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Abstract
The quality of training data impacts the per-
formance of pre-trained large language models
(LMs). Given a fixed budget of tokens, it is un-
clear what data to best select for the model’s per-
formance across tasks. To study this, we develop
a new framework based on a simple hypothesis:
similar to how humans acquire interdependent
skills in a deliberate order, there exists a natural
order in how the LM best learns a set of skills
from its training data. If such order exists, it can
be exploited for improved understanding of LMs
and data-efficient training. Using this intuition,
our framework formalizes the notion of a skill and
of an ordered set of skills in terms of their associ-
ated data. We demonstrate that these ordered skill
sets exist on synthetic and real data, and their ex-
istence enables skills to be learned with less data
given that we train on their prerequisite skills. Us-
ing our proposed framework, we introduce an on-
line data sampling algorithm, SKILL-IT, over mix-
tures of skills for both continuous pre-training and
fine-tuning regimes, where we aim to efficiently
learn multiple skills in the former and an individ-
ual skill in the latter. On the LEGO synthetic in
the continual pre-training setting, SKILL-IT ob-
tains 36.5 points higher accuracy than random
sampling. On the Natural Instructions dataset in
the fine-tuning setting, SKILL-IT reduces the val-
idation loss on the target skill by 13.6% versus
training on the skill itself. We apply our skills
framework on the recent RedPajama dataset to
continually pre-train a 3B-parameter LM, achiev-
ing higher accuracy on the LM Evaluation Har-
ness with 1B tokens than uniform sampling over
data sources with 3B tokens.
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1. Introduction
Large language models (LMs) have astonishing capabili-
ties, including producing creative content (Stevenson et al.,
2022), writing or completing source code (Chen et al., 2021),
or chatting with users (Brown et al., 2020). A key ingre-
dient in enabling models to perform such tasks is the data
on which they are trained (Google, 2023; Gururangan et al.,
2020; Touvron et al., 2023). A natural goal is to improve
the data in order to unlock particular capabilities; how-
ever, it is not clear how to select data for these capabilities
given a fixed budget of training tokens. Existing methods
rely on heuristics for filtering and mixing together differ-
ent datasets (Lee et al., 2022; Touvron et al., 2023). We
lack a formal framework for capturing how data influences
the model’s capabilities, which is critical in understanding
existing LMs and training improved LMs.

To develop such a framework, we take inspiration from how
humans acquire knowledge. A classic idea in the educa-
tion literature is the concept of skills that form a learning
hierarchy (White, 1973). For example, one study found
that students learned mathematical and scientific skills most
quickly when these skills were presented in a particular or-
der (Gagne, 1962). We seek to understand the extent that
similar orderings characterize LM training. Such orderings
may provide a better understanding of LMs as well as a
mechanism for data-efficient training. For instance, to train
an LM to perform Spanish question generation, we wish
to know if training first on Spanish grammar and English
question generation helps.

We aim to use the idea of skill orderings to build a frame-
work that can relate data to LM training and behavior (Fig-
ure 1). This requires addressing two challenges revolving
around the connection between skills and data. First, in or-
der to show that there exist sets of skills that the LM learns
most efficiently in some particular order, an operational def-
inition of LM skill and skill ordering must be developed and
validated on data. In initial experiments, we investigated
if semantic groupings of data, such as metadata attributes
or embedding clusters, were sufficient to represent a skill
and characterize how models learn. For instance, we parti-
tioned the Alpaca dataset (Taori et al., 2023) by instruction
type—a technique used to capture dataset diversity (Wang

1



Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models

Figure 1. Inspired by how humans acquire knowledge, we hypothesize that LMs best learn skills in a particular order and that this can
help improve our understanding and training of LMs. We show that these ordered skill sets exist in real data, which enables skills to be
learned with less data given that we train on their prerequisite skills. We then propose SKILL-IT, an online data selection algorithm that
learns skills quickly by exploiting their ordering.

et al., 2022a)—but we found that sampling based on instruc-
tion types and random sampling resulted in similar model
performance, suggesting that not just any existing notion of
data groups can characterize skills.

Second, once defined on data, skills must be translated into
means to improve data selection. To develop criteria for
a data selection algorithm that learns skills efficiently, we
identify several challenges that naive selection approaches
face. The standard approach of random uniform sampling
over data fails to learn skills optimally for two reasons.
First, skills can be distributed unevenly in the data, with
more complex skills being rare—for instance, Spanish and
question generation (QG) are 5% and 4% of the Natural
Instructions dataset (Wang et al., 2022b), respectively, but
Spanish QG is only 0.2%. Second, random sampling pro-
vides no mechanism for taking into account a particular
training order and dependency structure on skills. More
sophisticated techniques like curriculum learning account
for ordering but not at the skill level. Our goal framework
must account for these issues.

Skill-based framework We define a skill as a unit of behav-
ior that a model can learn using an associated slice of data.
An ordered skill set is a collection of skills with a directed
skills graph that is neither complete nor empty (Figure 1),
where an edge from a prerequisite skill to a skill exists if the
amount of training it takes to learn the skill can be reduced
if the prerequisite skill is also learned. We show that or-
dered skill sets exist in synthetic and real datasets using this
operational definition. Interestingly, the existence of these
ordered skill sets unveils that one can learn a skill quickly
not by training solely on that skill, but on a mixture of that
skill and prerequisite skills. For instance, in Figure 3 we
observe that Spanish QG can be learned more efficiently
when the model also learns English QG and Spanish—we
can achieve 4% lower validation loss than training on only
Spanish QG over a fixed budget of training steps.

Next, given an ordered skill set to train on, we use our frame-
work to propose methods for how to select data so that the
LM learn skills faster: skill-stratified sampling and an online
generalization, SKILL-IT. We address the issue of unevenly
distributed skills in datasets by proposing skill-stratified
sampling, a simple approach that allows us to explicitly
optimize for learning skills by uniformly sampling relevant
skills (such as a target skill and its prerequisite skills in fine-
tuning). Skill-stratified sampling uses the construction of
the ordered skill set but is static, which does not incorporate
the ordering as training proceeds and results in oversam-
pling skills that may be already learned early on in training.
We address this issue by proposing an online data selec-
tion algorithm, SKILL-IT, for selecting mixtures of training
skills that allocates more weight towards learning skills that
are not yet learned or towards influential skills. SKILL-IT is
derived from an online optimization problem over the train-
ing skills for minimizing loss on a set of evaluation skills
given a fixed budget of data and the skills graph. SKILL-IT
is inspired by online mirror descent and can be adapted for
continual pre-training, fine-tuning, or out-of-domain evalua-
tion depending on the evaluation skill set.

We evaluate SKILL-IT on synthetic and real datasets at two
model scales, 125M and 1.3B parameters. For the continual
pre-training setting, we show on the LEGO synthetic (Zhang
et al., 2022b) that we obtain a 35.8 point improvement in
accuracy over randomly selecting training data and cur-
riculum learning (Bengio et al., 2009). For the fine-tuning
setting, we show that on the widely-used Natural Instruc-
tions dataset (Mishra et al., 2022; Wei et al., 2021), our
algorithm over a mixture of skills is able to achieve up to
13.6% lower loss on that skill than solely training on that
skill, given the same training budget. In the case that our
training skills do not align perfectly with evaluation skills,
our algorithm is able to achieve the lowest loss on 11 out
of 12 evaluation skills corresponding to task categories in
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the Natural Instructions test tasks dataset over random and
skill-stratified sampling on the training data. We finally ap-
ply our framework to a case study on the recent RedPajama
1.2 trillion token dataset (Together, 2023). We use the data
mixture produced by SKILL-IT to continually pre-train a
3B parameter model over 3B tokens. We find that SKILL-
IT achieves higher accuracy with 1B tokens than uniform
sampling over data sources with 3B tokens.

2. Related work
We present an abbreviated related work. A full treatment
can be found in Appendix B. Existing work on data selec-
tion for LMs has generally ranged from more computation-
ally expensive methods for dataset condensation on smaller
datasets (Paul et al., 2021; Toneva et al., 2018; Phillips,
2016) to broader deduplication and filtering techniques for
web-scale datasets (Abbas et al., 2023; Lee et al., 2022; Xie
et al., 2023). Another way of improving model performance
through choice of data is via curriculum learning (Bengio
et al., 2009), which also draws inspiration from how humans
learn and arranges data in order from easiest to hardest over
samples or groups (Varshney et al., 2022). In contrast to ex-
isting works in both curriculum learning and data selection,
our work focuses on selecting data for learning an ordered
set of skills more efficiently. How LMs learn is also a topic
of recent interest; there are hypotheses that models learn
over quanta, discrete units of computation (Michaud et al.,
2023), and that chain-of-thought reasoning emerges due to
a structure of local clusters of variables that influence each
other (Prystawski & Goodman, 2023). Lastly, the notion of
skill has been studied in education, ranging from classical
research on learning hierarchies (White & Gagné, 1974) to
methods for decision-making over lesson sequences (Reddy
et al., 2016).

3. Skills framework
First, we propose definitions of skills and ordered skill sets
in order to formalize our intuition around how models learn
skills, and we demonstrate that not just any existing notion
of data groups can characterize an ordered skill set in the
dataset. Then, we demonstrate the existence of ordered skill
sets on synthetic and real data, which show how viewing
data through a skills-based framework can help with training
and understanding model performance. Finally, we explore
unsupervised approaches for skill recovery from data, find-
ing that embedding=based approaches do not adequately
recover synthetic skills.

3.1. Definitions

We first present a definition of an individual skill. Let the
input space of all possible text data be X , where x ∈ X is
an individual text sample that a next-token-prediction LM
f ∈ F : X → X is trained on. We quantify learning via

a metric L : F × X → R, which maps from a model and
evaluation data to a scalar quantity. In our setup, we use
the cross-entropy validation loss applied over next-token
predictions as our metric L.

Definition 3.1 (Skill). A skill s is a unit of behavior with
associated data Xs ⊆ X such that if f is trained on an
dataset Ds ⊂ Xs, then f has improved metric L on samples
belonging to Xs\Ds on average.

