.703 0.700
horse-colic 0.695 0.673 0.700 0.663 0.680 0.676
mammographic-masses 0.748 0.744 0.747 0.746 0.744 0.746
mi 0.572 0.572 0.549 0.574 0.557 0.571
nomao 0.935 0.935 0.922 0.925 0.926 0.927
primary-tumor 0.621 0.621 0.625 0.627 0.622 0.623
secom 0.547 0.552 0.555 0.558 0.542 0.538
soybean 0.975 0.977 0.973 0.974 0.971 0.973
thyroid0387 0.879 0.897 0.828 0.883 0.836 0.881
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Table 7: AUROC, Main Experiment. Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

RF adult 0.890 0.890 0.890 0.891 0.891 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.988 0.989 0.988 0.989 0.988 0.988
arrhythmia 0.883 0.884 0.885 0.885 0.886 0.883
bands 0.893 0.896 0.886 0.898 0.896 0.896
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.932 0.931 0.934 0.932 0.931 0.931
dress-sales 0.591 0.606 0.583 0.602 0.582 0.597
exasens 0.701 0.701 0.689 0.694 0.698 0.701
hcc 0.803 0.816 0.813 0.813 0.794 0.806
heart-disease 0.861 0.864 0.862 0.866 0.864 0.866
hepatitis 0.882 0.887 0.890 0.887 0.888 0.886
horse-colic 0.800 0.791 0.811 0.809 0.793 0.792
mammographic-masses 0.812 0.821 0.815 0.819 0.812 0.820
mi 0.687 0.687 0.676 0.681 0.687 0.679
nomao 0.994 0.994 0.991 0.992 0.993 0.993
primary-tumor 0.749 0.758 0.730 0.761 0.748 0.761
secom 0.722 0.710 0.719 0.713 0.722 0.710
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.994 0.994 0.988 0.991 0.988 0.990

ERT adult 0.846 0.847 0.847 0.847 0.846 0.847
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.989 0.989 0.989 0.988 0.989 0.989
arrhythmia 0.885 0.889 0.881 0.885 0.881 0.885
bands 0.889 0.890 0.874 0.890 0.885 0.892
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.913 0.911 0.916 0.915 0.912 0.910
dress-sales 0.572 0.600 0.563 0.594 0.560 0.589
exasens 0.633 0.632 0.622 0.626 0.624 0.630
hcc 0.783 0.799 0.776 0.804 0.771 0.796
heart-disease 0.858 0.861 0.862 0.865 0.861 0.861
hepatitis 0.871 0.861 0.876 0.877 0.882 0.871
horse-colic 0.793 0.780 0.818 0.796 0.790 0.780
mammographic-masses 0.793 0.801 0.791 0.800 0.793 0.801
mi 0.689 0.683 0.661 0.683 0.676 0.686
nomao 0.994 0.993 0.991 0.992 0.993 0.993
primary-tumor 0.702 0.718 0.698 0.717 0.704 0.721
secom 0.718 0.713 0.716 0.705 0.706 0.716
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.981 0.982 0.972 0.979 0.972 0.979

ABT adult 0.915 0.915 0.915 0.915 0.915 0.915
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.987 0.987 0.987 0.987 0.986 0.987
arrhythmia 0.634 0.632 0.634 0.633 0.634 0.632
bands 0.806 0.806 0.793 0.809 0.805 0.807
ckd 1.000 1.000 0.999 1.000 0.998 1.000
crx 0.905 0.906 0.907 0.906 0.909 0.905
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Table 7: AUROC, Main Experiment. Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

dress-sales 0.590 0.582 0.584 0.578 0.587 0.589
exasens 0.720 0.720 0.705 0.717 0.713 0.711
hcc 0.715 0.724 0.739 0.735 0.708 0.687
heart-disease 0.860 0.860 0.857 0.861 0.861 0.858
hepatitis 0.797 0.804 0.824 0.830 0.805 0.814
horse-colic 0.753 0.752 0.749 0.742 0.735 0.729
mammographic-masses 0.856 0.857 0.855 0.856 0.854 0.855
mi 0.555 0.572 0.572 0.586 0.573 0.572
nomao 0.987 0.987 0.985 0.986 0.986 0.986
primary-tumor 0.661 0.660 0.670 0.668 0.668 0.671
secom 0.670 0.670 0.661 0.661 0.663 0.663
soybean 0.863 0.871 0.777 0.850 0.855 0.865
thyroid0387 0.685 0.685 0.704 0.707 0.712 0.714

