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Abstract
This paper introduces a novel data-centric frame-
work for bias analysis in machine learning, lever-
aging the power of counterfactual reasoning. We
propose a Counterfactual Confusion Matrix, from
which we derive a suite of metrics that provide a
comprehensive view of a model’s behaviour un-
der counterfactual conditions. These metrics offer
unique insights into the model’s resilience and sus-
ceptibility to changes in sensitive attributes such
as sex or race. We demonstrate their utility and
complementarity with standard fairness metrics
through experiments on synthetic data and known
real-world datasets. Our results show that our met-
rics can reveal subtle biases that traditional bias
evaluation strategies may overlook, providing a
more nuanced understanding of potential model
bias.

1. Introduction
Every time we train a Machine Learning (ML) model, we
are not just fitting statistical patterns; we are also fitting the
biases present in the data. ML models have revolutionized
decision-making processes across numerous domains. How-
ever, these models also mirror or even amplify bias present
in the training data, raising concerns about potentially un-
fair or discriminatory outcomes. Detecting and mitigating
biases is critical for equitable and trustworthy ML systems.
Studies often focus on identifying discrimination based on
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a sensitive feature (e.g., race, sex, age), also known as a
protected attribute in specific applications.

There is no consensus on an unequivocal definition of a fair
decision in ML, despite numerous philosophical streams
emerging over time, including egalitarianism and utilitarian-
ism (Beretta, 2019). Group fairness, a prevalent methodol-
ogy for bias detection, advocates for equal treatment for all
individuals (Dwork et al., 2012). The most common metrics
are based on three different criteria (Barocas et al., 2019):

• Independence: The outcome should not be influenced
by the sensitive feature input and therefore, the portion
of favorable outcomes should be equal. Demographic
Parity (DemP) translates this into requiring equal pre-
dicted prevalence among subgroups (Feldman et al.,
2015). This notion may be applied to combat historical
bias, when the labels can’t be trusted.

• Separation: A system is deemed fair if there is equality
of errors. This relates to Equalized Odds (EOdds)
which requires False Positive Rate (FPR) and False
Negative Rate (FNR) parity among subgroups (Hardt
et al., 2016). Each of this conditions refer to relaxed
versions of this metric, respectively, Predictive Equality
(PredEq) and Equality of Opportunity (EOpp).

• Sufficiency: Samples given the same outcome should
have the same error rate, regardless of subgroup. Pre-
dictive Parity (PredP) encapsulates this idea by requir-
ing equal precision among subgroups (Verma & Rubin,
2018).

It is crucial to highlight the non-complementary nature of
metrics, which implies that there is no single optimal so-
lution. Therefore, it is essential to establish metrics and
their respective trade-offs beforehand. The work of Friedler
et al. (Friedler et al., 2016) delves into the mathematical
limitations and often unachievable criteria for conjugating
different notions. While simple to apply, this approach often
disregards the underlying model decision process, focusing
solely on the ground truth, the predicted outcome, and the
sensitive feature.

To address this limitation, individual fairness notions have
been put forward, based on the similarity between samples.
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In this context, we highlight counterfactual fairness, em-
ploying the concept of causality. Our work aligns with this
perspective of fairness, thus it will be further discussed in
the following sections.

In this paper we redesign the Traditional Confusion Matrix
(TCM) to adapt it to the counterfactual setting. We introduce
the Counterfactual Confusion Matrix (CCM), the Extended
Counterfactual Confusion Matrix (ECCM), and a suite of
associated metrics, providing a comprehensive approach to
evaluate bias and fairness in ML models.

1.1. Related Work

This subsection highlights the related work of applying
counterfactual reasoning to fairness and related applications,
since this is the approach on which this work heavily relies.

1.1.1. COUNTERFACTUAL EXPLANATIONS

Counterfactual Explanations (CFE) is an prominent frame-
work for explainability in ML aiming to improve inter-
pretability through “what if” scenarios. By identifying the
minimal set of features that need to be changed to obtain a
different outcome, counterfactuals can be used to explain
individual predictions (Wachter et al., 2017). Moreover,
different authors have explored how the counterfactual gen-
eration process can be constrained to ensure plausibility,
robustness and meaningfulness of the CFEs (Mothilal et al.,
2020; Artelt et al., 2021).

Stepin et al. report that, albeit counterfactuals vast appli-
cations in model-agnostic and model-specific settings are
being employed in fields of numerical, visual and linguis-
tic data, there is still a need for a standardized evaluation
methodology (Stepin et al., 2021).

1.1.2. COUNTERFACTUAL FAIRNESS

The concept of counterfactual fairness was first introduced
by Kusner et al. (Kusner et al., 2018), and defines a predictor
as counterfactually fair if the output distribution remains
the same in a counterfactual scenario where a sensitive
feature is changed. Simply speaking, counterfactual fairness
holds when the model predictions are independent from
any changes in a sensitive attribute such as sex or race.
This approach was shown to be aligned with demographic
parity (Rosenblatt & Witter, 2023), which also implies that
the predictor is independent of sensitive attributes.