This definition of a skill is flexible—it simply means that
given a training dataset associated with the skill, a model f
has an improved metric when evaluated on validation data
associated with this skill. Under this definition, a skill could
be a granular task, such as writing elementary-level math
word problems in Spanish, or can be defined over a data
source, such as next-token prediction of legal data from tax
court rulings. However, our next definition, the ordered
skill set, has a more specific construction and provides a
framework for how models learn across dependent skills.

Definition 3.2 (Ordered skill set, skills graph). An ordered
skill set for f is a collection of skills S = {s1, . . . , sk}
over which there is a directed skills graph G = (S, E)
on the skill set that is neither complete or empty, where
(si, sj) ∈ E if the amount of data needed to learn sj when
uniformlysampling from Dsi ∪ Dsj is no more than the
amount of data needed when sampling only from Dsj . We
equate learning a skill to f attaining a certain value of L.

This definition isolates complete and empty graphs as ex-
trema that do not capture meaningful sets of skills. We
discuss the three types of skill graphs—complete, empty,
intermediate—and their implications for data selection. In
particular, we present our motivating findings on construct-
ing skills via various partitions of datasets, many of which
did not help characterize how models learn.

• The complete graph demonstrates that all skills influence
each other. A random partition is an example of a skill set
that yields a complete graph. This graph suggests that the
best approach for learning from data is random sampling
on the dataset, and thus this is not a setting where we can
gain much with skill-based sampling. For example, using
instruction types as skills on the Alpaca dataset results in
a nearly complete estimated skills graph (97.4% dense),
and we find that stratified sampling on these skills only
improves validation loss per skill by 0.007 points over
random sampling (Figure 2 left).

• The empty graph demonstrates that each skill is indepen-
dent. This can occur if skills are too granular; for instance,
learning Spanish math problems is unlikely to help with
English poem generation. This graph suggests that the
best approach for learning each skill is to train on the
skill itself. We see that empty graphs exist in real data;
in Figure 2 (center), using data sources as skills on the
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Figure 2. Heatmaps of adjacency matrices we compute for skill graphs for Alpaca, Pile of Law, and Natural Instructions (see Appendix D.2
for descriptions of how they were constructed and larger versions).

Pile of Law (Henderson* et al., 2022) results in a nearly
empty skills graph (3.9% dense).

• Graphs that are neither empty nor complete thus suggest
a nontrivial order of how skill influence each other. This
is the setting in which we expect that identifying skills and
exploiting their ordering will help the most. In Figure 2
right, we use task categories, which capture broader rea-
soning patterns, as skills on Natural Instructions and find
that the estimated graph has intermediate density (42.7%
dense). We show concrete examples of how skills can be
learned more efficiently on this dataset in Section 3.2.

While intuitive notions of groupings result in ordered skill
sets on some datasets (e.g., task categories on NI), this is
not always the case (e.g., instruction types on Alpaca and
sources on Pile of Law). Even though these attributes cap-
ture some notion of diversity in the dataset, our findings
suggest that not just any semantic grouping induces an or-
dered skill set. We now empirically demonstrate that our
definition of ordered skill sets align with how models learn
and can be exploited for more data-efficient training.

3.2. Examples of skills and ordered skill sets

We provide examples of ordered skill sets on the LEGO
synthetic dataset, an addition synthetic dataset, and the Nat-
ural Instructions dataset. On these datasets, we find that
certain skills are better learned when trained along with
their prerequisite skills rather than in isolation.

LEGO skills The LEGO synthetic, first introduced
in Zhang et al. (2022b), can evaluate a model’s ability to
follow a chain of reasoning. In this synthetic, the letters of
the alphabet,A, are variables each with some binary label in
{0, 1}. An individual sample consists of k clauses for some
fixed k across the dataset, each of the form a = gx where
a, x ∈ A and g is either a negation (“not”) or assertion
(“val”), e.g. we assign a to the value of x, or we assign a to
the opposite label. At the end of the sentence, we prompt
the model for what the value of one of these variables is.
Two samples x ∈ X are given below for k = 5:

Input: b = not y, r = val 1, m = val b, q = val m, y
= not r. Output: b = 1.

Input: c = val x, p = val f, x = val k, f = not c, k =

val 0. Output: k = 0.

These samples each correspond to a chain of reasoning; for
instance the first sample has the chain r, y, b,m, q, where
knowing q’s label requires the most reasoning steps. We
define the ith skill si as the model’s ability to know the ith
variable of the chain. From our example above, the first sam-
ple belongs to Xs3 and the second sample belongs to Xs1 .
To demonstrate the existence of ordered skill sets, we contin-
ually pre-train the 125M parameter GPT-Neo model (Gao
et al., 2020; Black et al., 2021) over various mixtures of
LEGO skills with k = 5. In Figure 3 (left), we find that in
35.9% fewer training steps, training on a balanced mixture
of Xs1 ,Xs2 , and Xs3 resulted in the same validation loss
of 0.01 as training solely on Xs3 . This suggests that s1, s2
helped unlock performance on s3 and that there exist edges
from s1 or s2 to s3 in the skill graph. Additional obser-
vations are available in Appendix E.1, where we examine
other edges as well as more complex reasoning chains.

Addition skills We consider a variant of a synthetic 5-digit
addition dataset analyzed in Nanda et al. (2023). We show
the existence of ordered skill sets for a simplified 3-digit
addition dataset where we treat each digit prediction as a
skill—the labels, in this case, are the integers {0, 1, ..., 9}.
Examples are of the following form:

Input: A = 1 0 6 + 0 7 1 , A 0 = ? Output: 7
Input: A = 6 0 6 + 8 7 9 , A 2 = ? Output: 4

where ‘A 0’ refers to the ones digit of the output (s1) and
‘A 2’ refers to the hundreds digit (s3). We find that in
32% fewer training steps, training on a balanced mixture of
Xs1 , and Xs2 resulted in the same validation loss of 0.01 as
training solely on Xs3 . This is shown in Figure 3 (center).
Once again, we find that performance on a skill can be
improved via combined training with a prerequisite skill.

Natural Instructions (NI) skills We show that ordered
skill sets exist in NI (Wang et al., 2022b). While we do not
expect each text sample to pertain to one skill, we find that
treating task categories as skills yields ordered skill sets:

• In Figure 3 (top right), we show that ordered skill sets ex-
ist over crosslingual task categories. Training on Spanish
question generation (QG) along with equal parts of En-
glish QG, Spanish question answering (QA), and English
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Figure 3. On the LEGO synthetic, 3-digit addition, and Natural Instructions, we identify examples of ordered skill sets in which training
on a mixture of skills helps learn an individual skill faster than just training on that skill itself, given a fixed training budget.

QA results in 4.1% lower validation loss than training
only on Spanish QG. Remarkably, the former only uses
25% of the latter’s Spanish QG data. This suggests that
there are edges from Spanish QA, English QA, and En-
glish QG to Spanish QG.

• In Figure 3 (bottom right), we see that training on the
task category Text Matching along with Stance Detection
helps decrease the loss on Stance Detection by 11%. This
suggests that these categories, which both involve under-
standing the relationship between two input texts, share
an edge.

While using task category as an approximation of skill is
imperfect, we see that there is signal within real data that
suggests that ordered skill sets can improve data efficiency.

3.3. Skill recovery
A final component of characterizing skills is unsupervised
recovery of ordered skill sets. We discuss embedding-based
clustering approaches and propose a loss-based clustering
mechanism that recovers LEGO skills. When clustering
data using various trained and pre-trained embeddings, we
find that they were unable to achieve above 39% accuracy
on LEGO. Instead, we find that taking 10 random training
runs and clustering data by their loss per timestep per run re-
covers the skills with 61% accuracy (Table 2). The intuition
behind this method is that the validation losses on points
from the same skill have similar trajectories. We discuss
this approach more in Appendix E.2.

4. Skills-based data selection
We state the data selection problem for learning across skills
in Section 4.1. We discuss how to learn the skills graph that
will be exploited in our data selection methods in Section 4.2.
We then introduce two sampling methods that utilize the
graph, a simple skill-stratified sampling method and the
online sampling method SKILL-IT, in Section 4.3.

4.1. Problem statement

We are given an ordered training skill set Strain =
{strain,1, . . . , strain,k} on the training data, each with asso-

ciated support set Xstrain,1 , . . .Xstrain,k , and an ordered evalu-
ation skill set Seval = {seval,1, . . . , seval,m} of m evaluation
skills. We aim to select n samples from Strain via a mix-
ture of training skills, p ∈ ∆k−1, to achieve three goals
depending on how Seval is constructed:

• Continual pre-training: when Seval = Strain, our goal is
select a mixture of training skills to learn all of them.

• Fine-tuning: when Seval ⊆ Strain, our goal is to select a
mixture of training skills to learn an individual target skill
or subset of these skills.

• Out-of-domain: when Seval ∩ Strain = ∅, our goal is to
select a mixture of training skills to learn a disjoint set of
evaluation skills we cannot train on. This can arise when
we have a separate downstream validation dataset or the
skills identified in the training dataset are noisy.

Furthermore, we have a skills graph G = (Strain ∪ Seval, E),
where E ⊆ Strain × Seval and A ∈ Rk×m is a weighted
adjacency submatrix, where Aij describes the strength of
the edge from strain,i to seval,j . We discuss how A can be
estimated from the data.

4.2. Skills graph learning

The skills graph is important to utilize in sampling a mix-
ture over the ordered skill set for training efficiently. We
present two approaches for learning the skills graph—brute-
force and linear approximation. Algorithms are provided
in Appendix C.2. By definition 3.2, the brute-force way
of identifying edges involves fixing a training budget of H
steps and 1) training and evaluating the model on each si and
2) training the model on each pair of (si, sj) and evaluating
on si and sj . If the loss on sj when trained additionally on
si is lower, there exists an edge from si to sj . This approach
has runtimeO(Hk2), which is feasible for small k. When k
is large, we can approximate this approach in linear time by
training on each si for h < H steps and setting Aij > 0 if
the loss on sj decreases for a runtime of O(hk). This linear
approach is necessary in the out-of-domain setting when
Seval and Strain are disjoint, as we do not train on Seval. In
addition, both graph learning approaches can be performed
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Algorithm 1 SKILL-IT Online Data Selection Algorithm
1: Input: Ordered training skill set Strain, ordered evalua-

tion skill set Seval. Learning rate η, T rounds, n samples,
H training steps per run for graph learning, model f1,
window parameter w.

