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Abstract

To ensure the safe deployment of AI models, it
is crucial to identify potential failure modes to
prevent costly errors. While failure detection in
classification problems has received significant at-
tention, characterizing failure or risk in regression
is more complex and less explored. In this paper,
we propose a new framework to characterize risk
regimes in regression models. Our framework
leverages the principle of anchoring to estimate
both uncertainties and non-conformity scores, that
can be used to jointly categorize samples into dis-
tinct risk regimes, thus enabling a fine-grained
analysis of model failure. Additionally, we intro-
duce a suite of metrics for evaluating such failure
detectors in regression settings. Our results on
synthetic and real-world benchmarks demonstrate
the effectiveness of our framework over existing
methods that rely solely on predictive uncertain-
ties or feature inconsistency to assess risk.

1. Introduction
Ensuring the safe deployment of AI models necessitates
proactive detection of potential failure modes to prevent
costly errors. In classification tasks, this is framed as gen-
eralization gap prediction, where the goal is to estimate the
expected deviation in model accuracy between an unlabeled
test set and a controlled validation set (Guillory et al., 2021;
Narayanaswamy et al., 2022; Baek et al., 2022; Chen et al.,
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2021; Jiang et al., 2019; Deng & Zheng, 2021). In contrast,
this paper focuses on detecting failures in deep regression
models, motivated by their significance in various critical
domains such as healthcare (Luo et al., 2022; Young et al.,
2020) and physical sciences (Raissi et al., 2019). Character-
izing failure in regression tasks is inherently complex due
to the subjective nature of failure and the variation in error
tolerances across different use cases.

Traditionally, predictive uncertainty (Lakshminarayanan
et al., 2017; Gal & Ghahramani, 2016; He et al., 2020;
Amini et al., 2020) is considered as a meaningful surrogate
for model risk. However, relying solely on uncertainty for
failure detection can be misleading, as low uncertainty re-
gions can still exhibit higher risk due to feature heterogene-
ity in the training data (Seedat et al., 2022). Furthermore,
data regimes outside the training support that have high
uncertainty can offer low risk if the model accurately extrap-
olates. Figure 1 demonstrates the weak correlation between
uncertainty and true risk using a simple 1D function with
different experimental designs. On the other hand, Seedat et
al. (Seedat et al., 2022), recently proposed a task-agnostic
approach to identify failure modes based on feature incon-
sistency compared to the training distribution. However,
given the task-agnostic nature of this approach, it can be
ineffective for arbitrary target functions.

In this paper, we introduce a novel framework for charac-
terizing failure in deep regression models. Our approach
organizes samples from a test set into different risk regimes,
such as ID (in distribution), Low Risk, Moderate Risk, and
High Risk. We use a unified anchoring-based approach
to estimate uncertainties as well as non-conformity scores,
that measures sample adherence to the training data mani-
fold (Thiagarajan et al., 2022; Netanyahu et al., 2023). Fig-
ure 1 highlights the discrepancy between true and predicted
risks across different risk regimes. Our framework outper-
forms state-of-the-art uncertainty-based and inconsistency-
based detectors in aligning risk regimes with the true risk.
Finally, we introduce novel evaluation metrics and demon-
strate the effectiveness of our framework in identifying gen-
eralization, out-of-distribution, and out-of-support regimes
using synthetic and real-world benchmarks.
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Figure 1. While predictive uncertainty is necessary to estimate risk, it is insufficient to fully characterize all risk regimes. Top:
Out-of-support (OOS) samples in the range of [2.2− 2.7] exhibit low uncertainty but moderate model risk due to significant deviation
from true function. Bottom: Even with better experiment designs, uncertainty alone in the extrapolating regime [4.5− 5] is unreliable due
to potential drift from the truth. Our proposed framework leverages anchoring (Thiagarajan et al., 2022) to unify prediction uncertainty
and non-conformity to the training manifold. It effectively identifies Moderate Risk regimes (highlighted in blue) and outperforms existing
baselines in accurately categorizing samples into appropriate risk categories, as indicated by lower MAE.

