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Abstract
Most of time series forecasting techniques assume
that the training data is clean without anomalies.
This assumption is unrealistic since the collected
time series data can be contaminated in practice.
The forecasting model will be inferior if it is di-
rectly trained by time series with anomalies. In
this paper, we aim to develop methods to auto-
matically learn a robust forecasting model from a
data-centric perspective. Specifically, we first sta-
tistically define three types of anomalies in time
series data, then theoretically and experimentally
analyze the loss robustness and sample robust-
ness when these anomalies exist. Based on our
analyses, we propose a simple and efficient algo-
rithm to learn a robust forecasting model which
outperforms all existing approaches.

1. Introduction
Time series data collected inevitably has data bias, i,e., they
are contaminated by noises and anomalies (Wen et al., 2022).
In time series forecasting with anomalies (TSFA), we study
how to make robust and accurate forecasting on contami-
nated data. The earliest work of TSFA can date back to (Con-
nor et al., 1994), where the classic detection-imputation-
retraining pipeline is proposed. In this pipeline, a forecast-
ing model is first trained using the data with outliers and
noises. Then the trained model is used to predict values for
each time step (detection). If the predicted value is far from
the observed value, we will regard this time step as anomaly
time step and then use the predicted value to replace the
observed value on this time step (imputation). After impu-
tation, the imputed (filtered) data are utilized to retrain a
new forecasting model. The detection-imputation-retraining
pipeline can work with any forecasting algorithm and im-
proves performance in many TSFA tasks. However, it is
very sensitive to the training threshold and anomaly types.

TSFA has very similar backgrounds to the research field of
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learning with noisy labels (LNL) (Natarajan et al., 2013;
Song et al., 2022), but the settings are quite different. In
LNL, the dataset consists of clean input samples X and the
noisy labels Ỹ . For example, in the image classification
task, some images may be wrongly annotated by humans.
However, in the forecasting framework, the target in the
past is often used as covariate to predict its future. Thus, in
TSFA, the noise (anomaly) exists in both X and Y , making
directly applying methods from LNL in TSFA challenging.

In this paper, we aim to build a unified framework for TSFA
from a data-centric perspective. In particular, we have con-
sidered different types of anomalies in time series data, cov-
ering major anomaly types in many real-world applications.
Based on the framework, we further propose a forecasting
algorithm called RobustTSF, which is highly robust and
outperforms SOTA in time series forecasting.

2. Preliminary and Formulation
Problem Formulation: Let (z1, z2, · · · , zT ) be a time
series (without anomalies) of length T . Assume that
the time series is partitioned into a set of time windows
(with size α), where each window contains a sequence
of predictors xn = (zn−α, zn−α+1, · · · , zn−1) and label
yxn

= zn, where n ∈ {1, 2, · · · , T − α}. This partition
gives the training set D = {(x1, yx1), · · · , (xN , yxN

)}
where N = T − α, which can be assumed to be drawn
according to an unknown distribution, D, over X × Y . In
real-world applications, time series may have anomalies
(anomaly types are defined later), and we can only observe
time series with anomaly signals. The observed training
set is denoted by D̃ = {(x̃1, ỹx1), · · · , (x̃N , ỹxN

)}, where
õ denotes the observed value. The robust forecasting task
aims to identify a model f that maps X to Y accurately
using the observed training set D̃ with anomalies.

Anomaly types: In the paper, we mainly consider point-
wise anomalies. Define the noise (anomaly) rate as η where
0 < η < 1. The observed value z̃t in the time series can be
represented as:

z̃t =

{
zt with probability 1− η

zA
t , with probability η

, (1)

where zt is the ground-true value and zA
t is the value of

anomaly. We consider three types of zA
t as follows:
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• Constant type anomaly: zA
t = zt + ϵ, ϵ is constant.

• Missing type anomaly: zA
t = ϵ, ϵ is constant.

• Gaussian type anomaly: zA
t = zt + ϵ, ϵ ∼ N (0, σ2).

N denotes Gaussian distribution, and the ϵ is noise scale.