2: A← LEARNGRAPH(Strain,Seval, H, f1) (Alg. 2, 3).
3: Initialize pi1 = exp(η

∑m
j=1 Aij) for all i ∈ [k], the

softmax over A.
4: for t = 1, . . . , T − 1 do
5: Observe losses Leval,j(ft) for all seval,j ∈ Seval.
6: Train model ft with n/T samples from mixture pt

over Strain. Update model ft+1 = Φ(ft, pt).
7: Set pit+1 = exp(η

∑t
τ=t−w+1

∑m
j=1 AijLeval,j(fτ )).

8: end for

on a smaller model, and the learned graph can be used for
data selection for training a larger model (Appendix E.4).

4.3. Skills graph-aware sampling

We present two approaches for sampling over the mixture of
training skills according to the skills graph: skill-stratified
sampling, which samples uniformly over relevant training
skills according to A, and SKILL-IT, which is an online
generalization that incorporates knowledge of how skills are
being learned throughout training.

4.3.1. SKILL-STRATIFIED SAMPLING

A straightforward sampling approach is to discard training
skills that do not benefit the evaluation skills and sample
uniformly over the set of relevant training skills, which we
call skill-stratified sampling. For continual pre-training,
the relevant skills are the entire training skill set; for each
strain,i ∈ Strain, Pr(strain,i) =

1
k . This enables each skill to

have sufficient training data. For fine-tuning, the relevant
skills are the target skills and prerequisite skills, which
can be identified via positive entries of the ith column of
A with Sprereq = {strain,i : ∃ seval,j s.t. Aij > 0}. We
then set Pr(s) = 1

|Sprereq∪Seval| for s ∈ Sprereq ∪ Seval. For
the out-of-domain setting, skill-stratified sampling is over
the set of prerequisite skills. For each s ∈ Sprereq, we set
Pr(s) = 1

|Sprereq| . Next, we propose our online algorithm that
exploits the graph dynamically for more efficient training.

4.3.2. SKILL-IT ONLINE DATA SELECTION ALGORITHM

Despite accounting for prerequisite skills, one shortcoming
of skill-stratified sampling is that even if a skill has already
obtained sufficiently low validation loss early during train-
ing, we will continue to allocate the same weight to that
skill throughout training. Therefore, we formulate our data
selection problem as an online learning problem and pro-
pose SKILL-IT, which both prioritizes prerequisite skills

and skills that are not yet learned.

We are given a budget of T rounds and n total samples to
train on. At round t, we select a mixture pt ∈ ∆k−1 from
the k-dimensional unit simplex, and for each training skill
strain,i ∈ Strain, we sample from Xstrain,i with proportion pit
for a total of n

T samples per round. Let ft be the model at
at the start of round t. We can define ft recursively as a
function of the previous round’s model ft−1 and mixture
pt−1 via a dynamics function Φ : F ×∆k−1 → F ; that is,
ft = Φ(ft−1, pt−1). Let Leval,j(ft) be the validation loss
of ft on seval,j . Our goal is to select p1, . . . , pT to minimize
loss per evaluation skill at the end of training:

minimize
p1,...,pT∈∆k−1

1

m

m∑
j=1

Leval,j(fT ). (1)

This optimization problem is challenging to solve with-
out additional assumptions. In order to make the problem
tractable, we impose an explicit dynamics rule for the each
evaluation skill’s loss Leval,j in terms of the current loss and
data mixture. Assuming for simplicity that Seval ⊆ Strain, a
simple rule would be Leval,j(ft) = Leval,jΦ(ft−1, pt−1) =

Leval,j(ft−1)(1− αpjt−1) for α ∈ [0, 1]. That is, we expect
that allocating more data to skill j should result in the valida-
tion loss on skill j decreasing. However, such an expression
assumes that only training on the jth skill will help learn
the jth skill. Instead, Section 3.2 suggests that there are
other skills that may help with the jth skill. We propose the
following dynamics:

Leval,j(ft) = Leval,j(ft−1)(1−A⊤
:,jpt−1), (2)

where A:,j is the column with weights of all skills that
influence seval,j , and we absorb the scalar α into A. The op-
timization problem in (1) can thus be simplified as follows:

minimize
p1,...,pT∈∆k−1

1

m

m∑
j=1

Leval,j(fT ) (3)

s.t ft = Φ(ft−1, pt−1) ∀t = 1, . . . T

Leval,j(ft) = Leval,j(ft−1)(1−A⊤
:,jpt−1) ∀j ∈ [m]

In Appendix C, we derive the following update rule via on-
line mirror descent (Nemirovskij & Yudin, 1983) for learn-
ing rate η > 0:

pit+1 = pit exp

(
η

m∑
j=1

AijLeval,j(ft)

)
. (4)

In addition, when equation 4 is expanded, we have that
pit+1 = pi1 exp

(
η
∑t

τ=1

∑m
j=1 AijLeval,j(fτ )

)
. Since this

summation over τ results in diminishing strength of updates,

6



Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models

we change it to a moving window of size w. Our full method
is in Algorithm 1.

Intuitively, at each step we adjust the weight on skill i based
on the losses of skills that i influences, with the assumption
that more training data helps decrease loss. Note that when
we use our algorithm with a complete graph or empty graph,
we achieve expected behavior discussed in Section 3.1. For
the complete graph, our algorithm reduces to stratified sam-
pling. When we have a skill set with an empty graph, the
update rule reduces to sampling proportional to each skill’s
validation loss.

5. Experimental results
Given an ordered skill set, we aim to validate SKILL-IT’s
ability to select data for efficiently learning skills in the con-
tinual pre-training, fine-tuning, and out-of-domain settings.
We provide full tables of results in Appendix E.3.1 and re-
sults where we learn the skills graph on the 125M model
and use it for the 1.3B parameter model in Appendix E.4.
Skills graphs are in Appendix D.2, weight trajectories for
SKILL-IT are in Appendix E.3.2, and ablations on the graph
and online components of SKILL-IT are in Appendix E.5.

5.1. Continual pre-training

Baselines We compare SKILL-IT against three baselines
that do not account for skills: random sampling, curriculum
learning, and anticurriculum learning. Random sampling
is a standard procedure for selecting samples given no ad-
ditional information. Curriculum learning (Bengio et al.,
2009) and anticurriculum learning (Wu et al., 2020) score
the samples from easiest to hardest and vice versa, respec-
tively, and sample over an expanding set of the lowest scored
samples at every epoch; we use the pre-trained model’s loss
to rank points. We evaluate skill-stratified sampling, which
uses knowledge of the skills but is not online, and include
an additional skills curriculum baseline in Appendix E.3.1

Setup We evaluate the ability of SKILL-IT to select data
for efficiently learning over all skills. We measure average
validation loss per skill after a fixed number of training steps.
We construct the LEGO synthetic and addition synthetic
with k = 5 and 3, respectively, and an imbalanced dataset
over the skills. On the Natural Instructions dataset, we use
23 of the task categories as skills.

Analysis Our results are shown in Figure 4. Across our
experiments we find that SKILL-IT outperforms baselines
that do not use skills as well as skill-stratified sampling.
On the LEGO dataset, all three baselines that do not uti-
lize a notion of skills exhibit plateauing loss on four of the
skills. Both skill-stratified sampling and SKILL-IT are able
to significantly reduce loss on all skills, but the former is
slower. Halfway through training, SKILL-IT exhibits an

accuracy improvement between 9.9 and 25.9 points over
other approaches, reaching a final accuracy of 99.4 (Fig-
ure 18) SKILL-IT outperforms skill-stratified sampling by
initially allocating more weight to prerequisite skills and
eventually allocating more weight to skills that are learned
more slowly (Figure 20). On the addition synthetic with
k = 3, SKILL-IT converges to near-zero validation loss
faster than the baselines on skills 1 and 2. While the random
baseline may seem competitive at first glance, it fails to
learn skill 1 (adding together the ones digits), which hurts
its average loss per skill. On NI, the validation loss from
SKILL-IT is 3.2% lower than from random sampling. Our
results suggest that exploiting the construction and ordering
of skills is critical to learning skills quickly.

5.2. Fine-tuning

Baselines We compare SKILL-IT against training on the
target skill only and skill-stratified sampling over prerequi-
site skills and the target skill. The skill-stratified sampling
approach uses the ordered skill set to identify prerequisite
skills, but does not exploit them dynamically.

Setup We evaluate the ability of SKILL-IT to select data
from an ordered training skill set for learning a target skill.
Mirroring Figure 3, we evaluate on LEGO target skill 3
(third in reasoning chain), on the addition synthetic’s skill
1 (ones place digit addition), and on NI’s Spanish QG and
Stance Detection.

Analysis Our results are shown in Figure 5. On LEGO,
SKILL-IT results in the same validation loss of 0.01 as train-
ing only on the target skill in 38.1% fewer steps. We observe
a similar trend on addition, with SKILL-IT converging to a
validation loss of 0.01 in 59% fewer steps required to do so
when training only on the target skill. Finally, on NI, SKILL-
IT improves validation loss on Spanish question generation
by 5.3% and Stance Detection by 13.6% over just training
on the respective target skill only. A significant portion of
the improvement over training only on the target skill comes
from identification of prerequisite skills through the learned
graph in the skill-stratified sampling method. SKILL-IT
is further able to improve performance with finer-grained
dynamic weighting on prerequisite skills.

5.3. Out-of-domain setting

Natural Instructions We compare SKILL-IT against ran-
dom and skill-stratified sampling, both of which do not
exploit the relationships between training skills and evalu-
ation skills. We evaluate the ability of SKILL-IT to select
data from a set of training skills for learning a disjoint set of
evaluation skills that we cannot train on. We use all 59 task
categories in the NI train tasks split as the training skills and
the 12 task categories in the test tasks split as our evaluation
skills. SKILL-IT achieves the lowest loss on 11 out of 12
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Figure 4. Performance of SKILL-IT on each skill in the continual pre-training setting (learning over all skills in the ordered training skill
set) on the LEGO synthetic (left) and addition synthetic (right).
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Figure 5. Performance of SKILL-IT in the fine-tuning setting
(learning a target skill using the ordered training skill set) on
LEGO, addition, and NI.

task categories over random and skill-stratified sampling
(Figure 19, tables in Appendix).