2. Background
Preliminaries. Let Fθ parameterized by θ be a predic-
tive model trained on a labeled dataset D = {(xi, yi)}Mi=1

with M samples. Note, each input xi ∈ X and label
yi ∈ y belong to the spaces of inputs X (in d−dimensions)
and continuous-valued targets y respectively. Given a non-
negative loss function L, the sample-level risk of a predictor
can be defined as R(x;Fθ) = Ey|x L(y, Fθ(x)). Basically,
risk is defined as the cost incurred for incorrect predictions.
Estimating true risk is challenging in practice without ac-
cess to the unknown joint distribution P (X, y). Therefore,
developing reliable methods to flag and categorize differ-
ent risk regimes is crucial for safe model deployment. We
now define the different regimes of generalization that we
want to characterize: (i) In-distribution: This is the sce-
nario where P (xt ∈ X) > 0 and P (xt ∈ D) > 0, i.e.,
there is likelihood for observing the test sample in the train-
ing dataset; (ii) Out-of-Support (OOS): The scenario where
P (xt ∈ X) > 0 but P (xt ∈ D) = 0 , i.e., the train and
test sets have different supports, even though they are drawn
from the same space; (iii) Out-of-Distribution (OOD): This
is the scenario where P (xt ∈ X) = 0, i.e., the input spaces
for train and test data are disjoint.

Anchoring in Predictive Models. Anchoring is a principle

for deep model training that involves reparameterizing an in-
put (query) sample x into a tuple with an anchor r drawn D
and the residual ∆x, denoted as [r,∆x] = [r, x−r]. Anchor-
ing establishes a relationship between x and r, inducing a
joint distribution dependent on both P (X) and the distribu-
tion of residuals P (∆). During training, anchoring ensures
prediction consistency by modeling the combinatorial rela-
tionship between every sample in D and infers the joint dis-
tribution P (X,∆). During inference, accurate predictions
are obtained when xt ∈ P (X) and [xt − r] ∈ P (∆). How-
ever, inconsistent predictions occur when the query xt is
OOS/OOD or produces an unseen residual ∆xt, which can
in turn shed light into model pitfalls. Anchoring has found
to be effective for various tasks. For example, Netanyahu et
al. (Netanyahu et al., 2023) employed a transduction proce-
dure with anchored models to produce accurate predictions
for OOS samples. The key insight was to transform an OOS
extrapolation problem into the task of determining an anchor
r such that the residual ∆xt = [r − xt] belongs to P (∆).
On the other hand, Thiagarajan and Anirudh (Thiagarajan
et al., 2022) considered anchoring as a means of injecting
trivial shifts in the dataset, leading to non-trivial variation
in the predictions and enabling uncertainty quantification.
In our framework, we consider these anchoring viewpoints
and estimate both uncertainty and non-conformity to the
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training manifold to characterize failure.

3. Proposed Approach
Generalization gap predictors in the classification setting
aim to estimate the correctness of the predicted labels as
proxies for failure indication. However, when it comes to
regression, defining failure becomes complex due to varying
levels of acceptable error tolerances in different scenarios.
To address this, we propose a novel framework for systemat-
ically characterizing failure in deep regression models. We
categorize unlabeled samples from a test set into different
risk regimes, namely (low, moderate, high) based on their
expected levels of risk. Furthermore, we make a signifi-
cant advancement in the estimation of sample-level risk,
which has been a challenging problem. Existing approaches
rely on predictive uncertainties or task-agnostic data incon-
sistency to approximate risk. In contrast, we leverage the
principle of anchoring in predictive models (Thiagarajan
et al., 2022; Netanyahu et al., 2023), to integrate both pre-
dictive uncertainty and non-conformity to the training data
manifold which are then used to derive the risk regimes.
Notably, our framework eliminates the need for separate
estimators for uncertainties and the proposed scores, and
it does not require additional calibration data. Finally, we
introduce a suite of evaluation metrics to enable a com-
prehensive evaluation of failure detection methods in deep
regression models.