There are two main approaches to achieve counterfactual
fairness. The first, with which this work aligns, considers
counterfactuals of sensitive features, while the second fo-
cuses on counterfactual outcomes. The former, and most
common approach, involves changing a sensitive feature
(e.g., sex or race) and observe whether the model’s distri-
bution is changed (Kusner et al., 2018; Cornacchia et al.,

2023a;b; Russell et al., 2017). In contrast, the latter involves
estimating a change in the outcome, and observing the effect
on the predictor’s distribution. This approach is often stud-
ied in Risk Assessment Instruments (Coston et al., 2020;
2021; Mishler et al., 2021; Mishler & Kennedy, 2021).

Counterfactual fairness is inherently associated with causal
reasoning, as we try to understand how changing a specific
variable (sensitive feature or alternative outcome) causally
affects another variable (the predictor). However, defining a
good causal model is challenging, especially in real-world
scenarios with multiple confounding factors (Russell et al.,
2017; Kusner et al., 2018; Cornacchia et al., 2023a;b). As
removing the sensitive feature has been shown to not solve
the bias problem due to correlated proxy features, Chen et
al. (Chen et al., 2022) propose a data preprocessing method
to remove confounding variables.

Regarding bias evaluation, Coston et al. (Coston et al., 2020)
propose counterfactual analogues of common performance
and fairness metrics, introducing doubly robust estimation
for calculating them. They use counterfactual outcomes,
which would have been observed under a different deci-
sion policy, and two different models: an outcome model,
predicting the outcome based on the features and a treat-
ment/decision; and a treatment/decision model that predicts
the treatment or decision based on the features. Mishler et
al. (Mishler et al., 2021) propose a post-processing method
to achieve counterfactual equalized odds in Risk Assessment
Instruments, also computed using doubly robust estimators.
These last approaches fall under the category of counterfac-
tual outcomes, while our proposed framework focuses on
counterfactual (sensitive) features.

The work of Cornacchia et al. (Cornacchia et al., 2023a)
proposes a counterfactual generation tool to study implicit
bias in predictive models even when sensitive features are
removed. Their approach allows to identify proxy features,
defining a metric called Counterfactual Flips, representing
the percentage of the generated counterfactuals that belong
to different demographic groups as predicted by a sensitive
feature predictor. The research group further presented a
novel set of fairness metrics including the Counterfactual
Fair Opportunity (CFO), a Discounted Cumulative Coun-
terfactual Fairness, and its normalized version (Cornacchia
et al., 2023b).

1.2. Contributions

In this work, our contributions are two-fold. Firstly, we
present a redesign of the TCM, adapting it to the counterfac-
tual setting. The CCM (and its extended version) emerges
as a highly convenient and visual tool for assessing model
bias in practical ML. Secondly, we propose a set of metrics
derived directly from the CCM and the ECCM, offering a
quantifiable and comprehensive assessment of bias in ML
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models. These metrics are shown to complement the estab-
lished bias evaluation metrics, allowing us to gain valuable
insights into the model’s fairness, stability, and susceptibil-
ity to underlying biases.

Following this introductory section, Section 2 delves into the
methodology underlying the CCM, ECCM, and proposed
evaluation metrics. Section 3 presents case studies involv-
ing synthetic scenarios and real-world datasets, illustrating
the application of our approach in detecting and compre-
hending bias within ML models. Finally, in Section 4 we
summarize the key findings and contributions of our study,
discussing potential avenues for future research.

2. Methodology
We propose a novel approach to evaluating bias in ML us-
ing the counterfactual framework. Our methodology relies
on the comparison between the original model predictions
against the predictions made for the counterfactual sam-
ples (with the sensitive feature flipped, in the binary case).
Analog to the TCM, we propose the CCM and its extended
version ECCM, allowing an easy observation of how the
model’s predictions are influenced by the sensitive attribute
(e.g., sex or race).

2.1. Counterfactual Predictions

In this work, we generate the counterfactual instances by
simply flipping the values of the protected attribute in the
data, while keeping the remaining features’ values the same.
Other, more sophisticated methods are available for coun-
terfactual generation. Nevertheless, this process is beyond
the scope of this paper, and we leave their exploration for
future work.

As an illustrative example, using sex as the sensitive at-
tribute, we create a counterfactual for each sample in the
test set by flipping the sex from male to female or vice versa.
This study focuses on binary attributes, although we could
generalize for categorical attributes with m cardinality by
analysing one-versus-all or generating m− 1 counterfactu-
als. Moreover, one possible approach to handle numerical
attributes would be to discretize them into two or more
categories.