RedPajama We use SKILL-IT to produce a data mixture
on the RedPajama dataset. The training skills are the data
sources comprising the dataset, and the evaluation skills
are several tasks from the Language Model Evaluation Har-
ness (Gao et al., 2021). SKILL-IT with T = 1 (i.e. a static,
graph-based mixture) yields the mixture in Figure 6 (right).
We continually pre-train a 3B parameter model trained on
one trillion tokens for three billion additional tokens using
this mixture, and see that it outperforms uniform sampling
over the data sources (Figure 6 left). In particular, SKILL-IT
achieves higher accuracy with 1B additional tokens than
uniform with 3B additional tokens.
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Figure 6. Left: Accuracy on LM Evaluation Harness for contin-
ual pre-training of a 3B parameter model using SKILL-IT on the
RedPajama dataset. We achieve higher accuracy at 1B additional
tokens than uniform at 3B tokens. Right: SKILL-IT mixture over
RedPajama sources.

6. Conclusion
Given a fixed budget of data, knowing what data to train
on to induce various capabilities in an LM is challenging.
As LMs continue to improve, it will become increasingly
important to extract as much signal as possible from the
data and to direct that signal towards acquiring a broad
variety of capabilities. In this paper, we introduce a skills-
based framework for understanding how LMs learn and for
selecting training data. We hope our study invites others to
build on such a notion of skill and further explore how to
align skills with data.
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A. Broader Impacts and Limitations
Broader Impacts As more LMs are developed, a key criteria for their adoption and utility is if they exhibit a wide array
of useful capabilities, such as generating harmless content, summarizing essays, and being conversational with the user.
While improvements in other parts of the LM development pipeline such as training and architecture are important, many
recent advances in building LMs with a wide array of useful capabilities have come from the data itself (Google, 2023;
Taori et al., 2023; Chiang et al., 2023; Geng et al., 2023; MosaicML, 2023). Our work is fundamental in investigating how
LMs learn and how to select data to learn skills more efficiently. However, we recognize that data selection methods can
always be utilized to optimize for particular skills that may be considered malicious or negatively target or exclude specific
groups (Bai et al., 2022). Furthermore, pre-trained LMs have been found to have various biases (Kirk et al., 2021; Nadeem
et al., 2021; Liang et al., 2021; Bommasani et al., 2021).

Limitations The skills graph can either be provided (e.g., using a knowledge graph) or learned. Our work learns the skills
graph using Algorithm 2 or Algorithm 3, which requires initial training runs on pairs of skills or each skill, respectively.
This can be made more efficient by performing these training runs on a smaller model and for fewer number of steps, but
tradeoffs here have yet to be thoroughly investigated. SKILL-IT also assumes that the ordered skill set is provided; as
discussed in sections 3.1 and 3.3, it is challenging to recover ordered skill sets simply via metadata attributes or embedding
clustering. Otherwise, the best way to sample over collections of skills that form a complete or empty graph is random or
stratified sampling with no ordering to exploit. Our loss-based clustering approach presented in section 3.3 demonstrates
that grouping by losses can provide an explanation for how skills are defined over data. An important direction for future
work is to use such a clustering approach or other unsupervised algorithms in an end-to-end pipeline for skill discovery, skill
graph learning, and data selection based on such skills.

Code release An anonymized repository can be found at https://anonymous.4open.science/r/
skillit-submission-7EDF/.

B. Extended Related Work
We provide an extended related work below.

Data selection for LMs There have been several studies of large-scale data selection for LMs, Data deduplication (Lee
et al., 2022; Abbas et al., 2023; Hernandez et al., 2022), in which identical or nearly identical samples are removed, is a
method that enables LMs to be trained on smaller, cleaned datasets and has been increasingly used as a pre-processing step
for training data (Touvron et al., 2023; Biderman et al., 2023; Zhang et al., 2022a). Other methods applied at scale involve
on ensuring high quality of data by explicitly filtering out samples or comparing the training dataset with a cleaned reference
dataset (Brown et al., 2020; Touvron et al., 2023; Laurençon et al., 2023). Importance reweighting approaches have also
been proposed for identifying training data from a large corpus that best approximates a smaller target distribution (Xie
et al., 2023). These approaches can handle data selection for a particular target ability or topic, but do not provide much
understanding of how the choice of data is related to the numerous skills that LMs learn.

Recent LMs have shifted focus from emphasizing the scale of the model to prioritizing the training data utilized. For
example, models like Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), and Koala (Geng et al., 2023) are all based
on the LLaMA model combined with instruction data generated by an existing LM. Palm 2’s technical report states that
the data mixture was a critical component of the final model (Google, 2023), and Mosaic ML’s recent MPT model was
trained on a hand-engineered mixture of the RedPajama dataset (MosaicML, 2023). However, these works lack rigorous
explanation for why their datasets were constructed in this way.

Data selection methods Many data selection methods have been proposed for supervised, task-specific settings. In this
setting, the most typical objective is dataset condensation, which aims to determine a small subset of data that captures the
larger dataset’s properties with respect to the model. Some approaches include constructing coresets (Langberg & Schulman;
Phillips, 2016), identifying samples that the model forgets during training (Toneva et al., 2018); identifying samples with the
largest gradients (Paul et al., 2021) or gradients that approximate the overall gradient (Mirzasoleiman et al., 2019); clustering
in embedding space and selecting points farthest from cluster centers (Sorscher et al., 2022); and selecting samples with the
highest uncertainty or entropy (Lewis, 1995). These approaches have also been shown to transfer from smaller models to
larger models (Coleman et al., 2019). Unlike these methods, we study how to select data for learning one or many skills at
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the mixture level for LMs instead of the instance level.

Another area of interest is data selection for domain adaptation and multitask learning. For domain adaptation, there are
a wide range of methods that select data to best match the target distribution. For example, the Moore-Lewis method
matches data based on the difference in cross-entropy using a model trained on the target versus a model trained on the
source data (Moore & Lewis, 2010). Several other approaches suggest training a model to distinguish between source and
target and selecting points with high uncertainty (Ruder et al., 2017), or selecting points based on some divergence in an
embedding space (Ruder & Plank, 2017). In comparison to these approaches, our work focuses on learning one or many
skills and also finds that embedding-based heuristics do not fully identify skills.

Data attribution Another perspective on understanding training data is data attribution, which seeks to identify what
data is responsible for particular model behaviors. Influence functions (Koh & Liang, 2017) and shapley values (Ghorbani
& Zou, 2019) are two ways to quantify the role of individual samples. Datamodels (Ilyas et al., 2022) fit a model to
predict behavior given a subset of training data, providing a framework for understanding individual samples as well as
dataset counterfactuals. Simfluence (Guu et al., 2023) fits a Markov process to a set of training trajectories for finer-grained
understanding of how data impacts training. We focus on understanding how groups of data associated with skills elicit
broader model capabilities, and utilize this understanding to select data for more efficient training.

Curriculum learning Curriculum learning (Bengio et al., 2009) proposes to show the model data in order from easy
samples to hard ones. Various criteria have been used to determine hardness, and anticurriculum as well as various pacing
functions and mixing rates have been explored (Soviany et al., 2022). Curriculum learning can also be performed at the
group level (Varshney et al., 2022). More sophisticated approaches include parametrizing each sample with a dynamic
importance (Saxena et al., 2019), and also accounting for irrelevant and noisy data (Mindermann et al., 2021). Our approach
similarly utilizes a curriculum, but it is defined over a skills graph and does not necessarily align with training on easiest to
hardest skills.

How LMs learn Many different explanations for how LMs learn from data have been proposed. One hypothesis is that
there exist discrete, universal building blocks of LM knowledge called quanta, and power law scaling emerges from a
learning over a particular distribution of quanta in the right order (Michaud et al., 2023). Another is that chain of thought
reasoning emerges due to local clusters of latent variables that influence each other, which can be validated by studying the
LM’s ability to do conditional inference given intermediate variables (Prystawski & Goodman, 2023). Others have provided
theoretical analysis of how transformers learn topics by studying co-occurrences of words in the training data (Li et al.,
2023). Empirically, how models learn is still a mystery—for instance, models trained on code are found to perform fairly
well at commensense reasoning (Madaan et al., 2022). Our work initiates a study on how LMs learn various skills and how
to exploit this for better data selection.