3. Loss Robustness: Anomaly Effect in Y

Understanding how anomalies affect model performance is
hard when anomalies exist in both X and Y . Thus we first
assume the input X is clean and anomalies only exist in
Y . In this case, D̃ = {(x1, ỹx1), · · · , (xN , ỹxN

)} (we can
assume these data are non-overlapping segments of the time
series). ỹxn

can be represented as:

ỹxn
=

{
yxn

with probability 1− η

yAxn
, with probability η

.

Thus this setting is similar to the vanilla LNL setting except
that for time series forecasting, the problem is regression
instead of classification. Next, we examine the robustness
of loss functions for different anomaly types defined earlier.

Theorem 3.1. Let ℓ be the loss function and f be the
forecasting model. Under Constant and Missing type
anomalies with anomaly rate η < 0.5, if for each x,
ℓ(f(x), yx) + ℓ(f(x), yAx ) = Cx, where Cx is constant
respect to the choice of f . Then we have:

ED̃[ℓ(f(X), Ỹ )] = γ1ED[ℓ(f(X), Y )] + γ2, (2)

where γ1 > 0 and γ2 are constants respect to f .

Proposition 3.2. From Theorem 3.1, MAE is robust to Con-
stant and Missing type anomalies while MSE is not robust.

Theorem 3.3. Let ℓ be MAE or MSE loss function and f
be the forecasting model. Under Gaussian type anomaly,
let f∗ = argminf∈F ED̃[ℓ(f(X), Ỹ )]. Then we have
f∗(X) = Y .

Theorems 3.1 and 3.3 show that MAE is trustworthy for
the three types of anomalies defined earlier. Note that these
conclusions are made statistically. If the size of the training
set is relatively small or the anomaly rate is high, the perfor-
mance may still drop. However, in our experiments, we find
that MAE can be very robust in some real-world datasets.

4. Sample Robustness: Anomaly Effect in X

In this section, we analyze how anomalies in X affect the
model performance, leaving the label clean. We first assume
that not all input samples contribute the same to the perfor-
mance even though statistically, they have the same number
of anomalies.

Our assumption implies that the position of anomaly matters.
Experimentally, we find that when anomalies exist in the
front or middle of input time series, the performance does
not drop too much and is very close to the performance
of clean data training. However, when anomalies exist in
the back of time series, the performance significantly drops
when the anomaly rate increases.

5. RobustTSF algorithm
By referring our analyses in Section 3 and Section 4, we
show the procedure of our RobustTSF algorithm for time
series forecasting with anomalies tasks.

Given a time series z̃ = {z̃1, · · · , z̃T }, we first calculate its
trend s = {s1, · · · , sT } by solving the optimization:

min
s

T∑
t=1

|z̃t − st|+ λ ·
T−1∑
t=2

|st−1 − 2 · st + st+1|, (3)

where λ is the hyper-parameter, st is the t-th value in s. It is
worth noting that Equation (3) is a variation of the original
trend filtering algorithm (Kim et al., 2009). We change
(z̃t − st)

2 to |z̃t − st| to improve robustness. After trend
filtering, we can segment z and s to get the training set
D̃ = {(x̃1, s1, ỹx1), · · · , (x̃N , sN , ỹxN

)} which consists
of N triplets. Note that sn is the trend of x̃n. Let A(x̃n)
denote the anomaly score of (x̃n, sn, ỹxn

), which can be
calculated as follows:

A(x̃n) =

K∑
k=1

w(k) · |x̃k
n − skn|, (4)

where K is the length of the input x̃n, x̃k
n and skn are the

k-the value in x̃n and sn, respectively. |x̃k
n − skn| denotes

the extent of anomaly at time step k. w(k) is a weighting
function that is designed non-decreasing. Specifically, we
let w(k) = 0 when k < K

′
and w(k) = 1 when k ≥ K

′
.