GBM adult 0.921 0.921 0.921 0.921 0.921 0.921
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.989 0.988 0.988 0.989 0.988 0.988
arrhythmia 0.873 0.874 0.880 0.875 0.879 0.878
bands 0.869 0.870 0.857 0.871 0.870 0.873
ckd 1.000 1.000 0.997 0.997 0.998 0.998
crx 0.932 0.932 0.930 0.931 0.929 0.931
dress-sales 0.612 0.606 0.597 0.601 0.612 0.609
exasens 0.725 0.725 0.720 0.724 0.723 0.725
hcc 0.759 0.780 0.762 0.773 0.747 0.742
heart-disease 0.872 0.872 0.869 0.870 0.873 0.872
hepatitis 0.837 0.828 0.837 0.838 0.854 0.854
horse-colic 0.793 0.789 0.794 0.789 0.798 0.789
mammographic-masses 0.850 0.853 0.847 0.851 0.846 0.853
mi 0.664 0.663 0.659 0.663 0.654 0.661
nomao 0.991 0.991 0.989 0.990 0.991 0.991
primary-tumor 0.760 0.763 0.762 0.762 0.754 0.752
secom 0.708 0.710 0.717 0.716 0.708 0.711
soybean 0.999 0.999 0.998 0.999 0.998 0.998
thyroid0387 0.885 0.918 0.904 0.915 0.866 0.860

Table 8: AUROC, Additional Experiment for Mean/Mode Imputation and Classifiers with Adjusted Hyperparameter Values.
Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Dataset Classifier, missing-indicators no/yes
CART GBM ERT
No Yes No Yes No Yes

adult 0.844 0.844 0.927 0.927 0.847 0.847
agaricus-lepiota 0.991 0.992 1.000 1.000 1.000 1.000
aps-failure 0.859 0.859 0.988 0.988 0.991 0.991
arrhythmia 0.749 0.748 0.850 0.852 0.897 0.899
bands 0.749 0.759 0.855 0.857 0.890 0.890
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Table 8: AUROC, Additional Experiment for Mean/Mode Imputation and Classifiers with Adjusted Hyperparameter Values.
Bold: Higher Value (Without or With Missing-Indicators) by at Least 0.001.

Dataset Classifier, missing-indicators no/yes
CART GBM ERT
No Yes No Yes No Yes

ckd 0.976 0.976 0.997 0.996 1.000 1.000
crx 0.897 0.897 0.934 0.933 0.914 0.914
dress-sales 0.568 0.570 0.608 0.614 0.572 0.602
exasens 0.723 0.732 0.755 0.757 0.626 0.626
hcc 0.577 0.588 0.737 0.745 0.791 0.808
heart-disease 0.777 0.777 0.870 0.871 0.861 0.862
hepatitis 0.626 0.578 0.812 0.809 0.877 0.873
horse-colic 0.742 0.724 0.789 0.783 0.799 0.782
mammographic-masses 0.823 0.823 0.857 0.859 0.795 0.802
mi 0.586 0.592 0.650 0.639 0.702 0.695
nomao 0.916 0.916 0.994 0.994 0.994 0.994
primary-tumor 0.703 0.707 0.766 0.767 0.705 0.714
secom 0.500 0.500 0.684 0.677 0.746 0.747
soybean 0.990 0.991 0.999 0.999 0.999 0.999
thyroid0387 0.909 0.909 0.904 0.918 0.987 0.988