Task selection In multitask auxiliary learning, the goal is to train a model to perform well on one task by selecting the
most beneficial auxiliary tasks to jointly train on. Using feature similarity has been proposed to select these tasks (Kung
et al., 2021). In contrast, we find that feature similarity does not always capture dependent skills, and we focus on learning
across one or many skills. Another line of work is Taskonomy (Zamir et al., 2018), in which a hypergraph over a set of tasks
is learned and used to select tasks. The methods used to develop the taxonomy can be applied to further expand our graph
learning (e.g., studying transitive and higher-order properties). However, their focus is on task selection in computer vision
rather than data selection for LMs to learn skills.
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C. Additional Algorithmic Details
C.1. Derivation of SKILL-IT Update Rule

First, we provide the derivation of our update rule from online mirror descent using the proximal point view (Gupta, 2020).
We restate our optimization problem from (3):

minimize
p1,...,pT∈∆k−1

1

m

m∑
j=1

Leval,j(fT ) (5)

s.t Leval,j(ft) = Leval,j(ft−1)(1− αA⊤
:,jpt−1) ∀j ∈ [m], t = 1, . . . , T

ft = Φ(ft−1, pt−1) ∀t = 1, . . . T

Let L̄t(p) =
1
m

∑m
i=j Leval,j(ft+1) =

1
m

∑m
i=j Leval,j(Φ(ft, p)); that is, p is the mixture we must choose at time t and L̄t

is the average loss per skill of the model after it is trained on p at round t. A greedy approximation of (5) is minimize
p∈∆k−1

L̄t(p),

given the model and mixtures at previous rounds. A linear approximation of L̄t(p) is

L̄t(p) ≈ L̄t(pt−1) + ⟨▽L̄t−1(pt−1), p− pt−1⟩ (6)

Then, the problem of minimizing L̄t(p) becomes

argminp∈∆k−1⟨η▽L̄t−1(pt−1), p⟩ (7)

after we drop terms from (6) that do not depend on p. Note that the η is a constant and does not impact the solution.
The optimal solution to this problem is selecting the p that has the most weight on the slice with the largest gradient.
To improve stability and prevent overfitting, we introduce regularization via a Bregman divergence Dh(p||pt−1) =
h(p)− h(pt−1)− ⟨▽h(pt−1), p− pt−1⟩. After dropping terms that do not contain p, our problem is now

argminp∈∆k−1⟨η▽L̄t−1(pt−1), p⟩+ h(p)− ⟨▽h(pt−1), p⟩ (8)

Taking the gradient and setting it equal to 0 gives us

η▽L̄t−1(pt−1) + ▽h(p)− ▽h(pt−1) = 0 (9)

Similar to in standard multiplicative weights, we set h(p) =
∑

i pi ln pi and ▽h(p) = [ln pi + 1]i. Then,

ln pi = ln pit−1 − η▽iLt−1(pt−1)

⇒ pit+1 = pit exp(−η▽iL̄t(pt)) (10)

where ▽i is the ith element of the gradient. Now we wish to compute ▽iL̄t(pt) = 1
m

∑m
j=1 ▽i[Leval,j(ft+1)] =

1
m

∑m
j=1 ▽i[Leval,j(Φ(ft, pt))]. Recall the dynamics model for Leval:

Leval,j(ft+1) = Leval,j(ft)(1−A⊤
:,jpt), (11)

The gradient of this model with respect to each training skill si is

▽iLeval,j(ft+1) = −AijLeval,j(ft) (12)

⇒▽iL̄t(pt) =
1

m

m∑
j=1

−AijLeval,j(ft)

Plugging this back into (10),

pit+1 = pit exp

(
η

m∑
j=1

AijLeval,j(ft)

)
, (13)

where we can absorb the 1
m into η.
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Algorithm 2 LEARNGRAPH (Brute-Force)
1: Input: Ordered skill set S = {s1, . . . , sk}. Number of training steps H , base model f .
2: for j ∈ [k] do
3: Train f on samples from Xsj for H steps and denote fH,j to be the model after training.
4: Observe change in loss, δjj = Leval,j(f)− Leval,j(fH,j).
5: end for
6: for i, j ∈ [k] do
7: Train f on samples from Xsi ∪ Xsj for H steps and denote fH,i,j to be the model after training.
8: Observe change in loss, δi,jj = Leval,j(f)− Leval,j(fH,i,j).
9: if δijj > δjj then

10: Draw edge si → sj and set Aij > 0.
11: end if
12: end for
13: Return Adjacency matrix A ∈ Rk×k

Algorithm 3 LEARNGRAPH (Approximate)
1: Input: Ordered skill sets Strain and Seval. Number of training steps H , base model f .
2: for i ∈ [k] do
3: Train f on samples from Xstrain,i for H steps and denote fH,i to be the model after training.
4: for j ∈ [m] do
5: Observe change in loss, δij = Leval,j(f)− Leval,j(fH,i).
6: If δij > 0, draw edge strain,i → strain,j and set Aij > 0.
7: end for
8: end for
9: Return Bipartite adjacency submatrix A ∈ Rk×m

C.2. Graph Learning Method

We provide algorithms for learning the graph over an ordered skill set. In Algorithm 2, we discuss the brute-force approach
for learning the adjacency matrix. This approach only works when Seval ⊆ Strain (e.g. pre-training and fine-tuning cases), so
we denote S = Strain in the algorithm box. In Algorithm 3, we discuss the linear approach for learning the adjacency matrix.
This approach works even in the out-of-domain case when Seval and Strain are disjoint.

In both approaches, the exact value of Aij can vary, but we can typically set it proportional to δi,jj − δjj in the brute-force
case or δij in the approximate case. The exact constructions and methods for learning each A in our experiments are in
Appendix D.2.

D. Additional Experimental Details
D.1. Datasets

We present details about each dataset used, including information on the skills and the validation dataset. A summary is
presented in Table 1.

• Alpaca dataset (Taori et al., 2023): the Alpaca dataset consists of 52K instruction examples that were generated from
text-davinci-003. We applied the Berkeley Neural Parser (Kitaev et al., 2019; Kitaev & Klein, 2018) to each instruction,
keeping 40777 samples it was able to parse successfully. If the sample began with a question, we annotated it with the
skill “question”, and otherwise we annotated it with the verb identified from the parser. We grouped the data into a total ,
such as ”list”, ”edit”, ”calculate”, ”describe” and ”identify”.

• Pile of Law (Henderson* et al., 2022): the Pile of Law dataset consists of various sources of legal and administrative
data, ranging from tax rulings to the world’s constitutions. We evaluate on a subset of the Pile of Law validation dataset
consisting of 13883 samples, where we selected max(645, source size) samples per source. We truncated each sample to
be 100K characters.
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Table 1. We list each dataset used as well as its corresponding skill. We include the number of skills in the training dataset, as well as
details on how the validation dataset is constructed.

Dataset Skill # skills Validation data

Alpaca Instruction type 38 50 samples per skill
Pile of Law Legal data source 31 645 samples per skill

LEGO Reasoning chain depth 5 100 samples per skill
Addition Digit 3 100 samples per skill

NI (pre-training) Task category 23 50 samples per task
NI (Spanish QG) Task category × language 4 100 samples per task

NI (stance detection) Task category 2 50 samples per task
NI (out-of-domain) Task category 59, 12 400 samples per task

RedPajama Data source 7 LM eval harness

• LEGO (Zhang et al., 2022b): for the LEGO synthetic, we created a dataset of 192000 samples with k = 5. Our validation
dataset consisted of 100 samples per skill.

• Addition: for the 3-digit addition synthetic, we created a dataset of 192000 samples and used a validation dataset of 100
samples per skill.

• Natural Instructions (Wang et al., 2022b; Mishra et al., 2022): the natural instructions dataset is a large collection of tasks
and their definitions in natural language. For the pre-training setting, we used a set of 23 task categories that had the
largest degree (in-degree + out-degree) in the learned skills graph, for a total of 1, 232, 437 samples and 425 tasks to select
from. We evaluated on 50 samples per task.

For the fine-tuning setting with Spanish question generation, we select data over 4 skills (Spanish question generation,
Spanish question answering, English question generation, English question answering) for a total of 513210 samples and
212 tasks to select from. We evaluated on 100 samples per task.

For the fine-tuning setting with stance detection, we select data over 2 skills (stance detection, text matching) for a total of
50990 samples and 19 tasks to select from. We evaluated on 50 samples per task.

For the out-of-domain setting, we select data over all 59 task categories for a total of 2, 417, 867 samples and 753 tasks to
select from. The test split consisted of 12 task categories and 119 tasks, and we evaluated on min(400, task size) samples
per task.

• RedPajama (Together, 2023): the RedPajama dataset is a 1-trillion token dataset that aims to reproduce the LLaMA (Tou-
vron et al., 2023) training dataset. We select over the 7 data sources and evaluate using the LM evaluation harness (Gao
et al., 2021).

D.2. Graph Learning Details

We describe how the skills graph was learned on each dataset.

• Alpaca (Figure 7): we use Algorithm 3 and train for K = 150 steps per skill. Each edge i→ j has a weight of δij , the
difference in loss on skill j before and after training on i.

• Pile of Law (Figure 8): we use Algorithm 3 and train for K = 150 steps. Each edge i → j has a weight of δij , the
difference in loss on skill j before and after training on i.

• LEGO (Figure 9): we use both Algorithm 2 and Algorithm 3 and train for K = 6000 steps each. Each edge i→ j has a
weight of 0.5 if the amount of data associated with skill j that is needed to reach 0.01 validation loss is less when training
on (i, j) than on j (edges are set to 0 if 0.01 validation loss is not reached, even if loss is decreasing). Each edge i→ j is
also set to 0.5 if training on i decreases loss directly on j. We set each diagonal entry of A to be 1.

• Addition (Figure 10): we use Algorithm 2 and train for K = 6000 steps. Each edge i → j has a weight of 0.5 if the
amount of data associated with skill j that is needed to reach 0.01 validation loss is less when training on (i, j) than on j
(edges are set to 0 if 0.01 validation loss is not reached, even if loss is decreasing). We set each diagonal entry of A to be
1.

• Natural Instructions (Figure 11, 12, 13): we use Algorithm 3. For the pre-training setting, we train for K = 600 steps
and assign each edge i→ j a weight δij equal to the change in loss on j in the first 100 steps for all i, j ∈ [k], including
diagonal entries. For the fine-tuning setting, we train for K = 600 steps and assign each edge i→ j a weight δij equal to
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Figure 7. Alpaca heatmap where i, jth entry is max(0, δij) (the change in loss on sj after training on si for 150 steps). Diagonal entries
are set to 0 for clearer visualization.

the change in loss before and after training. For the out-of-domain setting, we train for K = 600 steps and assign each
edge i→ j a weight δij equal to the change in loss before and after training in the first 100 steps.

• RedPajama (Figure 14): we use Algorithm 3 and train for 1-billion tokens per data source. We assign each edge i→ j a
weight δij equal to the change in perplexity on the validation datalsoa before and after training.

D.3. Training Details

We describe the parameters used for SKILL-IT.

SKILL-IT pre-training

• LEGO: η = 0.5, T = 6, w = 3. We train for 6000 steps.

• Addition: η = 0.1, T = 5, w = 3. We train for 6000 steps.

• Natural Instructions (pre-training): η = 0.2, T = 1. We train for 5000 steps.

SKILL-IT fine-tuning

• LEGO: η = 0.5, T = 10, w = 3. We train for 6000 steps.