3.1. A Novel Framework for Failure Characterization in
Regression Models

Given the challenge of accurately estimating sample-level
errors, especially in extrapolation scenarios (OOS or OOD),
a more flexible approach is to analyze groups of samples
with varying levels of expected risk. Although predictive
uncertainties are commonly used to identify sampling defi-
ciencies, Figure 1 shows that uncertainty estimates do not
always correlate with true risk. This renders uncertainty-
based failure detectors, such as DEUP (Lahlou et al., 2023),
ineffective in practice. The reason is that risk can stem from
various sources, only some of which are captured by such
uncertainties. While uncertainty can to an extent capture
failures related to OOS or OOD test samples, larger errors
can occur when (xt, yt) /∈ P (X, y), meaning that high risk
can arise regardless of the uncertainty on xt if the test sam-
ple (and its unknown target) deviates from the data manifold.
Therefore, we advocate for complementary scores that can
quantify this non-conformity.

We now describe our failure characterization framework
for deep regression models (Figure 2). Broadly, we catego-
rize the set of test samples based on both uncertainty and
non-conformity. We accomplish this by dividing the scores
into three bins: low, moderate, and high, determined by the

conditional quantile ranges [0, 25], [25, 75], and [75, 100]
respectively. This categorization allows us to create mean-
ingful partitions of the test data into risk regimes. We as-
sume a typical test set contains samples that are close to
the training distribution, as well as OOS and potential OOD
samples. Even when this assumption is not valid, and there
are no distribution shifts in the test set, our framework can
still identify regimes with increasing levels of expected risk.

ID (■): The model generalizes in this regime and is ex-
pected to produce the lowest prediction error. In our frame-
work, this corresponds to samples with low uncertainty and
low/moderate non-conformity scores;

Low Risk (■): Even when the uncertainty is low, the model
can produce higher error than the ID samples, when there
is incongruity (e.g., samples within a neighborhood having
different target values). Similarly, for OOS samples that
are associated with moderate uncertainties, the model can
still extrapolate well and produce reduced risk. Hence, we
define this regime as the collection of (low uncertainty, high
non-conformity) and (moderate uncertainty, low/moderate
non-conformity) samples;

Moderate Risk (■): Since predictive uncertainties can be
inherently miscalibrated, OOS samples, which the model
cannot extrapolate to, can be associated with moderate un-
certainties. On the other hand, the model could reasonably
generalize to OOD samples that are flagged with high un-
certainties. Hence, we define this regime as the collection
of (moderate uncertainty, high non-conformity) and (high
uncertainty, low/moderate non-conformity) samples;

High Risk (■): When both the uncertainty and non-
conformity scores are high, there is no evidence that the
model will behave predictably on those samples. In practice,
this can correspond to both OOS and OOD samples.

3.2. Uncertainty Estimation via Anchoring

Our failure analysis framework focuses on measuring un-
certainties and non-conformity in situations where the true
label is unknown. While there are various methods available
for estimating predictive uncertainty, accurately measuring
non-conformity has proven to be a challenge. In the context
of regression problems, existing approaches for character-
izing non-conformity include auto-encoding error-based
scoring in DataSUITE (Seedat et al., 2022) and feature con-
formal prediction (Teng et al., 2023). The former utilizes
an auto-encoder trained on a calibration dataset to calculate
the score, making it applicable to different tasks. However,
the latter relies on ground truth labels from a calibration
set and applies a conformal interval prediction approach,
which is not suitable for our scenario. Both methods exhibit
limited performance when the calibration dataset fails to
adequately capture the expected shifts during testing. To
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Figure 2. Overview of our proposed framework. We organize test examples into bins (low, moderate and high) using both predictive
uncertainty and scores of non-conformity to the training manifold. With such a categorization, our framework associates samples into
different levels of expected risk (ID, Low Risk, Moderate Risk and High Risk). We also develop a suite of metrics to assess the efficacy of
our failure detector.

address these limitations, we propose a unified approach
based on anchored neural networks.