Although our focus is to evaluate the model bias, this coun-
terfactual framework is fundamentally data-centric. Upon
generating the counterfactual dataset, we retain the use of
the same model that was initially trained, thereby enabling
us to make predictions based on this new, counterfactually
enriched data set. This set of counterfactual predictions
can then be compared with the original ones to study the
model’s bias. While this approach assumes that the model’s
predictions are a function of the input features, without de-
pending on hidden or unobserved variables, we believe it is

reasonable for the purposes of this study, as it is a common
assumption in the ML literature.

2.2. Counterfactual Confusion Matrix

In a classification task with n classes, the CCM is a n× n
matrix with the rows representing the counts for the original
predictions and the columns representing the counterfactual
predictions. Figure 2.2 defines the CCM for a binary out-
come (positive vs. negative). Although the CCM may be
calculated for the whole population, interesting insights can
be drawn from observing the CCMs based on individual
subgroups of the sensitive feature. The diagonal consists
of the Consistent Positives (CP) and the Consistent Nega-
tives (CN), the instances where the original prediction is
maintained after the counterfactual flip. The anti-diagonal
comprises the Switched Negatives (SN) and the Switched
Positives (SP), corresponding to the number of samples
where the counterfactual switches the outcome from posi-
tive to negative, and negative to positive, respectively.

Consistent Pos (CP) Switched Neg (SN) # Orig Pos

Switched Pos (SP) Consistent Neg (CN) # Orig Neg

# CF Pos # CF Neg N

Original 
Predictions

Counterfactual Predictions

Figure 1. The Counterfactual Confusion Matrix. A schematic
representation showcasing the evaluation of decisions across origi-
nal and counterfactual samples.

2.2.1. DERIVED METRICS

Several metrics can be derived from the CCM, some in
direct analogy from usual metrics computed from the TCM.
We will define the proposed metrics, provide the analog in
the TCM, if it exists, and describe its meaning when applied
to bias analysis. When appropriate, we further define the
complement metric (comp metric = 1−metric).

• Consistency Rate (CR): The analog to Accuracy in
the TCM, this measures the proportion of instances
where the original prediction remained the same after
flipping the sensitive feature. It is calculated as (CP +
CN)/(CP +CN +SP +SN). The complement of
this rate can be defined as the Switch Rate (SR), which
is calculated as (SP +SN)/(CP +CN+SP +SN).
Although measuring the consistency of counterfactual
predictions is not new (Cornacchia et al., 2023a), we
formalize it based on the proposed CCM.

• Positive Switch Rate (PSR): Measures the propor-
tion of instances originally predicted as negative that
switched to a positive outcome after flipping the sensi-
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tive feature. It is calculated as SP/(SP + CN) and
stands as the equivalent to the FPR in the TCM. Its com-
plement can be defined as Negative Consistency Rate
(NCR), whose equivalent in the TCM is the Specificity.

• Negative Switch Rate (NSR): Inversely, the NSR cap-
tures the fraction of original positive predictions that
switch from a positive to negative prediction after the
counterfactual flip. It is calculated as SN/(SN+CP ).
The analog in the TCM is the FNR. Its complement
may be defined as Positive Consistency Rate (PCR)
whose TCM analog is the Sensitivity or Recall.

• Positive Consistent Precision (PCP): This metric is
equivalent to the Precision in the TCM, and is com-
puted as CP/(CP + SP ). It can be interpreted as the
proportion of positive counterfactual predictions that
remain consistent after flipping the sensitive feature.
Its complement is defined as the Positive Switch Dis-
covery Rate (PSDR), whose analog in the TCM is the
False Discovery Rate (FDR).

• Positive-to-Negative Ratio (P2NR): The ratio be-
tween PSR and NSR, this metric provides a measure
of the relative susceptibility of the model’s predic-
tions to changes in the sensitive feature, considering
both directions: positive-to-negative, and vice-versa.
A P2NR > 1 suggests the model is more prone to
switch from negative to positive (favouring more posi-
tive outcomes). Contrarily, a P2NR < 1 indicates that
the model’s predictions are more susceptible to switch
from positive to negative, implying that the model is
biased against the group represented by the flipped at-
tribute, as it is more likely to deny opportunity (the
positive outcome).

• Counterfactual Matthew’s Correlation Coefficient
(CMCC): The counterfactual version of the Matthew’s
Correlation Coefficient (MCC), measures the align-
ment between the original and counterfactual predic-
tions. It keeps the favourable properties of the original
MCC, like being robust to unbalanced data (in this case
the predictions, not the ground truth). It can be com-
puted as CP×CN−SP×SN√

(CP+SP )×(CP+SN)×(CN+SP )×(CN+SN)
.

These metrics provide a comprehensive view of the model’s
performance under counterfactual conditions. To better
assess the potential bias, one should compute these metrics
for the different subgroups of the sensitive attribute (e.g.,
males and females when sex is the attribute) and compare
the obtained results. One could use the absolute difference
to get a measure of group disparity, or use a ratio for a
relative disparity, especially if higher sensitivity to small
changes is desired.

