
Improve Model Inference Cost with Image Gridding

Shreyas Krishnaswamy 1 Lisa Dunlap 1 Lingjiao Chen 2 Matei Zaharia 2 James Zou 2 Joseph E. Gonzalez 1

Abstract
The success of AI has spurred the rise of Machine
Learning as a Service (MLaaS), where compa-
nies develop, maintain, and serve general-purpose
models such as object detectors and image classi-
fiers for users that pay a fixed rate per inference.
As more organizations rely on AI, the MLaaS
market is set to expand, necessitating cost opti-
mization for these services. We explore how a
simple yet effective method of increasing model
efficiency, aggregating multiple images into a
grid before inference, can significantly reduce
the required number of inferences for processing
a batch of images with varying drops in accu-
racy. Experiments on open-source and commer-
cial models show that image gridding reduces
inferences by 50%, while maintaining low impact
on mean average precision (mAP) over the Pascal
VOC object detection task.

1. Introduction
Recently, large models such as DINO and ChatGPT have
shown remarkable progress on a wide range of tasks in
computer vision and natural language processing. However,
developing, training, and serving these models requires sig-
nificant up-front investment in hardware, engineering, and
data. As a consequence, large organizations have taken a
lead in developing these technologies and are increasingly
offering Inference-as-a-Service to provide smaller organiza-
tions access to these large-scale pre-trained models.

For inference services to be cost-effective on hardware ac-
celerators, requests must be processed in batches. Batching
inputs improves arithmetic intensity (Williams et al., 2009)
and increases hardware throughput (Crankshaw et al., 2017).
However, input-batching also means that inference services
must transform their inputs into fixed-size structures that
can be batched together, effectively limiting input size and,

1University of California, Berkeley 2Stanford University. Corre-
spondence to: Shreyas Krishnaswamy <shrekris@berkeley.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1: Object detection on a 2x2 image grid (Everingham
et al., 2010) using Faster R-CNN. Compressing multiple
images in one query substantially reduces the number of
queries and thus the query cost.

therefore, resolution. This presents a unique opportunity for
inference service users to reduce their number of prediction
requests – and as a consequence their costs – by cleverly
packaging multiple inputs into a single request.

To reduce inference cost, this paper introduces image grid-
ding. Contrary to traditional batching, which stacks images
in a tensor for computational efficiency, image gridding spa-
tially arranges images into a grid and submits the grid for
inference. For example, Figure 1 shows 4 images packed
together into a single image grid. The resulting bounding
boxes and labels were detected via a single inference.

Image gridding is particularly effective for many common
and simple computer vision tasks. For complex tasks that
require high accuracy, such as semantic segmentation, high-
res images generally produce better results since they pro-
vide more information to the model. However, many com-
mon tasks (such as detecting if a person is in a frame) can
tolerate low-res inputs without significant accuracy loss. For
these tasks, sending high-res inputs wastes compute since
(1) they likely get downscaled for batching and (2) they
don’t need high resolution. Instead, service users can down-
scale multiple images themselves and pack them into one
larger image to send as a single prediction request.

The primary tradeoff of image gridding is balancing effi-

1



Improve Model Inference Cost with Image Gridding

Figure 2: Scatterplot of image grid mAP@0.5 scores on Pascal (Everingham et al., 2010) using different models. Each dot
is a grid configuration used to profile the dataset. Sample configurations are labeled. Logistic trend lines are overlaid.

ciency against accuracy. More images per grid means lower
model accuracy as more objects are missed or misclassified.
Fortunately, large cost savings can still be achieved with
little drop in accuracy. Across open source and commercial
models, we observe that gridding can reduce inferences by
50% for object detection tasks on the Pascal VOC datasets
with as little as 0.028 reduction in mAP.

2. Image Gridding
MLaaS providers (gcp)(aws)(azu) typically charge per in-
ference per task requested. For example, suppose a user
requests face detection and object detection for a single im-
age. The MLaaS provider charges once for face detection
and once for object detection. Note that they typically do
not charge for the number of faces or objects in the im-
age. No matter the number detected, the user pays the same
amount. This aligns with the input costs for running ML
models: energy costs and environmental effects scale with
the number of inferences, not the number of detections.

Method. We sketch the image gridding process for object
detection, with extensions for other tasks in the appendix.

Given a set of images, each image must be scaled to fixed
size himg × wimg and then combined into a grid. The
grid must be submitted to the model. Object detection
models return bounding boxes and labels. Since they treat
the overall grid as one image, box coordinates are relative
to the grid, not an individual image. Each box must be
mapped to its image by converting the grid-based coordi-
nates to image coordinates. Given a box’s grid-based co-
ordinates (xg,min, yg,min, xg,max, yg,max) and image size
himg × wimg:

Ir =

⌊
yg,min + yg,max

2 · himg

⌋
Ic =

⌊
xg,min + xg,max

2 · wimg

⌋
ximg = xg − (Ic · wimg) yimg = yg − (Ir · himg)

Ir and Ic denote the image row and column index, respec-

tively, and ximg and yimg are the image coordinates for the
bounding box. This formulation maps each bounding box
to the image containing its midpoint.