As introduced in Section 2, an anchored model is trained
by transforming a training sample x into a tuple, (r, x −
r) based on an anchor r, which is also drawn randomly
from the training dataset D. Building upon the findings
from (Thiagarajan et al., 2022), at test time, predictions
from different anchor choices can be used to obtain the
mean and uncertainty estimates as follows:

µ(yt|xt) =
1

K

K∑
k=1

F ([rk, xt − rk]);

σ(yt|xt) =

√√√√ 1

K − 1

K∑
k=1

(F ([rk, xt − rk])− µ)2, (1)

where µ and σ are estimated by marginalizing across K
anchors {rk}Kk=1 sampled from D.

3.3. Measuring Non-conformity via Inverse Anchoring

Turning our attention to the assessment of non-conformity,
we make a noteworthy observation regarding the flexibility
of an anchored neural network. It is able to not only capture
the relative representation of a test sample in relation to an
anchor i.e., (anchor-centric), but also the reverse scenario
i.e., (query-centric). To elaborate, the prediction for an
anchor r is given as F ([xt, r − xt]), where xt represents a
test sample. Since the ground truth function value is known
for the training samples, we can measure the non-conformity
score for a query sample based on its ability to accurately
recover the target of the anchor.

From an alternative perspective, the original anchor-centric
model (Thiagarajan et al., 2022) ensures accurate predic-

tions for an input [r,∆] only when r ∈ D and ∆ ∈ P (∆).
However, for out-of-distribution (OOD) or out-of-sample
(OOS) samples, where ∆ /∈ P (∆), the estimated uncer-
tainty becomes large rendering it unreliable for ranking by
expected risk levels. In contrast, our proposed query-centric
score addresses this issue by directly quantifying the dis-
crepancy relative to the ground truth target. Specifically, we
define our non-conformity score as follows:

Score1(x) = max
r∈D

∥∥∥∥yr − F ([x, r− x])

∥∥∥∥
1

(2)

It is important to note that we measure the largest discrep-
ancy across all training samples in the training dataset. In
practice, this can be done for a small batch of randomly
selected training samples (e.g., 100). As demonstrated in
our results, our proposed non-conformity approach proves
highly effective compared to state-of-the-art uncertainty-
based and inconsistency-based failure detectors (refer to
Figure 1).

Better Resolving Regimes of Medium and High Risk
Upon closer examination of Equation (2), it becomes evi-
dent that samples located far from the training manifold can
exhibit uniformly poor model predictions (i.e., extrapola-
tion), as both x /∈ D and ∆ /∈ P (∆). Consequently, dis-
tinguishing between samples with moderate risk and those
with high risk becomes exceptionally challenging. To ad-
dress this issue, we propose an approach inspired by the
bilinear transduction procedure presented in (Netanyahu
et al., 2023). However, a key distinction between the two
approaches lies in the fact that, due to our query-centric
formulation, both the query x and ∆ must be in-distribution
to ensure the reliable prediction of the target for the anchor
by the anchored model F . We achieve this through the
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Figure 3. Risk regimes identified using our framework for 1D regression functions. By unifying predictive uncertainty and non-
conformity to the training manifold, as measured by Score1 or Score2, our approach accurately characterizes the risk regimes and
maintains a well-calibrated transition between them across different functions in the input space.

following optimization problem:

Score2(x) = max
r∈D

∥∥∥∥x− argmin
x̄

(∥∥∥∥yr − F ([x̄, r− x̄])

∥∥∥∥
1

+

λR(x̄)

)∥∥∥∥
2

,

(3)

where R(x̄) =

∥∥∥∥x̄−A([x, x̄−x])

∥∥∥∥
2

+

∥∥∥∥x−A([x̄, x− x̄])

∥∥∥∥
2

In this approach, the score is measured as the discrepancy
in the input space to a new fictitious sample that serves as
an intermediate anchor, such that its prediction matches the
known prediction on the training sample. In other words, we
optimize the modification of the query sample x to x̄ in such
a way that we accurately match the true target for the anchor
r. The non-conformity is then quantified as the distance
traversed in the input space to match the target. To ensure
that the resulting x̄ remains within the input data manifold,
we incorporate a regularizer R(x̄). Specifically, we train
an anchored auto-encoder A on the training dataset D and
enforce cyclical consistency, where A is required to recover
x using x̄ as the anchor and vice versa. While Score1 is
extremely scalable, Score2 provides better resolution in
the medium and high risk regimes at an increased compute
cost. In general, the choice of the non-conformity score is
determined by the constraints and risk tolerance in different
applications.