The reason for designing w(k) as a non-decreasing function
is because the position of anomalies matters for the predic-
tion performance, as we showed in Section 4. we enlarge
the weights when anomalies are close to the labels. After
calculating the anomaly scores of all the samples, we design
the final loss in RobustTSF as:

L =

N∑
n=1

1(A(x̃n) < τ) · l(x̃n, ỹxn), (5)

where 1() is the indicator function which is 1 when the
condition is satisfied and 0 otherwise, τ is the threshold, and
l is chosen to be MAE loss function. We term our method
as RobustTSF. Note that RobustTSF is model agnostic and
can use any DNN model (e.g., LSTM, Transformer, etc.)
for time series forecasting.

We leave more discussion of RobustTSF and experiments
into Appendix.
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The appendix is arranged as follows: in Section A, we prove the theorems in the main paper; in Section B, we deeply connect
RobustTSF with LNL (Learning with Noisy Label) literature which builds a bridge between TSFA and LNL. in Section C,
we provide experiments including experiments visualizing each anomaly type of time series, experiments verifying our
claims in Section 3 and Section 4; experiments showing RobustTSF outperforms other SOTA methods.

A. Proof for Theorems
A.1. Proof for Theorem 3.1

Let Rℓ(f) = EDℓ(f(X), Y ) = Ex,yxℓ(f(x), yx) and Rη
ℓ (f) = ED̃ℓ(f(X), Ỹ ) = Ex,ỹx

ℓ(f(x), ỹx), respectively. Then

Rη
ℓ (f)

=Ex,ỹx
ℓ(f(x), ỹx)

=ExEyx|xEỹx|x,yx
ℓ(f(x), ỹx)

=ExEyx|x[(1− η) · ℓ(f(x), yx) + η · ℓ(f(x), yA
x)]

=ExEyx|x[(1− η) · ℓ(f(x), yx) + η · (Cx − ℓ(f(x), yx))]

=(1− 2 · η) ·Rℓ(f) + η · Ex,yxCx

where γ1 = 1− 2 · η > 0 and γ2 = η · Ex,yxCx, which are constants respect to f .

A.2. Proof for Proposation 3.2

Let q = f(x), then we are validating the value of ℓ(q, yx) + ℓ(q, yA
x). For MAE loss, the value is represented as

|q− yx|+ |q− yA
x|. From the property of absolute function, |q− yx|+ |q− yA

x| achieves minimum when q lies in the range
between yx and yA

x . Thus when min {yx, yA
x} < q < max {yx, yA

x}, we have |q − yx|+ |q − yA
x| = Cx = |yx − yA

x|.

This conclusion can not be fit for MSE loss, since (q − yx)
2 + (q − yA

x)
2 is not constant when min {yx, yA

x} < q <
max {yx, yA

x}.

A.3. Proof for Theorem 3.3

Following the notation in the proof for Theorem 3.1, we aim to show that ExEyx|x[(1− η) · ℓ(f(x), yx) + η · ℓ(f(x), yA
x)],

yA
x ∼ N (yx, σ

2) achieves minimum when f(x) = yx.

• For MSE loss, let q = f(x), then we are to show that (1− η) · (q− yx)
2 + η · (q− yA

x)
2 achieves minimum when q = yx.

Since (1 − η) · (q − yx)
2 achieves minimum when q = yx, we only need to prove

∫ +∞
−∞ g(yA

x) · (yA
x − q)2dyA

x achieves

minimum when q = yx where g(yA
x) =

1√
2πσ

exp(− (yA
x−yx)

2

2σ2 ) is the pdf of the distribution of yA
x .

Let s(q) = EyA
x
(yA

x − q)2 =
∫ +∞
−∞ g(yA

x) · (yA
x − q)2dyA

x , then

∂s(q)

∂q
= 0

=⇒2 · q − 2 · EyA
x
g(yA

x) = 0

=⇒q = EyA
x
g(yA

x) = yx

Thus
∫ +∞
−∞ g(yA

x) · (yA
x − q)2dyA

x achieves minimum when q = yx.