For some of the metrics, higher values for one of the sub-
groups may suggest that the model is biased against that
subgroup, like the PSR, PCP, and P2NR. For metrics like
the NSR, higher values for a subgroup may indicate that
the predictions are biased in favour of that subgroup. High
values of the SR may indicate the presence of bias, but it’s
difficult to assess in which direction. Higher values for the
CR, NCR, PCR, and PCP align with a counterfactually fair
model.

However, these metrics do not account for the ground truth
labels. This allows to study model bias independent from
knowing the real labels of the population. On the oher hand,
it may miss important context such as the prevalence or
model correctness in specific subgroups in the training set,
to better evaluate if the model minimizes, maintains, or
amplifies bias.

2.3. Extended Counterfactual Confusion Matrix

We propose an ECCM to allow the visualization of the rela-
tionship between the ground truth labels, or actual outcome
prevalence, with both the original and counterfactual predic-
tions. In the binary scenario, the ECCM is a 2× 4 matrix
(with aggregated totals as extra cells), defined in Figure 2.
Its structure expands the TCM, dividing each of the original
matrix cells into two (consistent and switched). We note that
summing each 2-cell column results in the four constituent
cells of the CCM: CP, SN, SP, and CN. For instance, the
first two cells of the first row (True Consistent Positives
(TCP) and True Switched Negatives (TSN)) sum up to the
known True Positives (TP), and the two cells below (False
Consistent Positives (FCP) and False Switched Negatives
(FSN)) the False Positives (FP).

CF Pos CF Neg CF Pos CF Neg

True Consistent 
Pos (TCP)

True Switched 
Neg (TSN)

False Switched
Pos (FSP)

False Consistent
Neg (FCN)

# Real Pos

False Consistent 
Pos (FCP)

False Switched
Neg (FSN)

True Switched
Pos (TSP)

True Consistent
Neg (TCN)

# Real Neg

Consistent Pos
(CP)

Switched Neg
(SN)

Switched Pos
(SP)

Consistent Neg
(CN)

N# Pred Pos # Pred Neg

Predictions

Orig Pos Orig Neg

Actual

Figure 2. The Extended Counterfactual Confusion Matrix. A
more granular tool for evaluating subgroup biases, expanding the
CCM to analyze the relationship between ground truth labels and
both original and counterfactual predictions.

Considering the additional information about the actual out-
comes, a new set of metrics can be defined based on the
ECCM.

• True Switch Negative Rate (TSNR): Calculated as
TSN/(TSN + FSN), it measures the proportion of
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instances switching from positive to negative that were
originally correctly predicted as positives. The com-
plement is the False Switch Negative Rate (FSNR).
Analogously, we can define them for SP: the True
Switch Positive Rate (TSPR) and the False Switch
Positive Rate (FSPR).

These metrics allow us to investigate in more detail
whether the counterfactual switches are more prevalent
when the model makes correct or wrong predictions
(e.g., SN can originate from true or false positives).
However, we argue that the previous metrics are insuf-
ficient when studied by themselves.

• True Positive Switch Rate (TPSR): This measures the
proportion of TP that end up switching (to negative) in
the counterfactual setting. It’s computed as TSN/TP .
Similarly, we can define False Positive Switch Rate
(FPSR) as the proportion of FP that switch to negative
when the sensitive feature is flipped, as computed by
FSN/FP . Additionally, we can define the equivalent
metrics for the negative predictions: the True Negative
Switch Rate (TNSR) and the False Negative Switch
Rate (FNSR).

Based on the metrics above, by comparing their values
within a specific subgroup or between different subgroups,
we can get a more comprehensive understanding whether
the model is more biased when returning correct or incor-
rect predictions. As an example, if the TPSR is significantly
higher than the FPSR, it may suggest that the model’s predic-
tions are more robust when it is correct, compared to when
it mistakenly predicts negatives as positives. This could
help focus the mitigation efforts on the instances where the
model currently fails, by collecting more diverse training
data in these samples’ neighborhood, adjusting the model’s
parameters, or other targeted bias mitigation techniques.

2.4. Probability-based Counterfactual Analysis

In the context of classification, the model output is not
usually a binary outcome. The final prediction results from
applying a threshold to a score returned by the model, which
can be thought of as the confidence of the model regarding
that outcome, or an uncalibrated probability. The metrics
we have analysed thus far result from selecting a threshold
on these scores (usually a default threshold value of 0.5 is
used). However, even when the original and counterfactuals
are identical (CR = 1), important insights may be hiding
beneath the surface. As an example, and assuming the
usual decision threshold of 0.5, consider that, for a specific
subgroup, all (actual) positive samples were predicted with
a score of 0.9, whereas in the counterfactual scenario this
score dropped to 0.55. The final binary decision is the
same, but we can still observe an impact of flipping the

sensitive attribute in the model, suggesting a potential bias.
In this context, we present additional metrics to consider the
underlying probability scores.