3. Results
We profiled image gridding performance on Pascal VOC
2012 (Everingham et al., 2010) across three models: DETR
(Carion et al., 2020), Faster-RCNN (Ren et al., 2015) with
ResNet 50, and AWS Rekognition (aws). We used open
source implementations of Faster-RCNN (rcn) and DETR
(det). AWS Rekognition (aws) offers a closed source vision
model that charges per inference.

The scatterplots in Figure 2 show the cost-accuracy tradeoffs
across different grid settings. Each dot is a rectangular grid
configuration used to profile the dataset. The 1x1 point
(where each grid contains a single image) is the baseline.
The 2x1 point (where two images are stacked vertically)
enables the user to spend 0.5 inferences per image– and
reduce inference cost by 50%– while maintaining relatively
high mAP. mAP falls more sharply starting at 2x2 grids
and drops extensively for higher grid sizes, such as a 5x5.
Intuitively, this makes sense since the downscaling imposed
on high grid sizes results in missed or misclassified objects.
Numeric results can be found in the appendix.

4. Conclusion
In this work, we introduce image gridding, a technique to
pack multiple images into a single inference for tasks such
as object detection. This improves model efficiency and
reduces the cost of commercial vision models offered as a
service. Empirical results demonstrate that image gridding
can achieve significant cost savings with low accuracy loss.
Interesting areas of future work include extending image
gridding to more vision tasks, exploring algorithms to miti-
gate the accuracy loss, and mirroring this approach to ML
problems outside vision such as NLP.

2



Improve Model Inference Cost with Image Gridding

References
Aws rekognition. https://aws.amazon.com/
rekognition/. Accessed: 2023-05-10.

Azure cognitive service for vision. https:
//azure.microsoft.com/en-us/products/
cognitive-services/vision-services.
Accessed: 2023-05-10.

Detr huggingface documentation. https:
//huggingface.co/docs/transformers/
model_doc/detr. Accessed: 2023-05-10.

Google cloud vision api. https://cloud.google.
com/vision. Accessed: 2023-05-10.

Pytorch faster r-cnn models. https://pytorch.org/
vision/0.13/models.html. Accessed: 2023-05-
10.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part I, pp. 213–229, Berlin, Heidelberg,
2020. Springer-Verlag. ISBN 978-3-030-58451-1. doi:
10.1007/978-3-030-58452-8 13. URL https://doi.
org/10.1007/978-3-030-58452-8_13.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J.,
Gonzalez, J. E., and Stoica, I. Clipper: A Low-Latency
online prediction serving system. In 14th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pp. 613–627, Boston, MA,
March 2017. USENIX Association. ISBN 978-1-
931971-37-9. URL https://www.usenix.org/
conference/nsdi17/technical-sessions/
presentation/crankshaw.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,
and Zisserman, A. The pascal visual object classes (voc)
challenge. International Journal of Computer Vision, 88
(2):303–338, June 2010.

Ren, S., He, K., Girshick, R. B., and Sun, J. Faster R-CNN:
towards real-time object detection with region proposal
networks. CoRR, abs/1506.01497, 2015. URL http:
//arxiv.org/abs/1506.01497.

Williams, S., Waterman, A., and Patterson, D. Roofline:
An insightful visual performance model for multi-
core architectures. Commun. ACM, 52(4):65–76, apr
2009. ISSN 0001-0782. doi: 10.1145/1498765.
1498785. URL https://doi.org/10.1145/
1498765.1498785.

3

https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services
https://huggingface.co/docs/transformers/model_doc/detr
https://huggingface.co/docs/transformers/model_doc/detr
https://huggingface.co/docs/transformers/model_doc/detr
https://cloud.google.com/vision
https://cloud.google.com/vision
https://pytorch.org/vision/0.13/models.html
https://pytorch.org/vision/0.13/models.html
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785


Improve Model Inference Cost with Image Gridding

A. Image Gridding for Other Tasks
In this section, we sketch the image gridding method for two more tasks: classification and safe search.

Classification: Classification can be performed by running an object detection model on the grid, assigning each bounding
box to an image, and aggregating the bounding boxes’ labels for each image. Generally, object detection inferences are
more expensive than simple image classification; however, the gains from image gridding may outweigh the added cost,
depending on the particular model and dataset.

Safe Search: Safe search models provide a likelihood that the image is unsafe. Since pure object detection models are rarely
trained to detect unsafe images, users can adopt a divide-and-conquer strategy. If an image grid is determined unsafe, it
likely contains at least one unsafe image. The grid can then be divided into two subgrids, and each subgrid can be rerun.
This recurses until the specific unsafe images are found. If the number of unsafe images in the dataset is relatively small,
this approach can save inferences by quickly accepting entire groups of images that lack unsafe material.