• MAE loss can also be proved with a similar procedure as follows.
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Let s(q) = EyA
x
|yA

x − q| =
∫ +∞
−∞ g(yA

x) · |yA
x − q|dyA

x , then

∂s(q)

∂q
= 0

=⇒EyA
x
(
−1 · (yA

x − q)

|yA
x − q|

) = 0

=⇒EyA
x
(1{yA

x < q} − 1{yA
x > q}) = 0

=⇒P(yA
x < q) = P(yA

x > q)

=⇒q = yx

Thus
∫ +∞
−∞ g(yA

x) · |yA
x − q|dyA

x achieves minimum when q = yx.

B. Connection between RobustTSF and LNL
The goal of LNL is to mitigate the noisy label effect in classification and learn a robust model from the noisy dataset
(Natarajan et al., 2013; Liu, 2021). The problem of LNL has been researched for a long time in the machine learning
community, and many methods have been proposed in recent years, such as sample selection (Jiang et al., 2018; Han et al.,
2018), robust loss design (Zhang & Sabuncu, 2018; Liu & Guo, 2020; Cheng et al., 2020; Zhu et al., 2021a), transition matrix
estimation (Patrini et al., 2017; Zhu et al., 2021b), etc. Among all these methods, arguably the most efficient treatment is to
adopt robust losses, since sample selection and noise transition matrix estimation always involve training multiple networks
or need multi-stage training. We say a loss ℓ is noise-robust in LNL if it satisfies the following equation (Ghosh et al., 2017;
Xu et al., 2019; Ma et al., 2020; Liu & Guo, 2020):

argmin
f∈F

E(X,Ỹ )[ℓ(f(X), Ỹ )] = argmin
f∈F

E(X,Y )[ℓ(f(X), Y )], (6)

where f is the classifier, X is the input, Y and Ỹ are clean labels and noisy labels, respectively. Equation (6) suggests
that minimizing ℓ over clean dataset with respect to f is identical to minimizing ℓ over the noisy dataset. In this case, ℓ is
robust to label noise. However, the robust losses in LNL cannot be directly applied to TSFA for two reasons: 1) Unlike LNL
problem whose noisy labels are modeled in the classification setting, TSFA is dealing with regression problems; 2) Noise in
LNL only exists in Y while anomalies in TSFA exist in both X and Y .

Next, we shown how RobustTSF connects to LNL:

• Denote the original observed inputs and labels as X̃ and Ỹ . We first select X
′

from X̃ where X
′

has little anomalies
close to the labels. Denote the ground-truth label and observed label of X

′
as Y

′
and Ỹ ′ , respectively. From our analyses of

sample robustness in Section 4, training on (X
′
,Y

′
) has very similar prediction performance compared to training on (X ,Y ).

I.e., X
′

acts like clean input time series. Mathematically, we have

argmin
f

EX,Y [l(f(X), Y )]≈argmin
f

EX′ ,Y ′ [l(f(X
′
), Y

′
)].

• Since the selection process does not involve the labels, the distribution of Ỹ ′ with respect to X
′

is unchanged. Let ℓ be
the robust loss (MAE) in the setting of anomalies. From our analyses of loss robustness in Section 3, we have:

argmin
f

E
X

′
,Ỹ

′ [l(f(X
′
), Ỹ ′)] ≈ argmin

f
EX

′
,Y

′ [l(f(X
′
), Y

′
)].

• Combining the above two equations, we have:

argmin
f

E
X′ ,Ỹ ′ [l(f(X

′
), Ỹ ′)]≈argmin

f
EX′ ,Y ′ [l(f(X

′
), Y

′
)] ≈ argmin

f
EX,Y [l(f(X), Y )]. (7)

The selection in Step 1 can refer to Section 5. Equation (7) implies that by using selective samples to train the model, the
performance can be close to the clean samples training without anomalies in both inputs and labels. Equation (7) can be
viewed as a generalization of Equation (6) which considers the noise in the inputs in TSFA tasks.

C. More Experiments
C.1. Visualizing each anomaly type

Figure 1 shows each anomaly type in the time series with different noise ratio.
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Figure 1. Visualization of time series with different types of anomalies. (a): Clean time series which is the sine function of time steps. We
normalize the time series to 0 mean and 1 std. (b) (c) (d): Time series (sine) with Constant, Missing, and Gaussian type anomalies. The
noise rate for these types of anomalies is 0.2. The noise scale is 1.0 for Constant and Gaussian anomaly and 0 for Missing anomaly.