Table 9: AUROC, Additional Experiment for Imputation of Categorical Attributes (Mode Imputation or Mean Imputation
after One-hot Encoding). extbfBold: Higher Value by at Least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

NN-1 adult 0.857 0.858 0.858 0.858
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.836 0.839 0.838 0.843
ckd 0.993 0.997 0.992 0.994
crx 0.908 0.909 0.909 0.909
dress-sales 0.548 0.533 0.555 0.539
horse-colic 0.716 0.737 0.733 0.737
mammographic-masses 0.821 0.831 0.827 0.828
nomao 0.983 0.984 0.982 0.982
primary-tumor 0.675 0.679 0.687 0.693
soybean 0.993 0.993 0.993 0.993
thyroid0387 0.876 0.878 0.883 0.885

NN-2 adult 0.860 0.861 0.861 0.861
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.830 0.829 0.832 0.834
ckd 0.995 0.997 0.992 0.994
crx 0.899 0.898 0.900 0.900
dress-sales 0.554 0.548 0.547 0.531
horse-colic 0.684 0.688 0.710 0.719
mammographic-masses 0.820 0.824 0.825 0.825
nomao 0.980 0.981 0.982 0.982
primary-tumor 0.667 0.669 0.673 0.674
soybean 0.986 0.986 0.988 0.988
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Table 9: AUROC, Additional Experiment for Imputation of Categorical Attributes (Mode Imputation or Mean Imputation
after One-hot Encoding). extbfBold: Higher Value by at Least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

thyroid0387 0.871 0.872 0.878 0.879
NN-1-D adult 0.838 0.838 0.838 0.838

agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.871 0.874 0.875 0.876
ckd 0.994 0.997 0.992 0.994
crx 0.907 0.908 0.908 0.908
dress-sales 0.544 0.537 0.560 0.544
horse-colic 0.743 0.763 0.751 0.756
mammographic-masses 0.802 0.810 0.806 0.807
nomao 0.984 0.985 0.983 0.983
primary-tumor 0.665 0.669 0.676 0.681
soybean 0.993 0.993 0.993 0.993
thyroid0387 0.878 0.880 0.884 0.887

NN-2-D adult 0.842 0.843 0.843 0.843
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.859 0.857 0.861 0.862
ckd 0.995 0.997 0.993 0.994
crx 0.898 0.898 0.899 0.900
dress-sales 0.548 0.543 0.548 0.535
horse-colic 0.712 0.716 0.731 0.739
mammographic-masses 0.802 0.806 0.805 0.806
nomao 0.981 0.982 0.983 0.983
primary-tumor 0.659 0.661 0.666 0.667
soybean 0.986 0.986 0.988 0.988
thyroid0387 0.873 0.874 0.880 0.881

SVM-L adult 0.905 0.905 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.796 0.797 0.817 0.817
ckd 1.000 1.000 1.000 1.000
crx 0.922 0.921 0.920 0.920
dress-sales 0.598 0.590 0.593 0.593
horse-colic 0.790 0.794 0.784 0.784
mammographic-masses 0.865 0.866 0.867 0.867
nomao 0.986 0.984 0.988 0.988
primary-tumor 0.769 0.769 0.769 0.769
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.957 0.957 0.965 0.965

SVM-G adult 0.895 0.896 0.897 0.897
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.855 0.856 0.865 0.867
ckd 1.000 1.000 1.000 1.000
crx 0.926 0.925 0.927 0.927
dress-sales 0.618 0.609 0.620 0.614
horse-colic 0.768 0.774 0.771 0.774
mammographic-masses 0.840 0.843 0.845 0.843
nomao 0.991 0.991 0.992 0.992
primary-tumor 0.762 0.764 0.765 0.766
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Table 9: AUROC, Additional Experiment for Imputation of Categorical Attributes (Mode Imputation or Mean Imputation
after One-hot Encoding). extbfBold: Higher Value by at Least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