• Addition: η = 0.1, T = 5, w = 3. We train for 6000 steps.

• Natural Instructions (Spanish QG): η = 0.8, T = 6, w = 3. We train for 600 steps.

• Natural Instructions (stance detection): η = 0.2, T = 6, w = 3. We train for 600 steps.

SKILL-IT out-of-domain

• Natural Instructions: η = 0.2, T = 10, w = 3. We train for 5000 steps.

• RedPajama: η = 100, T = 1. We train for 3 billion tokens.

All results are computed over 5 random seeds.
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entries are set to 0 for clearer visualization.
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Figure 9. LEGO heatmap with k = 5 where i, jth entry is set to 0.5 if the number of steps needed to reach 0.01 loss on skill j when
training on a balanced mixture of skills i and j is less than when training on skill j only.
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Figure 10. Addition heatmap with k = 3 where i, jth entry is set to 0.5 if the number of steps needed to reach 0.01 loss on skill j when
training on a balanced mixture of skills i and j is less than when training on skill j only.
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training on si for 100 steps).

Batch sizes of 32 and 64 were used for the LEGO and addition synthetic on the 125M and 1.3B parameter model, respectively.
Batch sizes of 4 and 16 were used for the Natural Instructions experiments on the 125M and 1.3B parameter model.

For the out-of-domain Natural Instructions experiment and Alpaca graph learning experiments, a learning rate of 5e-6 with
linear scheduler and 50 warmup steps was used. For the Natural Instructions continual pre-training experiment on the 1.3B
parameter model, a learning rate of 1e-6 was used. All other experiments used a learning rate of 5e-5. All experiments used
AdamW with betas = 0.9, 0.999, eps = 1e-8, and weight decay = 0.01. A context window of 512 was used.

Experiments with the Addition dataset were run using an Nvidia RTX A6000. Other experiments using the GPT-Neo 125M
parameter model were run on an Nvidia Tesla P100. Experiments using the GPT-Neo 1.3B parameter model were run on an
Nvidia Tesla A100.

E. Additional Experimental Results
E.1. Additional examples of LEGO ordered skill sets

For the LEGO synthetic, it may appear obvious that the skills graph is equivalent to the reasoning chain over the variables.
However, in Figure 15 we see that this is not the case. Training on skills 2 and 4 together results in lower loss on skill 4 than
when trained on skill 4 alone. However, training on skills 3 and 4 together results in roughly the same loss on skill 4 as
when training on skill 4 alone, even though skill 3 and skill 4 share an edge in the LEGO synthetic’s underlying reasoning
chain. This suggests that our intuition for how skills influence each other does not always match how the model learns skills.

Next, we consider a slightly more complex reasoning pattern on the LEGO synthetic. Instead of a chain, we construct a tree,
where two variables in the LEGO synthetic are both defined in terms of the same parent variable. For example,

Input: c = val 1, y = not w, v = val c, w = not c. Output: y = 1.

In this example, k = 4 and both v and w are written in terms of c, and the reasoning graph has edges 1→ 2, 1→ 3, 2→ 4.
In this case, we see that training on skill 2 or skill 3 both improve losses on skills 2 and 3 (Figure 16). However, unlike
the previous figures, training on skills 2 and 4 or skills 3 and 4 do not significantly help reduce loss on skill 4 (Figure 17).
Again, these measurements demonstrate that the reasoning graph does not necessarily equal the skills graph.

E.2. Unsupervised skill recovery

We explore several clustering techniques for recovering the skills in the LEGO synthetic on the validation dataset. Our
results are shown in Table 2.

We first cluster based on the pre-trained model embeddings of the last token and the average token. We also report accuracies
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24



Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models

ar
c_

ch
al

le
ng

e
ar

c_
ea

sy
bo

ol
q

co
pa

he
lla

sw
ag

la
m

ba
da

_o
pe

na
i

pi
qa

w
in

og
ra

nd
e

arxiv
books

c4
common_crawl

github
stackexchange

wikipedia

RedPajama

0.0

0.1

0.2

Figure 14. RedPajama heatmap for out-of-domain setting where rows are for the training skills and columns are for the evaluation skills.
The i, jth entry is max(0, δij) (the change in perplexity on sj after training on si for 1B tokens).

0 2000 4000 6000
Steps

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n 
Lo

ss

Model performance on LEGO skill 4
Trained on skill 4
Trained on skills 2, 4

0 2000 4000 6000
Steps

0.68

0.70

0.72

Va
lid

at
io

n 
Lo

ss

Model performance on LEGO skill 4
Trained on skill 4
Trained on skills 3, 4

Figure 15. Performance on LEGO skill 4 when training on skill 4, skills 2 and 4, and skills 3 and 4. Even though skill 3 and skill 4 share
an edge in the LEGO synthetic’s underlying reasoning chain (i.e. a model predicting correct for the fourth variable is one extra step
beyond predicting correct for the third variable), we find that training on skills 2 and 4 helps improve performance on skill 4 more.
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Figure 16. Performance on LEGO skill 2 and 3 when training on skills 2 and 3. The reasoning pattern is a tree rather than a chain over
k = 4 variables. Skills 2 and 3 are at the same “depth” in the graph and both depend on skill 1, so there is positive influence between the
skills despite there being no edge between 2 and 3 in the LEGO reasoning graph.
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Figure 17. Performance on LEGO skill 4 when training on skills 2, 4 and skills 3, 4. We find that in both cases, the benefit from training
on additional skills is minor. For instance, training on 2 and 4 reaches 0.01 loss in 2700 steps, while training on 4 only reaches it in 2100
steps.

Table 2. Clustering-based skill recovery methods on the LEGO dataset. The validation dataset we cluster consists of 500 points with
k = 5, and results are reported over 10 runs of k-means.

Cluster method Accuracy
Pretrained embedding of last token 24.8± 0.5

Pretrained embedding of average token 25.2± 1.1
Trained model embedding of last token 38.4± 0.8

Sentence-BERT embedding 23.9± 0.7
Losses over multiple runs 61.0± 1.6

of clustering based on the trained model embedding’s last token, where we train the model using random sampling for
6000 steps, and clustering based on Sentence-BERT embeddings. Among these four methods, using the trained model
embeddings has the highest accuracy of 38.4 points.

Next, we cluster points based on losses. In particular, we do 10 runs, each for 6000 steps and with a randomly sampled
mixture of skills. For each run, we evaluate the model on the validation dataset at 120 checkpoints. Then, each sample in
the validation dataset has 1200 losses associated with it, comprising a feature vector for that sample. We perform k-means
clustering on these features, which has an accuracy of 61.0 points, significantly higher than the second best accuracy of 38.4.

E.3. Full results for Section 5

E.3.1. PER-SKILL PERFORMANCE

We provide tables containing the per skill break-down of our results in Section 5.

Continual Pre-training In the continual pre-training setting, we report two additional baselines that combine curriculum
learning with skills. Curriculum learning has been proposed for multitask learning (Varshney et al., 2022), in which groups
of data are ranked by their average score and then trained in order of this ranking (with mixing of previously seen groups to
avoid forgetting). We construct two baselines, Skill-curriculum and Skill-anticurriculum, using Algorithm 1 from (Varshney
et al., 2022) with frac = 0.4.

We report loss per skill for the LEGO synthetic in Table 3, which corresponds to the results in Figure 4. We report accuracy
per skill in Table 4 and Figure 18. For the random baseline in both, we use an imbalanced dataset with proportions 1:1:1:3:5.

We report the loss per skill for the Addition synthetic in Table 5, which also correspond to to the results in Figure 4. For the
random baseline, we use an imbalanced dataset with randomly selected proportions: 13:14:18.

We report validation loss per task category for the Natural Instructions continual pre-training experiment in Table 6, where
we find that SKILL-IT outperforms random sampling by 3.2% on average across skills.
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Table 3. Results on validation loss per skill for LEGO pre-training experiment, averaged over 5 random seeds.
Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Average

Random 0±0.000 0.675±0.041 0.688±0.008 0.673±0.049 0.667±0.056 0.541±0.031

Curriculum 0±0.000 0.645±0.052 0.686±0.018 0.674±0.042 0.671±0.0459 0.535±0.029

Anticurriculum 0±0.000 0.690±0.003 0.695±0.004 0.693±0.003 0.689±0.004 0.554±0.001

Skill-stratified 0±0.000 0.045±0.036 0.056±0.029 0.079±0.044 0.050±0.025 0.046±0.022

Skill-curriculum 0±0.001 0.492±0.282 0.476±0.250 0.494±0.196 0.484±0.285 0.389±0.154

Skill-anticurriculum 0±0.000 0.373±0.299 0.599±0.099 0.660±0.064 0.679±0.031 0.462±0.087

SKILL-IT 0±0.000 0.002±0.002 0.024±0.031 0.013±0.010 0.022±0.021 0.012±0.008

Table 4. Results on accuracy per skill (binary classification) for LEGO pre-training experiment, averaged over 5 random seeds.
Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Average

Random 100.0±0.0 54.2±5.9 58.0±3.1 48.0±6.3 54.4±7.3 62.9±3.5

Curriculum 100.0±0.0 60.0±10.6 55.2±5.8 51.2±6.3 51.8±6.1 63.6±3.6

Anticurriculum 100.0±0.0 53.4±2.3 49.0±4.8 48.2±6.4 56.0±5.7 61.3±2.2

Skill-stratified 100.0±0.0 98.2±1.8 98.2±1.3 97.8±1.6 98.2±1.3 98.5±0.9

Skill-curriculum 100.0±0.0 68.8±19.3 67.4±21.8 65.4±20.8 66.2±22.6 73.6±14.8

Skill-anticurriculum 100.0±0.0 78.4±24.1 60.4±11.5 50.0±9.3 54.6±5.0 68.7±8.1

SKILL-IT 100.0±0.0 99.2±0.8 99.0±1.0 99.4±0.5 99.6±0.5 99.4±0.2
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Figure 18. Accuracy of SKILL-IT on each skill (binary classification) on the LEGO synthetic in the continual pre-training setting.
SKILL-IT attains higher accuracy more quickly than baselines that both do and do not utilize the notion of skills.