Table 1. Comparison of loss functions on different anomaly types with anomaly rate 0.1 and 0.2. For each setting, we report the best
performance on test set, presented as MAE/MSE. The model structure is LSTM. Detailed experimental setting is left in Appendix ??.

Dataset Loss Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0.1 η = 0.2 η = 0.1 η = 0.2 η = 0.1 η = 0.2

Electricity MAE 0.185/0.070 0.187/0.071 0.189/0.071 0.195/0.078 0.184/0.070 0.186/0.073
MSE 0.190/0.071 0.205/0.081 0.209/0.082 0.217/0.089 0.187/0.071 0.188/0.074

Traffic MAE 0.194/0.108 0.199/0.112 0.206/0.119 0.210/0.123 0.198/0.112 0.206/0.117
MSE 0.208/0.119 0.222/0.124 0.249/0.148 0.302/0.191 0.204/0.121 0.214/0.131

Table 2. Evaluating how different positions of anomalies in the input time series affect prediction performance. For each dataset, we
simulate different types of anomalies with anomaly rates 0.1 and 0.2. The loss is MAE and the network structure is LSTM. Detailed
setting is left in Appendix ??.

Anomaly Type Electricity with Anomaly Position Traffic with Anomaly Position
front middle back front middle back

Clean 0.182/0.070 0.182/0.070 0.182/0.070 0.194/0.105 0.194/0.105 0.194/0.105
Const. (η = 0.1) 0.182/0.070 0.183/0.071 0.195/0.078 0.196/0.105 0.200/0.115 0.215/0.131
Const. (η = 0.2) 0.182/0.069 0.183/0.071 0.219/0.094 0.194/0.109 0.195/0.106 0.236/0.153

Missing. (η = 0.1) 0.182/0/070 0.186/0.073 0.204/0.083 0.203/0.118 0.203/0.120 0.221/0.127
Missing. (η = 0.2) 0.182/0.070 0.183/0.071 0.223/0.105 0.204/0.116 0.205/0.116 0.251/0.160
Gaussian. (η = 0.1) 0.184/0.071 0.187/0.071 0.196/0.075 0.204/0.120 0.206/0.114 0.211/0.133
Gaussian. (η = 0.2) 0.184/0.171 0.186/0.072 0.213/0.087 0.206/0.121 0.212/0.127 0.226/0.147

C.2. Verifying our claims for loss robustness

we examine our Theorems in two real-world time series datasets: Electricity and Traffic, which are used by many time
series forecasting papers (Yoon et al., 2022; Wang et al., 2021b; Wu et al., 2021). Since many works (Connor et al.,
1994; Bohlke-Schneider et al., 2020; Li et al., 2022) dealing with TSFA problems deploy RNN-based structure to conduct
experiments, we choose to use LSTM to validate our Theorems. Experiments are shown in Table 1. It can be observed that
for Constant and Missing type anomalies, MAE is very robust whose performance does not vary too much when anomalies
exist while MSE degrades the performance with the increase of the anomaly rate. For Gaussian-type anomalies, MAE and
MSE can both be robust. These results support our theoretical analyses for loss robustness when anomalies only exist in the
label.

C.3. Verifying our claims for sample robustness

To validate it, we simulate time series with anomalies located in different positions. A simple example with Gaussian type
anomalies is shown in Figure 2. Note for Figure 2 (b) (c) (d), the number of anomalies is statistically the same. We perform
experiments on Electricity and Traffic datasets to show how the position of anomalies affects the model performance in
Table 2. It can be observed that when anomalies exist in the front or middle of input time series, the performance does not
drop too much and is very close to the performance of clean data training. However, when anomalies exist in the back of
time series, the performance significantly drops when the anomaly rate increases. Intuitively, it is understandable since the
label is close to the back position of input time series. Interestingly, similar results can be found in temporal graph learning
(Wang et al., 2021a) which shows that the more recent edges are more informative for given target predictions.
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Figure 2. Visualization of time series with Gaussian anomalies in different positions. (a): Clean input time series which is the sine function
of time steps. We normalize the time series to 0 mean and 1 std. (b) (c) (d): Time series (sine) with Gaussian anomalies located in front,
middle and back of the input time series, respectively.