3.4. Evaluation Metrics

Existing studies (Lahlou et al., 2023) focused on reporting
the Spearman correlation between true risk and predicted
risk, while DataSUITE measured average error in top incon-
sistent samples. However, these metrics fail to provide a
comprehensive understanding of failure detectors across var-
ious risk regimes. To address this limitation, we introduce a
new suite of metrics (refer to Figure 2).

False Negatives (FN)(↓) This is the most important metric
in applications, where the cost of missing to detect high risk
failures is high. Hence, we measure the ratio of samples in
the ID or Low Risk regimes that actually have high true risk
(top 20th percentile of all test samples).

False Positives (FP)(↓) This reflects the penalty for scenar-
ios where arbitrarily flagging harmless samples as failures.
Here, we measure the ratio of samples in the Moderate or
High Risk regimes that actually have low true risk (bottom
20th percentile of all test samples).

Confusion in Low Risk Regimes (Clow)(↓) A common
challenge in fine-grained sample grouping (ID vs Low Risk)
is that detection score can confuse samples between neigh-
boring regimes. We define this metric to measure the ratio
between the 90th percentile of the ID regime and the 10th

percentile of the Low Risk regime.

Confusion in High Risk Regimes (Chigh)(↓) This is similar
to the previous case and instead measures the confusion
between the Moderate Risk and High Risk regimes.
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4. Experiments
Datasets. We use a suite of regression functions in varying
dimensions for evaluating the proposed approach.

(i) 1D Regression Functions: We used the following stan-
dard synthetic functions:

1. f1(x) =

{
x2 if x < 2.25 or x > 3.01

x2 − 20 otherwise

2. f2(x) = sin(2πx), x ∈ [−0.5, 2.5]

3. f3(x) = a exp(−bx) + exp(cos(cx)) − a − exp(1),
x ∈ [−5, 5], a = 20, b = 0.2, c = 2π.

4. f4(x) = sin(x) cos(5x) cos(22x), x ∈ [−1, 2]

In each of these functions, we used 200 test samples drawn
from an uniform grid and computed the evaluation metrics.

(ii) HD Regression Benchmarks: (a) Camel (2D), (b) Levy
(2D) (ben) characterized by multiple local and global min-
ima, (c) Kinematics (8D), (d) Puma (8D) (del) which are
simulated datasets of the forward dynamics of different
robotic control arms, (e) Boston Housing (13D) (bh) and
(f) Ailerons (39D) (ail) which is a dataset for predicting
control action of the ailerons of an F16 aircraft. For each
benchmark, we create two variants: Gaps (training exposed
to data with targets between (0 − 30th) and (60 − 100th)
percentiles) and Tails (training exposed to (0 − 70th) per-
centiles of the targets) resulting in a total of 12 datasets.

Baselines. (i) DEUP (Lahlou et al., 2023) is the state-of-
the-art epistemic uncertainty estimator of deep models. It
utilizes a post-hoc error predictor that learns to predict the
risk of the underlying model which is considered as a surro-
gate for uncertainty; (ii) DataSUITE (Seedat et al., 2022) is
a task-agnostic approach that estimates the inconsistencies
in the data regimes in order to assess data quality. Both
baselines rely on the use of additional calibration data to
either train the error predictor in case of DEUP and to obtain
non-conformity scores that assess the sample level quality
in the latter.

Training Protocols. For all experiments, we utilize the
open source ∆−UQ (Thiagarajan et al., 2022) which is
an efficient and scalable predictive uncertainty estimator
based on anchoring. We use an anchored MLP (Bishop &
Nasrabadi, 2007) with 4 layers each with a hidden dimen-
sion of 128, ReLU activation and batchnorm. We train our
models 5000 epochs with learning rate 5e− 5 and ADAM
optimizer.Without loss of generality, we utilize the L1 ob-
jective for training.