2.4.1. MEAN COUNTERFACTUAL DIFFERENCES

Let si = f(Xi) be the output of model f for sample Xi, or
its confidence score. Additionally, XCF

i is the counterfac-
tual version of sample Xi, which in the current work means
a similar set of feature values, except for the sensitive at-
tribute, whose value is flipped. We can define a metric that
is an analog to the Root Mean Squared Rrror (RMSE) used
in error analysis:

• Root Mean Squared Counterfactual Differences
(RMSCD):

√
1
n

∑n
i=1(f(X

CF
i )− f(Xi))2

We chose especifically the RMSE version, since in this
case we’re dealing with values in the interval [0, 1]. In
this context, the differences, in percentage, are more easily
interpreted when using the root mean squared differences.

2.4.2. DISTRIBUTION SHIFTS

Another approach to compare how the confidence scores
change in the original versus the counterfactual scenarios,
is based on analysing how the score distributions deviate. In
case the outcome is entirely independent from the sensitive
feature, both distributions should be identical even after flip-
ping (minus some possibly negligible random factor). One
way to achieve this goal is to use the Kullback–Leibler di-
vergence (KLD) to compare both distributions. Also known
as relative entropy, the KLD, also defined as DKL(P ||Q),
measures how a probability distribution P deviates from a
second distribution Q.

DKL(P ||Q) =

n∑
i=1

P (i) log
P (i)

Q(i)
(1)

In our counterfactual context, we can define P as the distri-
bution of original prediction scores, and Q the correspond-
ing distribution for the counterfactual predictions. DKL

is not a metric, in the sense that it is not symmetric, and
we choose this ordering, since usually P represents the ob-
servations, while Q might represent a theory or a model
of P . As expected, a high value for DKL as computed
for a specific subgroup suggests the presence of bias in the
model. If a proper (symmetric) metric is desirable, we can
take the average of DKL(P ||M) and DKL(Q||M), where
M = 1

2 (P +Q) (the average distribution), also known as
the Jensen-Shannon divergence (JSD).
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3. Case Studies
To substantiate the efficiency and applicability of our pro-
posed bias evaluation framework leveraging both the CCM
and the ECCM, we put forth a series of case studies that
incorporate data from synthetic and real-world settings.

A salient aspect of our research lies in the capability of
the CCM, ECCM, and their associated metrics to enhance
model evaluation by adding a new layer that unveils bi-
ases potentially missed by traditional approaches. While
standard metrics provide valuable insights into fairness con-
cerns, they may not capture nuanced biases under the coun-
terfactual setting. In our case studies, we aim to offer a
comprehensive fairness evaluation in ML models, reveal
hidden biases, and empirically demonstrate our proposal’s
effectiveness in highlighting unnoticed inequalities in com-
plex real-world scenarios. In the forthcoming scenarios,
we will focus on the most relevant metrics to present our
empirical findings. Due to space constraints, the results are
condensed in a 4× 4 matrix format, merging the ECCM for
each sensitive subgroup under study.

3.1. Synthetic Scenarios

In an endeavor to illustrate the complementarity between
the traditional and our proposed counterfactual setup, we
have designed two synthetic scenarios. These involve the
hypothetical decision of taking a red or a blue pill, rep-
resenting the positive and negative outcomes in a binary
classification problem, respectively. The synthetic scenarios
are designed to simulate bias patterns linked to a sensitive
attribute denoted as S, allowing a systematic analysis on
how the ECCM captures and quantifies biases and fairness
disparities. This attribute comprises two distinct subgroups
as possible values, namely, S1 and S2. Both synthetic sce-
narios comprise 1000 samples, with balanced representation
of S subgroups. For the first scenario, we set a ratio S1/S2
of 0.87 (S1: 465, S2: 535), while in the second scenario, the
ratio is 0.78 (S1: 439, S2: 561). We designed a first scenario
in which both traditional and our proposed approach demon-
strate concordant and complementary findings and a second
scenario in which counterfactual-based metrics reveal biases
that are not captured by the traditional methods.

3.1.1. SCENARIO 1 - PARALLEL FINDINGS

In this scenario, both traditional and counterfactual methods
provide a consistent evaluation of the predicting model for
the crafted data, which was designed to manifest a bias
towards the S1 subgroup, as is shown in Figure 3.