soybean 0.999 0.999 0.999 0.999
thyroid0387 0.976 0.976 0.978 0.978

LR adult 0.905 0.906 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.819 0.814 0.833 0.832
ckd 1.000 1.000 1.000 1.000
crx 0.924 0.924 0.923 0.924
dress-sales 0.620 0.611 0.620 0.620
horse-colic 0.789 0.788 0.786 0.787
mammographic-masses 0.866 0.867 0.868 0.868
nomao 0.986 0.984 0.988 0.988
primary-tumor 0.773 0.773 0.776 0.776
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.970 0.970 0.974 0.974

MLP adult 0.890 0.891 0.890 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.871 0.874 0.879 0.882
ckd 1.000 1.000 1.000 1.000
crx 0.902 0.902 0.906 0.906
dress-sales 0.549 0.540 0.553 0.549
horse-colic 0.714 0.727 0.744 0.749
mammographic-masses 0.845 0.844 0.840 0.841
nomao 0.991 0.991 0.991 0.991
primary-tumor 0.768 0.769 0.782 0.781
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.986 0.986 0.988 0.988

CART adult 0.844 0.844 0.844 0.844
agaricus-lepiota 0.991 0.991 0.992 0.991
bands 0.749 0.744 0.759 0.757
ckd 0.976 0.977 0.976 0.977
crx 0.897 0.899 0.897 0.899
dress-sales 0.568 0.568 0.570 0.568
horse-colic 0.742 0.728 0.724 0.723
mammographic-masses 0.823 0.822 0.823 0.821
nomao 0.916 0.916 0.916 0.916
primary-tumor 0.703 0.739 0.707 0.738
soybean 0.990 0.995 0.991 0.995
thyroid0387 0.909 0.909 0.909 0.909

RF adult 0.890 0.891 0.890 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.893 0.895 0.896 0.890
ckd 1.000 1.000 1.000 1.000
crx 0.932 0.933 0.931 0.930
dress-sales 0.591 0.589 0.606 0.589
horse-colic 0.800 0.802 0.791 0.795
mammographic-masses 0.812 0.823 0.821 0.822
nomao 0.994 0.994 0.994 0.994
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Table 9: AUROC, Additional Experiment for Imputation of Categorical Attributes (Mode Imputation or Mean Imputation
after One-hot Encoding). extbfBold: Higher Value by at Least 0.001.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

primary-tumor 0.749 0.753 0.758 0.759
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.994 0.994 0.994 0.994

ERT adult 0.847 0.848 0.847 0.847
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.890 0.893 0.890 0.889
ckd 1.000 1.000 1.000 1.000
crx 0.914 0.914 0.914 0.914
dress-sales 0.572 0.589 0.602 0.591
horse-colic 0.799 0.806 0.782 0.785
mammographic-masses 0.795 0.804 0.802 0.801
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.705 0.711 0.714 0.713
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.987 0.987 0.988 0.987

ABT adult 0.915 0.915 0.915 0.915
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.806 0.806 0.806 0.805
ckd 1.000 1.000 1.000 1.000
crx 0.905 0.906 0.906 0.904
dress-sales 0.590 0.582 0.582 0.579
horse-colic 0.753 0.763 0.752 0.764
mammographic-masses 0.856 0.857 0.857 0.858
nomao 0.987 0.987 0.987 0.987
primary-tumor 0.661 0.640 0.660 0.639
soybean 0.863 0.859 0.871 0.873
thyroid0387 0.685 0.685 0.685 0.685

GBM adult 0.927 0.927 0.927 0.927
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.855 0.855 0.857 0.854
ckd 0.997 0.997 0.996 0.996
crx 0.934 0.934 0.933 0.934
dress-sales 0.608 0.606 0.614 0.608
horse-colic 0.789 0.792 0.783 0.788
mammographic-masses 0.857 0.857 0.859 0.858
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.766 0.770 0.767 0.769
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.904 0.907 0.918 0.916
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