Table 1. Metrics for 1D Benchmarks. We report the FN, FP, Clow

and Chigh metrics on evaluation data across the entire target regime
(lower the better). Note that for every metric, we identify the first
and second best approach across the different benchmarks.

Metrics Method f1(x) f2(x) f3(x) f4(x)

DEUP 6.19 6.56 16.57 27.13
DataSUITE 14 8.8 16 7.2

Ours (Score1) 5.6 0 11.6 2.4
FN↓

Ours (Score2) 4.8 5.6 8.4 5.6

DEUP 8.91 3.41 8.54 9.09
DataSUITE 18.67 16 20 5.33

Ours (Score1) 2.67 0 4.67 6.67
FP↓

Ours (Score2) 1.33 2.67 4.33 4

DEUP 65.9 57.86 34.13 169.54
DataSUITE 59.42 24.61 22.44 89.51

Ours (Score1) 28.08 7.19 19.94 12.05
Clow↓

Ours (Score2) 20.61 17.8 16.57 19.7

DEUP 91.64 4.47 59.46 16.56
DataSUITE 3.66 46.02 58.32 6.81

Ours (Score1) 3.09 3.43 8.78 6.9
Chigh↓

Ours (Score2) 3.09 4.67 10.99 5.71

5. Findings
Our Framework Accurately Identifies Risk Regimes. To
characterize different risk regimes, it is crucial for a method
to align well with the inferred data manifold (ID) and pro-
gressively flag regions of low, moderate and high risk as
we move away from the training manifold. We achieve this
objective effectively, as illustrated in Figure 3. We observe
that our framework accurately identifies the training data
regimes (Green) as part of the ID. As we traverse further
from the training manifold, our approach assigns low risk
(Yellow) to unseen examples that are close to the training
data. Notably, as we encounter samples that are significantly
OOS or OOD, we consistently identify them as Moderate or
High risk. We ensure a well-calibrated transition between
risk regimes across the entire input space for the regres-
sion functions considered. Our unified framework excels in
characterizing regimes with moderate or low uncertainty, as
demonstrated in Figure 1 (top), where the regime [2.2, 2.7]
is correctly identified as moderate risk despite appearing to
have lower uncertainty.

Our Framework Produces Lower FN, FP and Confusion
Scores. As discussed in Section 3, it is crucial to avoid large
prediction errors in regimes identified as ID or low risk,
and vice versa, in order to minimize FN and FP. Moreover,
a reliable failure detector should effectively delineate risk
regimes based on true risk and minimize their overlap. It
can be observed from tables 1, 2 and 3 that our framework
significantly reduces FN, FP and confusion scores compared
to the state-of-the-art baselines. Remarkably, even in higher

6



Characterizing Risk Regimes for Safe Deployment of Deep Regression Models

Table 2. Assessing the identified risk regimes for HD Benchmarks (Gaps). We report the FN, FP, Clow and Chigh metrics on evaluation
data across the entire target regime (lower the better). Note that for every metric, we identify the first and second best approach across the
different benchmarks.

Metrics Method Camel (2D) Levy (2D) Kinematics (8D) Puma (8D) Housing (13D) Ailerons (39D)

DEUP 15.79 9.25 17.6 13.2 11.46 14.4
DataSUITE 21.74 19.69 18.4 16.8 17.71 11.2

Ours (Score1) 12.15 10.9 6.4 10.4 6.25 0.9
FN↓

Ours (Score2) 11.39 10.65 6.4 10.8 7.29 1.2

DEUP 17.48 10.04 18.67 12.0 10.34 16.0
DataSUITE 15.74 15.32 10.67 17.33 12.07 8.0

Ours (Score1) 3.36 5.04 12.0 9.67 8.62 4.0
FP↓

Ours (Score2) 7.56 4.2 10.67 8.83 9.07 1.33

DEUP 50.59 34.67 10.71 14.82 13.86 15.55
DataSUITE 42.92 71.06 21.96 15.26 14.8 30.78

Ours (Score1) 14.05 13.62 12.91 12.44 13.33 12.90
Clow↓

Ours (Score2) 10.13 10.41 10.93 8.71 10.42 11.18

DEUP 15.47 12.42 11.28 6.18 3.36 23.94
DataSUITE 37.51 36.5 5.97 10.57 22.56 4.2

Ours (Score1) 8.89 10.39 7.71 8.09 3.19 1.69
Chigh↓

Ours (Score2) 11.03 9.37 7.01 7.30 2.95 1.65

Table 3. Assessing the identified risk regimes for HD Benchmarks (Tails). For every metric, we identify the first and second best
approach across the different benchmarks.