This intentional skew is mirrored in the model’s higher rate
of classification errors for the S1 subgroup, reflected by an
EOdds value of 0.33, the maximum value of the True Posi-
tive Rate (TPR) and FPR differences, with the latter shown

CF Pos CF Neg CF Pos CF Neg

Pos 36 141 18 72

Neg 18 90 54 36

Pos 43 18 18 108

Neg 72 4 164 108

Actual

S1

S2

Attribute S

Predictions

Orig Pos Orig Neg

Figure 3. The ECCM generated for the Synthetic Scenario 1, where
the proposed framework aligns with the traditional metrics.

in Table 1 together with a subset of the proposed metrics.
This divergence is further exemplified by a NSR difference
of 0.65, indicating a high probability of a negative outcome
when an original S1 observation switches to S2. Examining
the P2NR, we observe a value of 2.85 for S2, underscoring
a bias favouring positive outcomes when this subgroup is
flipped to S1. Conversely, the P2NR value for S1 is substan-
tially lower at 0.49, reinforcing the prevailing bias against
S2. The FPSR difference is also interesting to discuss, as it
suggests that, for S1, it has a significant proportion of FP
switching to negative, compared to S2 (0.83 vs. 0.05). This
suggests that bias is especially prevalent when the model
wrongly predicts a positive for S1, an insight that could
guide further mitigation strategies.

We note that, as we generate directly the model decisions,
we do not have the confidence scores needed to compute
metrics like the RMSCD.

3.1.2. SCENARIO 2 - UNVEILING HIDDEN BIASES

In stark contrast to the first scenario, this setup illustrates a
situation where the traditional and counterfactual method-
ologies diverge significantly in their model evaluation. Here,
while the traditional metrics suggest a fair and unbiased
model (differences of FNR and FPR under 0.20), the ECCM
(Figure 4) and associated metrics reveal an undercurrent of
bias against subgroup S2.

CF Pos CF Neg CF Pos CF Neg

Pos 9 228 18 26

Neg 9 35 0 114

Pos 175 35 79 26

Neg 26 9 158 53

Actual

S1

S2

Attribute S

Predictions

Orig Pos Orig Neg

Figure 4. The ECCM generated for the Synthetic Scenario 2, where
the proposed counterfactual metrics unveil hidden biases.

From the results in Table 2, both the PSR and NSR reveal
a preference for the S1 subgroup, as made clear by a high
proportion of S2 switching to a positive outcome when
they are flipped to S1 (PSR= 0.75). On the other hand,
the NSR is very high (0.94) for S1 indicating that most S1
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Table 1. Classic and Counterfactual metrics for Synthetic Scenario 1.

SR PSR NSR P2NR TPSR FPSR TNSR FNSR TSNR TSPR CMCC FNR FPR
Total 0.51 0.44 0.60 0.73 0.67 0.51 0.60 0.17 0.63 0.86 -0.04 0.48 0.34
S1 0.65 0.40 0.81 0.49 0.80 0.83 0.60 0.20 0.61 0.75 -0.23 0.34 0.55
S2 0.38 0.46 0.16 2.85 0.30 0.05 0.60 0.14 0.82 0.90 0.34 0.67 0.22
Diff 0.27 -0.06 0.65 -2.36 0.50 0.78 0.00 0.06 -0.21 -0.15 -0.57 -0.33 0.33

Table 2. Classic and Counterfactual metrics for Synthetic Scenario 2.

SR PSR NSR P2NR TPSR FPSR TNSR FNSR TSNR TSPR CMCC FNR FPR
Total 0.56 0.54 0.58 0.92 0.49 0.65 0.56 0.41 0.62 0.14 -0.12 0.25 0.20
S1 0.64 0.11 0.94 0.12 0.00 0.41 0.80 0.04 0.00 0.13 -0.09 0.16 0.28
S2 0.50 0.75 0.18 4.18 0.75 0.75 0.26 0.83 0.67 0.20 0.08 0.33 0.14
Diff 0.14 -0.64 0.76 -4.06 -0.75 -0.34 0.54 -0.79 -0.67 -0.07 -0.17 -0.17 0.14

samples switch to negative when flipping to S2. This is also
evident from the P2NR large difference and the low values
for CMCC.

3.2. Real Scenarios

Furthermore, we conduct experiments using real-world
datasets - the Adult Census Income (Kohavi & Becker,
1996) and COMPAS Recidivism (ProPublica, 2017), com-
monly used for bias analysis in ML. We evaluate bias dis-
parities using both traditional and the newly proposed bias
metrics derived from the ECCM, presented in Tables 3 and
4, with sex and race as sensitive features, respectively.

3.2.1. ADULT CENSUS INCOME

To better illustrate the application of the proposed metrics,
consider a scenario where a bank employs AI to assess loan
applications using a model trained on the Adult Census In-
come. The bank’s AI system aims to determine whether
an individual is likely to repay a loan, with a binary de-
cision: granting (positive) or denying (negative) the loan.
In a simplified scenario, the bank has set a minimum in-
come threshold of $ 50,000 as the sole requirement for loan
approval. To ensure fairness, it is crucial to prevent any dis-
proportionate rejection of loan applications from qualified
individuals based on sex. With this goal, different fairness
metrics could be employed but, based on the situation, sepa-
ration metrics would likely be preferred.