Table 5. Results on validation loss per skill for Addition pre-training experiment, averaged over 5 random seeds.
Skill 1 Skill 2 Skill 3 Average

Random 0.008±0.007 0.020±0.019 0.005±0.005 0.011±0.014

Curriculum 0.009±0.011 0.010±0.008 0.008±0.010 0.009±0.010

Anticurriculum 0.007±0.010 0.012±0.013 0.008±0.017 0.009±0.014

Skill-stratified 0.012±0.011 0.015±0.015 0.010±0.020 0.012±0.016

SKILL-IT 0.004±0.003 0.009±0.007 0.013±0.017 0.009±0.011
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Table 6. Validation loss per skill for data selection in continual pre-training setting on a subset of the Natural Instructions Dataset.
Skill Random Curriculum Anticurriculum Skill-stratified Skill-curriculum Skill-anticurriculum SKILL-IT

Answer Verification 2.297±0.058 2.368±0.055 2.391±0.061 2.180±0.059 2.249±0.116 2.325±0.085 2.158±0.059

Code to Text 0.246±0.021 0.203±0.019 1.099±0.115 0.178±0.016 0.126±0.009 1.232±0.070 0.223±0.017

Discourse Connective Identification 2.927±0.069 3.084±0.067 2.932±0.058 2.805±0.071 2.891±0.001 2.925±0.011 2.784±0.068

Entity Generation 2.033±0.421 2.012±0.437 2.363±0.234 1.803±0.384 1.853±0.483 2.068±0.719 1.863±0.418

Entity Relation Classification 1.020±0.147 1.014±0.140 1.533±0.138 0.859±0.131 0.825±0.022 0.959±0.009 0.908±0.146

Information Extraction 2.154±0.040 2.247±0.037 2.352±0.042 2.140±0.037 2.286±0.022 2.338±0.025 2.073±0.042

Irony Detection 3.024±0.154 3.798±0.095 2.942±0.158 2.680±0.146 3.889±0.066 2.099±0.152 2.797±0.155

Preposition Prediction 0.979±0.124 0.887±0.147 1.488±0.213 0.845±0.152 0.941±0.019 1.044±0.029 0.876±0.173

Punctuation Error Detection 2.950±0.065 3.120±0.052 2.961±0.064 3.264±0.061 3.019±0.010 3.360±0.013 3.216±0.055

Question Answering 2.277±0.005 2.367±0.006 2.398±0.006 2.542±0.004 2.689±0.001 2.707±0.016 2.448±0.008

Question Generation 2.617±0.005 2.777±0.015 2.695±0.008 2.783±0.021 3.062±0.006 2.876±0.032 2.666±0.012

Question Understanding 1.965±0.051 2.199±0.059 2.060±0.033 1.958±0.051 2.385±0.022 2.100±0.054 1.895±0.043

Sentence Expansion 2.501±0.095 2.598±0.097 2.583±0.074 2.225±0.095 2.311±0.076 2.408±0.074 2.236±0.083

Sentiment Analysis 3.203±0.012 3.415±0.016 3.209±0.010 3.278±0.014 3.607±0.012 3.308±0.015 3.213±0.012

Stance Detection 1.810±0.100 1.775±0.120 2.231±0.128 1.385±0.070 1.361±0.114 1.823±0.189 1.556±0.125

Summarization 2.961±0.015 3.149±0.023 3.041±0.014 2.960±0.019 3.323±0.028 3.021±0.013 2.907±0.012

Text Categorization 2.488±0.023 2.692±0.029 2.553±0.006 2.570±0.015 3.001±0.007 2.635±0.014 2.448±0.017

Text Matching 2.177±0.059 2.232±0.055 2.316±0.048 2.152±0.061 2.324±0.004 2.304±0.035 2.093±0.054

Text Simplification 2.155±0.023 2.193±0.039 2.325±0.033 1.926±0.026 2.037±0.005 2.156±0.011 1.952±0.026

Text to Code 0.560±0.037 0.495±0.036 1.215±0.052 0.490±0.029 0.433±0.014 1.455±0.086 0.553±0.042

Toxic Language Detection 3.106±0.027 3.496±0.017 3.058±0.029 3.199±0.024 3.758±0.025 3.155±0.050 3.129±0.020

Word Semantics 2.092±0.027 2.334±0.034 2.156±0.064 1.916±0.043 1.784±0.048 2.424±0.038 1.952±0.019

Wrong Candidate Generation 2.438±0.021 2.606±0.039 2.519±0.027 2.506±0.026 2.849±0.029 2.574±0.018 2.432±0.025

Average 2.173±0.028 2.307±0.025 2.366±0.026 2.115±0.027 2.304±0.031 2.317±0.052 2.103±0.032
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Figure 19. Performance of SKILL-IT in the out-of-domain setting for the NI test task split. SKILL-IT uses the graph between the train and
evaluation skills to produce an online mixture on the training dataset.

Out-of-domain In Figure 19, we show the validation loss curves for each evaluation skill when using random sampling on
the training data, skill-stratified sampling over prerequisite skills (e.g., the nonzero rows in Figure 13), and SKILL-IT. In
Table 7, we provide a breakdown of validation loss per evaluation skill under these three sampling methods.

Table 7. Validation loss per skill for data selection in out-of-domain setting over Natural Instructions train task split and test task split.

Skill Random Skill-stratified SKILL-IT

Answerability Classification 3.048±0.003 3.076±0.002 3.043±0.003

Cause Effect Classification 2.068±0.004 2.101±0.005 2.067±0.006

Coreference Resolution 3.101±0.003 3.142±0.004 3.099±0.004

Data to Text 2.363±0.004 2.388±0.005 2.359±0.005

Dialogue Act Recognition 2.329±0.009 2.364±0.010 2.320±0.009

Grammar Error Correction 2.399±0.008 2.418±0.009 2.389±0.007

Keyword Tagging 2.744±0.005 2.760±0.007 2.733±0.006

Overlap Extraction 2.749±0.011 2.763±0.012 2.733±0.010

Question Rewriting 2.591±0.009 2.628±0.011 2.586±0.010

Textual Entailment 2.472±0.002 2.503±0.003 2.468±0.002

Title Generation 3.027±0.002 3.037±0.002 3.015±0.002

Word Analogy 1.665±0.016 1.682±0.015 1.668±0.016

Average 2.546±0.003 2.572±0.003 2.540±0.003

In Table 8 we provide a breakdown of the RedPajama experiment’s accuracy per evaluation skill, corresponding to the
results in Figure 6.

E.3.2. WEIGHT TRAJECTORIES

We provide SKILL-IT’s weight trajectories for each result. The weight per skill across training steps for the LEGO pre-
training experiment corresponding to Figure 4 (left) is shown in Figure 20. We see that SKILL-IT initially allocates more
weight to skill 2 and less to 1, 3, 4, 5. Since skill 1 is learned quickly, the weight on skill 1 immediately drops to below 0.1
at 1000 steps. The weight on skills 3, 4, and 5 increase from around 0 to 3000 steps, during which their respective validation
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Table 8. Performance of model trained on RedPajama with uniform sampling and SKILL-IT on LM evaluation harness. Unless otherwise
noted, accuracy is reported for each task.

1 Billion Tokens 2 Billion Tokens 3 Billion Tokens

Uniform SKILL-IT Uniform SKILL-IT Uniform SKILL-IT

ARC Challenge (acc norm) 35.4 34.6 35.3 34.9 34.6 34.8
ARC Easy (acc norm) 62.2 61.2 62.4 61.7 62.5 62.0
BoolQ 68.9 68.2 67.7 68.6 67.2 68.7
COPA 81.0 82.0 80.0 81.0 81.0 81.0
HellaSwag (acc norm) 63.9 63.7 63.8 63.9 64.0 63.9
LAMBADA OpenAI 64.4 67.0 65.9 66.7 66.8 66.0
PIQA (acc norm) 74.8 75.0 75.5 75.2 75.0 75.7
Winogrande 62.8 63.9 63.9 63.2 63.4 63.1

Average accuracy 64.2 64.4 64.3 64.4 64.3 64.4

losses are higher than those of skills 1 and 2. Near the end of training, all losses are converging to 0, and so the weight per
skill is roughly uniform.

The weight per skill across training steps for the addition pre-training experiment corresponding to Figure 4 (right) is shown
in Figure 21. SKILL-IT allocates more weight to skill 2, which has an edge to skill 1 as shown in Figure 10. It also allocates
very little weight to skill 3, which is learned faster than the other two skills. Eventually, it puts more weight on skill 1, the
hardest skill, and then converges to uniform sampling as all validation losses approach 0.

The weight per skill across training steps for the LEGO fine-tuning experiment and the Spanish question generation and
stance detection experiments corresponding to Figure 5 is shown in Figure 22. Since there is only one target skill in these
experiments, the mixture of weights approaches uniform as the loss on the target skill approaches 0. It is interesting to
explore how to reduce edge weights and regularization so that the mixture approaches the target skill instead, although
preliminary experiments where we decayed the edge weight and the strength of the Bregman divergence term did not appear
better. We hypothesize that since training on a uniform mixture (as in Figure 3) did strictly better than training on the target
skill and their loss curves did not intersect during the training run, it is better to allocate non-negligible weight on all skills
throughout the training run.

The weight per skill across training steps for the Natural Instructions out-of-domain experiment corresponding to Figure 19
is shown in Figure 23, where the legend is provided for the top 10 task categories with the largest weights. While the initial
weights based on the skills graph roughly establishes the order of weight magnitude, the differences among the losses on
the evaluation skills increases the range of weights as training continues. As validation losses saturate, the weights also
converge to fixed values.

E.4. Experiments on 1.3B parameter model

We demonstrate that the skills graph learned on the 125M parameter model can be used for data selection when using
the 1.3B parameter model. We present results in the continual pre-training setting on the LEGO synthetic and Natural
Instructions.

All results are reported over 3 random seeds. For the LEGO experiment, we train for 1500 steps with η = 0.5, T = 30, w = 3.
For the NI experiment, we train for 5000 steps with η = 0.2, and T = 1. The skill graphs were learned using the 125M
parameter model as described in section D.2.