D. Comparing RobustTSF with SOTA methods
Here we demonstrate the effects of RobustTSF on TSFA tasks.

Model and Datasets Most of the recent papers on robust time series forecasting deploy LSTM-based structure to perform
experiments (Yoon et al., 2022; Wang et al., 2021b; Wu et al., 2021). Additionally, all the related works on TSFA task also
utilize LSTM. Thus we mainly adopt LSTM to perform experiments. Note all the methods use the same model structure for
fair comparison. We use Electricity1 and Traffic2 datasets to evaluate each method. For each dataset, we split the dataset
into training set and test set with a ratio of 7:3 and add anomalies in the training set. Note that we do not split a validation
set from training set for TSFA task for two reasons: 1) since the training set is noisy, the validation set from the training set
is not trustworthy for selecting models (Forouzesh et al., 2022) (We also demonstrate this in the Appendix); 2) Using the
model selected from the validation set to report best performance in the test set is insufficient to evaluate the method for
TSFA since a general consensus in LNL shows that DNN tends to fit clean samples and then fit noisy samples which cause
the performance (accuracy) will gradually increase and then decrease (Arpit et al., 2017; Hao et al., 2022). Thus stability is
also important for evaluating each method in TSFA task. Due to these two reasons, we follow the evaluation protocol from a
very popular and benchmark method in LNL (Li et al., 2020) that for each training epoch, we record the performance of
the DNN in the clean test set. After training ends, we report the best epoch test set performance and last epoch test set
performance for each method.

Comparing methods and evaluation criterion: We consider the following methods for comparison: Vanilla training,
which uses the model to directly train time series with MSE or MAE loss function, Offline imputation (Connor et al.,
1994), Online imputation (Bohlke-Schneider et al., 2020) and Loss based sample selection (Li et al., 2022). We adopt
MSE and MAE on test set to evaluate each method.

Training setup: Each method is trained for 30 epochs with ADAM optimizer. The learning rate is 0.01 for first 10 epochs
and 0.001 for last 20 epochs. For RobustTSF, we fix λ = 0.3 (Equation (3)), τ = 0.3 (Equation (5)), K

′
= K − 1 (Dirac

weighting) for all the experiments in the paper.

The experiments on single-step forecasting follows exact problem formulation in Section 2. The length of input sequence
is 16 for Electricity and Traffic. The overall results are reported in Table 3 from which we can observe some interesting
phenomenons:

• Among all the anomaly types, the missing anomaly has the largest negative effect on the model performance.

• Offline imputation, online imputation, and loss selection approaches do not have consistent improvement for all the
anomaly types in each dataset. For example, online imputation method has improvements compared to vanilla training
for missing anomaly type on the Traffic dataset but lower the performance for constant anomaly and Gaussian anomaly.
The same phenomenon also happens to loss-based sample selection. The reason is unlike LNL, the noise (anomaly) in
TSFA task exists in both X and Y , so small loss criterion in LNL does not fit well for TSFA tasks.

• Loss selection and RobustTSF are the most stable methods among all the methods (small ∆). They both select reliable
samples for training but RobustTSF has better performance than loss selection approach.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
2http://pems.dot.ca.gov
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Table 3. Comparison of different methods on Electricity and Traffic dataset for single-step forecasting. We report the best and last epoch
test performance for all methods, represented as MAE/MSE. We also report ∆ = |best − last|, which is the average of |best − last| for all
anomaly settings of each method, to reflect the stableness of each method. The best results are highlighted in bold font.