We trained the model using the Light GBM algorithm (Ke
et al., 2017), obtaining 0.87 accuracy and 0.78 precision.
While low, we will assume this would be a satisfactory result.
We then calculated the traditional fairness metrics obtaining
0.14 for EOpp and 0.07 for PredEq, as shown in Table 3.
The former is the difference of FNR and the latter of FPR.
The results suggest a slight bias against women since men
have a lower FNR and marginally higher FPR.

The counterfactual metrics also show only slight biases
(CMCC> 0.90), although in a different perspective. We

CF Pos CF Neg CF Pos CF Neg

Pos 574 13 25 256

Neg 152 14 34 1729

Pos 88 8 3 78

Neg 18 8 5 1236

Actual

Male

Female

Attribute Sex

Predictions

Orig Pos Orig Neg

Figure 5. The ECCM for the Light GBM model trained on the
Adult Income Census data, considering Sex as the sensitive feature.

highlight a higher NSR for females (although under 0.20),
which could suggest that flipping to males results in negative
outcomes more often than the other way around. We note
that the FPSR for women, at 0.31, may indicate that almost
a third of the FP for this subgroup ends up switching to
negative after flipping to male, hinting at a possible (albeit
small) source of bias in this type of error.

Recalling the original problem, let’s assume the bank is
subject to legislation that does not accept an EOpp over
0.10 and requires a mitigation process. In this example, we
used Fair GBM (Cruz et al., 2023), a fairness-constrained
algorithm derived from Light GBM, trained with the same
hyperparameters and constrained on FNR.

CF Pos CF Neg CF Pos CF Neg

Pos 557 23 65 223

Neg 142 15 98 1674

Pos 86 15 4 72

Neg 16 20 6 1225

Actual

Male

Female

Attribute Sex

Predictions

Orig Pos Orig Neg

Figure 6. The ECCM for the Fair GBM model trained on the Adult
Income Census data, considering Sex as the sensitive feature.

As expected, we verified a reduction from 0.14 to 0.10 in
EOpp, indicating a seemingly fairer model. In spite of
that, our metrics reveal an even more pronounced biased
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behavior. The female NSR increased from 0.13 to 0.26
and the FPSR from 0.31 to 0.56, aggravating the previously
detected behaviour. Furthermore, comparing the values
of P2NR for male samples, the value for the Fair GBM
model is 1.50 (vs. 0.81 for Light GBM). A P2NR> 1
suggests the model is more prone to switch from negative
to positive, indicating that the mitigation process worsened
the counterfactual bias in favour of female instances.

3.2.2. COMPAS RECIDIVISM

The COMPAS dataset is a collection of records commonly
used in the criminal justice system to predict the risk of
reincidence. In our example, we employed the Adversarial
Debiasing neural network model (Bellamy et al., 2018) in
two scenarios: without (base model) and with debiasing, for
race as sensitive feature, which we simplified to either white
or non-white individuals, for classifying if an individual is
likely to reincide (positive outcome, albeit negative for the
individual) or not (negative outcome).

For this experiment we will analyse the DemP, obtained
from the ratio of the predicted prevalence among subgroups
(%P), and employ our metrics to unveil potential biases. The
standardized threshold for DemP is set at 0.80, yet our initial
test without debiasing revealed a rate of 0.53 (0.23/0.43).
This indicates that non-white individuals are twice as likely
of being assigned as having a high risk of reincidence.

Other classic metrics also support this discrepancy, partic-
ularly a higher FNR and lower FPR for white individuals,
resulting in an EOpp of 0.21 and a PredP of 0.14. This
suggests a bias in favor of white individuals. Our proposed
metrics also report a tendency to benefit white individu-
als, with a slightly lower NSR (remember that the positive
outcome is predicted reincidence here) and higher P2NR.
Moreover, the value of 0.27 for FPSR suggests that a larger
proportion of FP switch to negative (non-reincidence) when
flipping other races to white.

CF Pos CF Neg CF Pos CF Neg

Pos 101 11 21 156

Neg 52 5 25 367

Pos 366 52 20 261

Neg 146 54 18 510

Attribute Race

Predictions

Orig Pos Orig Neg

Actual

White

Other

Figure 7. The ECCM generated for the base model trained on the
COMPAS dataset, considering Race as the sensitive feature.

When Adversarial Debiasing was used, it granted an in-
crease in DemP to 0.83, surpassing the legal requirement.
Nevertheless, the resulting ECCM, represented in Figure 8,
displayed some hidden biases derived from the mitigation
process and, as a result, a tendency to impair white individu-

als. First, we note a higher NSR of 0.30 for white instances,
compared to 0.00 for non-whites. Additionally, inspecting
the metrics including the ground truth, we observe a higher
likelihood for whites to switch TP to False Negatives (FN)
(0.28 vs 0.00), and FP to True Negatives (TN) (0.33 vs 0.00)
when flipping race. On the other hand, when switching the
sensitive feature to white, there is a propensity to detect
previously overlooked cases (FN) for non-whites, noted by
a FNSR of 0.26. These findings highlight the need for com-
plementary evaluation frameworks for fairness in ML since
optimizing towards specific criteria may introduce other
types of undesirable biases.