In Figure 24, we train the 1.3B model using SKILL-IT for the LEGO synthetic and find that it still outperforms random and
skill-stratified sampling on average. In particular, while performance across sampling methods is similar for early skills, the
discrepancy is larger for skill 5, for which SKILL-IT allocates more weight to dynamically. In Figure 25, we provide the
weight trajectories of SKILL-IT. We observe that the weight trajectories are similar to that on the 125M parameter model,
where initial weight is allocated towards skill 2. Later on, more weight is allocated towards skills 4 and 5, whose losses are
higher, and eventually the weight mixture converges to uniform as all losses converge to near 0.
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Figure 20. Weight per skill for LEGO pre-training experiment. SKILL-IT initially allocates more weight to skill 2, but eventually puts
more weight on harder skills (3, 4, 5) before converging to uniform sampling when all losses converge roughly to 0.
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Figure 21. Weight per skill for addition pre-training experiment. SKILL-IT initially allocates more weight to skill 2, which has an edge to
skill 1, while allocating little weight to skill 3 which is learned quickly. Eventually, SKILL-IT puts more weight on the harder skill 1
before converging to uniform sampling when all losses roughly approach 0.
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Figure 22. Weight per skill for fine-tuning experiments. Left: LEGO; Center: Spanish question generation; Right: stance detection.
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Figure 23. Weight per skill for Natural Instructions out-of-domain experiment. The legend shows the top 10 skills with the largest weight.
While the relative order of weight magnitude does not change significantly across training, the incorporation of loss dramatically increases
the range of the weights, showing the importance of an online algorithm.
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Figure 24. Performance of SKILL-IT for LEGO pre-training setting when skills graph is learned on a 125M parameter model and used for
data selection with a 1.3B model. SKILL-IT on average still outperforms random and skill-stratified sampling, suggesting that findings on
ordered skill sets can transfer from small models to large models.

In Table 9, we report performance of SKILL-IT with the 1.3B model on the Natural Instructions pre-training experiment and
find that the trends from the smaller model hold—SKILL-IT outperforms random and skill-stratified sampling on average.

E.5. Ablations

We report ablations on the skills graph and the online component of SKILL-IT. Instead of using A in Algorithm 1, we study
the performance when the identity matrix is used instead; intuitively, this corresponds to a misspecified skills graph where
no skill influences another skill. We refer this approach as “No graph”. Note that the opposite case of a complete graph
recovers skill-stratified sampling, and that this approach does not apply to the out-of-domain setting, since the submatrix
A ∈ Rk×m is not square.

Second, instead of sampling over multiple rounds and weighting according to the loss of each skill, we study the effect of
setting T = 1, which only uses a softmax on A to yield static weights on the skills. We refer to this approach as “Static”.
We omit results on Natural Instructions continual pre-training, since SKILL-IT uses T = 1 and using no graph with T = 1
recovers skill-stratified sampling. Intuitively, we expect the static version of SKILL-IT to perform somewhat well unless
there is significant discrepancy among the losses (e.g. in synthetics where the loss on one skill can be close to 0 while the
other is not, versus in Natural Instructions where all losses decrease consistently). For both ablations, we sweep over values
of η = [0.1, 0.2, 0.5, 0.8].

Figure 26 shows the comparison between SKILL-IT and no graph on the continual pre-training LEGO experiment, and
Figure 27 shows the comparison between SKILL-IT and a static approach. We see that both the graph and the online
dynamics of SKILL-IT are important for its performance. In particular, using no graph results in allocating significant weight
to harder skills early on, even though many of them have easier prerequisite skills (such as skill 3 having edges to skills
1 and 2). Using a static graph results in consistent allocation of significant weight to prerequisite skills even after their
validation losses converge to near 0, and thus the harder skills that have higher loss are not learned quickly afterwards.

We perform the same ablation on the Addition dataset—the results for this are shown in Figures 28 and Figure 29. We find
that these simple baselines, including using a static graph and no graph perform similarly to SKILL-IT on average across all
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Figure 25. Weight per skill for LEGO pre-training experiment on 1.3B parameter model. The trajectories are similar to those of the 125M
parameter model in Figure 20. SKILL-IT initially allocates more weight to skill 2, but eventually puts more weight on skills 4 and 5 before
converging to uniform sampling when all losses converge to near 0.
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Figure 26. Comparison of SKILL-IT versus using the identity adjacency matrix (no skills graph) with η = 0.1, 0.2, 0.5, 0.8 on the LEGO
continual pre-training experiment. The latter does not capture the relationship between skills, and we find that SKILL-IT attains lower loss
on all skills.
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Table 9. Results when skills graph for Natural Instructions learned on 125M parameter model is used for data selection with a 1.3B model.
We see that SKILL-IT on average still outperforms random and skill-stratified sampling, even though the edges used by SKILL-IT are not
derived from the larger model.

Skill Random Skill-stratified SKILL-IT

Answer Verification 2.005±0.059 1.903±0.069 1.890±0.072

Code to Text 0.302±0.032 0.204±0.022 0.269±0.032

Discourse Connective Identification 2.529±0.046 2.372±0.054 2.393±0.056

Entity Generation 2.108±0.328 1.788±0.429 1.885±0.461

Entity Relation Classification 1.130±0.048 0.836±0.006 0.841±0.010

Information Extraction 2.032±0.013 1.992±0.006 1.933±0.013

Irony Detection 2.802±0.125 2.528±0.146 2.585±0.149

Preposition Prediction 1.095±0.040 0.686±0.041 0.774±0.029

Punctuation Error Detection 2.633±0.027 3.188±0.055 2.726±0.025

Question Answering 1.947±0.003 2.119±0.003 2.073±0.001

Question Generation 2.214±0.007 2.345±0.008 2.263±0.010

Question Understanding 1.928±0.020 1.837±0.031 1.700±0.042

Sentence Expansion 2.054±0.018 1.828±0.060 1.853±0.058

Sentiment Analysis 2.771±0.009 2.818±0.006 2.774±0.007

Stance Detection 1.814±0.151 1.500±0.117 1.628±0.149

Summarization 2.531±0.009 2.472±0.012 2.440±0.013

Text Categorization 2.289±0.016 2.341±0.021 2.231±0.022

Text Matching 1.967±0.008 1.913±0.005 1.872±0.005

Text Simplification 1.861±0.003 1.692±0.023 1.698±0.022

Text to Code 0.614±0.030 0.518±0.030 0.585±0.022

Toxic Language Detection 2.853±0.020 2.911±0.019 2.862±0.018

Word Semantics 1.999±0.023 1.870±0.039 1.902±0.024

Wrong Candidate Generation 2.187±0.028 2.192±0.023 2.140±0.020

Average 1.985±0.022 1.907±0.027 1.883±0.032

skills—while SKILL-IT performs the best on skill 2 compared to vanilla multiplicative weights, and SKILL-IT performs the
best on skill 1 compared to a static graph. This suggests that Addition is somewhat easier than the other datasets that we
consider, as SKILL-IT still outperforms other baselines, as shown in Figure 4.

Figure 30 compares SKILL-IT, no graph, and static data selection for the LEGO fine-tuning experiment. No graph can be
interpreted as allocating equal weight to all training skills not equal to the target skill, and varying this weight versus the
weight on the target skill. While SKILL-IT and setting T = 1 behave similarly, we see that SKILL-IT is slightly better than
using no graph. For instance, SKILL-IT obtains a validation loss of 0.05 in 2000 steps, compared to 2050-2200 steps when
using no graph.

Figure 31 and 32 compare SKILL-IT, no graph, and static data selection for the Natural Instructions fine-tuning experiments.
For both Spanish QG and stance detection, SKILL-IT attains lower loss than using no graph or using T = 1 round.

Figure 33 compares SKILL-IT and static data selection for the Natural Instructions out-of-domain experiment. SKILL-IT
attains the lowest validation loss on 7 out of 12 evaluation skills. It has an average loss of 2.540 compared to a range of
2.541-2.551 for static data selection.
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Figure 27. Comparison of SKILL-IT versus using static data selection (T = 1) with η = 0.1, 0.2, 0.5, 0.8 on the LEGO continual
pre-training experiment. While SKILL-IT eventually allocates more weights to skills 3, 4, 5, which have higher loss, the static approach is
not able to do this. We find that SKILL-IT attains lower loss on all skills.
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Figure 28. Comparison of SKILL-IT versus using the identity adjacency matrix (no skills graph) with η = 0.1, 0.2, 0.5, 0.8 on the
Addition continual pre-training experiment. The latter does not capture the relationship between skills, and we find that SKILL-IT attains
lower loss on skill 2, but attains similar performance to methods that do not use the skills graph.
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Figure 29. Comparison of SKILL-IT versus using static data selection (T = 1) with η = 0.1, 0.2, 0.5, 0.8 on the Addition continual
pre-training experiment. We find that SKILL-IT attains lower loss on skill 1, but attains similar performance to the static methods.
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Figure 30. Comparison of SKILL-IT versus using no graph (left) and static data selection (right) with η = 0.1, 0.2, 0.5, 0.8 on the LEGO
fine-tuning experiment. All approaches have roughly the same loss trajectories, but SKILL-IT is slightly lower than using no graph.
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Figure 31. Comparison of SKILL-IT versus using no graph (left) and static data selection (right) with η = 0.1, 0.2, 0.5, 0.8 on the Natural
Instructions Spanish QG fine-tuning experiment. SKILL-IT attains lower validation loss than both no graph and static data selection.
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Figure 32. Comparison of SKILL-IT versus using no graph (left) and static data selection (right) with η = 0.1, 0.2, 0.5, 0.8 on the Natural
Instructions stance detection fine-tuning experiment. SKILL-IT attains lower validation loss than both no graph and static data selection.
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Figure 33. Comparison of SKILL-IT versus using static data selection with η = 0.1, 0.2, 0.5, 0.8 on the Natural Instructions out-of-domain
experiment. SKILL-IT attains the lowest validation loss on 7 out of 12 evaluation skills, and an average loss of 2.540 compared to a range
of 2.541-2.551 for static data selection.
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