B. Scatterplot Tables
This section contains data tables for the scatterplots in Figure 2.

Faster R-CNN

Grid Size Inferences per Image % Inf. Saved mAP ∆ mAP

1x1 1 0% 0.706 0
1x2 0.5 50.0% 0.678 -0.028
1x3 0.33 66.7% 0.626 -0.080
1x4 0.25 75.0% 0.555 -0.151
1x5 0.2 80.0% 0.486 -0.220
2x1 0.5 50.0% 0.677 -0.029
2x2 0.25 25.0% 0.642 -0.064
2x3 0.17 83.3% 0.607 -0.099
2x4 0.13 87.5% 0.547 -0.159
2x5 0.1 90.0% 0.475 -0.231
3x1 0.33 66.7% 0.627 -0.079
3x2 0.17 83.3% 0.603 -0.103
3x3 0.11 88.9% 0.530 -0.176
3x4 0.08 91.7% 0.504 -0.202
3x5 0.07 93.3% 0.466 -0.240
4x1 0.25 75.0% 0.558 -0.148
4x2 0.13 87.5% 0.546 -0.160
4x3 0.08 91.7% 0.501 -0.205
4x4 0.06 93.8% 0.433 -0.273
4x5 0.05 95.0% 0.400 -0.306
5x1 0.2 80.0% 0.488 -0.488
5x2 0.1 90.0% 0.475 -0.231
5x3 0.07 93.3% 0.463 -0.243
5x4 0.05 95.0% 0.398 -0.308
5x5 0.04 96.0% 0.334 -0.372

The ∆ mAP values are the change in mAP compared to the 1x1.

4



Improve Model Inference Cost with Image Gridding

DETR

Grid Size Inferences per Image % Inf. Saved mAP ∆ mAP

1x1 1 0% 0.753 0
1x2 0.5 50.0% 0.687 -0.066
1x3 0.33 66.7% 0.613 -0.14
1x4 0.25 75.0% 0.540 -0.213
1x5 0.2 80.0% 0.464 -0.289
2x1 0.5 50.0% 0.692 -0.061
2x2 0.25 25.0% 0.645 -0.108
2x3 0.17 83.3% 0.593 -0.16
2x4 0.13 87.5% 0.526 -0.227
2x5 0.1 90.0% 0.457 -0.296
3x1 0.33 66.7% 0.610 -0.143
3x2 0.17 83.3% 0.584 -0.169
3x3 0.11 88.9% 0.528 -0.225
3x4 0.08 91.7% 0.489 -0.264
3x5 0.07 93.3% 0.437 -0.316
4x1 0.25 75.0% 0.532 -0.221
4x2 0.13 87.5% 0.522 -0.231
4x3 0.08 91.7% 0.480 -0.273
4x4 0.06 93.8% 0.427 -0.326
4x5 0.05 95.0% 0.388 -0.365
5x1 0.2 80.0% 0.445 -0.308
5x2 0.1 90.0% 0.450 -0.303
5x3 0.07 93.3% 0.432 -0.321
5x4 0.05 95.0% 0.385 -0.368
5x5 0.04 96.0% 0.334 -0.419

The ∆ mAP values are the change in mAP compared to the 1x1.

5



Improve Model Inference Cost with Image Gridding

AWS Rekognition

Grid Size Inferences per Image % Inf. Saved mAP ∆ mAP

1x1 1 0% 0.782 0
1x2 0.5 50.0% 0.754 -0.028
1x3 0.33 66.7% 0.698 -0.084
1x4 0.25 75.0% 0.639 -0.143
1x5 0.2 80.0% 0.568 -0.214
2x1 0.5 50.0% 0.756 -0.026
2x2 0.25 25.0% 0.715 -0.067
2x3 0.17 83.3% 0.690 -0.092
2x4 0.13 87.5% 0.632 -0.15
2x5 0.1 90.0% 0.562 -0.22
3x1 0.33 66.7% 0.701 -0.081
3x2 0.17 83.3% 0.689 -0.093
3x3 0.11 88.9% 0.623 -0.159
3x4 0.08 91.7% 0.590 -0.192
3x5 0.07 93.3% 0.558 -0.224
4x1 0.25 75.0% 0.643 -0.139
4x2 0.13 87.5% 0.629 -0.153
4x3 0.08 91.7% 0.587 -0.195
4x4 0.06 93.8% 0.520 -0.262
4x5 0.05 95.0% 0.492 -0.29
5x1 0.2 80.0% 0.578 -0.204
5x2 0.1 90.0% 0.563 -0.219
5x3 0.07 93.3% 0.558 -0.224
5x4 0.05 95.0% 0.491 -0.291
5x5 0.04 96.0% 0.423 -0.359

The ∆ mAP values are the change in mAP compared to the 1x1.

6