Dataset Method Clean Constant Anomaly Missing Anomaly Gaussian Anomaly
η = 0 η = 0.1 η = 0.3 η = 0.1 η = 0.3 η = 0.1 η = 0.3 ∆

Electricity

Vanilla
(MSE)

best 0.187/0.071 0.199/0.078 0.239/0.099 0.228/0.097 0.305/0.157 0.192/0.076 0.227/0.096 0.019last 0.205/0.082 0.219/0.091 0.258/0.117 0.229/0.098 0.354/0.197 0.213/0.087 0.255/0.124
Vanilla
(MAE)

best 0.182/0.070 0.191/0.077 0.206/0.086 0.205/0.086 0.225/0.092 0.199/0.080 0.210/0.086 0.015last 0.198/0.081 0.223/0.096 0.245/0.109 0.215/0.090 0.245/0.107 0.203/0.082 0.219/0.096

Offline best 0.184/0.071 0.187/0.071 0.214/0.087 0.190/0.074 0.212/0.084 0.184/0.070 0.193/0.075 0.009last 0.187/0.072 0.191/0.073 0.232/0.098 0.203/0.082 0.237/0.100 0.186/0.071 0.207/0.083

Online best 0.183/0.070 0.199/0.077 0.225/0.091 0.195/0.075 0.227/0.093 0.194/0.074 0.209/0.084 0.01last 0.201/0.077 0.212/0.084 0.250/0.104 0.215/0.084 0.234/0.097 0.204/0.078 0.215/0.087

Loss sel best 0.180/0.068 0.204/0.081 0.209/0.081 0.198/0.078 0.214/0.089 0.196/0.077 0.204/0.083 0.004last 0.182/0.069 0.208/0.085 0.217/0.089 0.205/0.083 0.217/0.090 0.205/0.083 0.210/0.086

RobustTSF best 0.177/0.065 0.177/0.066 0.183/0.070 0.181/0.068 0.194/0.074 0.176/0.067 0.177/0.067 0.004last 0.177/0.066 0.182/0.068 0.190/0.071 0.187/0.071 0.204/0.079 0.182/0.069 0.177/0.068

Traffic

Vanilla
(MSE)

best 0.196/0.112 0.210/0.119 0.233/0.129 0.268/0.171 0.446/0.353 0.219/0.132 0.292/0.205 0.007last 0.199/0.116 0.220/0.126 0.235/0.130 0.275/0.173 0.451/0.357 0.233/0.144 0.304/0.226
Vanilla
(MAE)

best 0.194/0.105 0.209/0.123 0.231/0.136 0.266/0.170 0.295/0.208 0.216/0.140 0.233/0.158 0.008last 0.202/0.114 0.210/0.123 0.245/0.151 0.272/0.186 0.307/0.220 0.224/0.148 0.234/0.159

Offline best 0.189/0.104 0.208/0.123 0.222/0.133 0.221/0.135 0.280/0.186 0.205/0.120 0.218/0.125 0.005last 0.193/0.110 0.220/0.133 0.230/0.142 0.221/0.135 0.281/0.187 0.209/0.123 0.223/0.131

Online best 0.206/0.118 0.216/0.113 0.239/0.126 0.220/0.116 0.233/0.127 0.224/0.127 0.244/0.141 0.016last 0.208/0.120 0.229/0.136 0.248/0.133 0.230/0.126 0.285/0.177 0.234/0.142 0.256/0.160

Loss sel best 0.196/0.115 0.226/0.144 0.257/0.160 0.241/0.153 0.325/0.235 0.211/0.133 0.260/0.179 0.004last 0.199/0.120 0.232/0.151 0.260/0.170 0.241/0.153 0.329/0.238 0.220/0.138 0.260/0.179

RobustTSF best 0.185/0.100 0.198/0.113 0.203/0.111 0.200/0.113 0.243/0.140 0.185/0.101 0.202/0.116 0.003last 0.185/0.100 0.200/0.112 0.209/0.116 0.203/0.114 0.250/0.152 0.185/0.101 0.205/0.119

• RobustTSF has consistent improvements compared to vanilla training for all the anomaly types and all the datasets,
which also suggests the usefulness of our selection module. It is very worth noting that even we do not manually add
anomalies (clean), RobustTSF still has clear improvement. The reason is that the collected data recorded from sensors
inevitably have anomalies. Thus our method is also a general method for time series forecasting task.