CF Pos CF Neg CF Pos CF Neg

Pos 99 39 0 151

Neg 58 28 0 363

Pos 360 0 89 250

Neg 147 0 62 519
Other

Attribute Race

Predictions

Orig Pos Orig Neg

Actual

White

Figure 8. The ECCM generated for the Adversarial Debiasing
model trained on the COMPAS data, considering Race as the
sensitive feature.

4. Conclusions
This work introduces a new take on the Confusion Matrix,
tailored to a counterfactual setting. The CCM, and its ex-
tended version ECCM, provide a clear and efficient means
to assess the susceptibility of a predictive model to changes
in a specified sensitive attribute. The derived metrics of-
fer valuable insights into the presence of bias and how it
impacts specific subgroups. Moreover, the ECCM allows
a more granular view on potential bias sources, such as
the model’s higher susceptibility when making Type-I er-
rors. These insights could help targeted bias mitigation. We
demonstrated the applicability and complementarity of our
framework in synthetic scenarios and real-world datasets.
The findings supported the need for a new perspective, as
existing bias mitigation techniques focusing on specific met-
rics may inadvertently compromise other important fairness
criteria. Future research will delve into a more formal look
at the proposed metrics, and study trade-off analyses (akin
to ROC curves). We also intend to study the plausability
of generated counterfactuals. Ultimately, we aim to investi-
gate mitigation strategies leveraging this framework, thereby
promoting fairer outcomes in ML.
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Table 3. Classic and Counterfactual metrics obtained for the Adult Census Income dataset before and after applying fairness constraints.

SR PSR NSR P2NR TPSR FPSR TNSR FNSR TSNR TSPR CMCC JSD RMSCD FNR FPR
LightGBM

Total 0.03 0.02 0.05 0.41 0.03 0.11 0.01 0.08 0.49 0.58 0.92 0.07 0.05 0.35 0.06
Male 0.03 0.03 0.04 0.81 0.02 0.08 0.02 0.09 0.48 0.58 0.92 0.06 0.05 0.32 0.09
Female 0.02 0.01 0.13 0.05 0.08 0.31 0.00 0.04 0.50 0.63 0.89 0.12 0.04 0.46 0.02
Diff 0.01 0.02 -0.09 0.76 -0.06 -0.23 0.02 0.05 -0.02 -0.05 0.03 -0.06 0.01 -0.14 0.07

FairGBM
Total 0.06 0.05 0.08 0.62 0.06 0.18 0.03 0.19 0.52 0.60 0.83 0.18 0.08 0.35 0.06
Male 0.07 0.08 0.05 1.53 0.04 0.10 0.06 0.23 0.61 0.60 0.83 0.14 0.07 0.33 0.08
Female 0.03 0.01 0.26 0.03 0.15 0.56 0.00 0.05 0.43 0.60 0.81 0.17 0.08 0.43 0.03
Diff 0.04 0.07 -0.21 1.50 -0.11 -0.46 0.06 0.18 0.18 0.00 0.02 -0.03 -0.01 -0.10 0.05

Table 4. Classic and Counterfactual metrics obtained for the COMPAS dataset before and after applying fairness constraints.

SR PSR NSR P2NR TPSR FPSR TNSR FNSR TSNR TSPR CMCC JSD RMSCD FNR FPR %P
Base Model

Total 0.10 0.06 0.16 0.39 0.12 0.23 0.05 0.09 0.52 0.51 0.79 0.04 0.05 0.46 0.22 0.36
White 0.08 0.08 0.09 0.85 0.10 0.09 0.06 0.12 0.69 0.54 0.78 0.04 0.05 0.61 0.13 0.23
Other 0.10 0.05 0.17 0.27 0.12 0.27 0.03 0.07 0.49 0.47 0.80 0.04 0.05 0.40 0.27 0.43
Diff -0.02 0.03 -0.08 0.58 -0.03 -0.18 0.03 0.05 0.20 0.07 -0.02 0.00 0.00 0.21 -0.14 -0.20

Adversarial Debiasing
Total 0.10 0.11 0.09 1.15 0.08 0.12 0.07 0.18 0.58 0.41 0.78 0.06 0.08 0.50 0.20 0.34
White 0.09 0.00 0.30 0.00 0.28 0.33 0.00 0.00 0.58 - 0.79 0.04 0.08 0.52 0.19 0.30
Other 0.11 0.16 0.00 - 0.00 0.00 0.11 0.26 - 0.41 0.80 0.04 0.08 0.48 0.20 0.36
Diff -0.02 -0.16 0.30 - 0.28 0.33 -0.11 -0.26 - - -0.01 0.00 0.00 0.04 -0.01 -0.06
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