Metrics Method Camel (2D) Levy (2D) Kinematics (8D) Puma (8D) Housing (13D) Ailerons (39D)

DEUP 10.53 7.34 14.4 16.8 2.11 18.4
Data SUITE 3.84 9.21 17.6 22.4 17.89 17.6

Ours (Score1) 0.0 4.56 8 8.8 1.05 9.6
FN↓

Ours (Score2) 0.25 4.82 7.2 10.4 2.32 9.6

DEUP 9.5 7.35 13.0 14.67 8.77 12.0
Data SUITE 3.83 6.38 24.0 26.67 19.3 12.0

Ours (Score1) 0.42 1.68 6.33 13.33 3.51 0.8
FP↓

Ours (Score2) 1.68 2.52 6.18 12.2 4.26 0.4

DEUP 34.04 52.74 6.36 5.37 13.0 11.07
Data SUITE 42.08 81.06 7.34 5.67 17.73 16.52

Ours (Score1) 15.59 26.44 6.58 4.61 5.14 17.19
Clow↓

Ours (Score2) 14.37 14.04 5.73 5.5 6.67 11.38

DEUP 23.69 20.75 6.83 2.63 5.69 7.25
Data SUITE 17.49 27.32 10.08 6.41 5.15 4.97

Ours (Score1) 7.5 17.93 7.14 2.46 5.07 2.31
Chigh↓

Ours (Score2) 6.7 15.18 7.09 2.81 4.05 2.43

dimensions and more complex extrapolation scenarios (e.g.,
Gaps and Tails, as discussed in Section 4), we consistently
outperform the baselines. Our non-conformity scores help
effectively reduce the overlap between risk regimes produc-
ing low (Clow and Chigh), making them reliable for identify-
ing samples that generalize well or those that are completely
out-of-distribution/out-of-sample (OOD/OOS). These high-
light the limitations of relying solely on predictive uncer-
tainties, such as DEUP, for failure characterization, as they

may not be sufficient in practical applications. Addition-
ally, uncertainty methods like DataSUITE, which assess
data quality without task-specific considerations, may not
accurately identify risk regimes.

Score2 Produces Non-Trivial Improvements Over
Score1. As described in Section 3, Score2 quantifies the
non-conformities in the input space and requires a test-time
optimization strategy to better enhance the identification of
moderate and high risk regimes. Our findings across various
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benchmarks indicate that Score2 reduces FN and FP and
confusion scores over Score1. Notably, Score2 exhibits a
more conservative approach in characterizing risk regimes,
resulting in comparatively lower confusion scores compared
to Score1.

6. Conclusion
In this paper, we propose a novel framework for failure
characterization in deep regression models. It leverages the
principle of anchoring to integrate predictive uncertainties
and novel non-conformity scores, enabling the organization
of samples into different risk regimes and facilitating a com-
prehensive analysis of model errors. We identify two key
impacts of our work. First, our framework can enhance the
safety of AI model deployment by proactively and preemp-
tively detect failure cases in various high impact scenarios
such as scientific simulations. This can prevent costly errors
and mitigate risks associated with inaccurate predictions.
Second, we contribute to advancing research in failure char-
acterization for deep regression. While we believe that it
can improve reliability, its deployment and usage should be
accompanied by ethical considerations and human oversight.
Decisions and actions based on the detected failure cases
should be made responsibly, taking into account potential
biases, fairness, and broader societal impact.

References
Ailerons datsets. https://www.dcc.fc.up.pt/

˜ltorgo/Regression/DataSets.html. Ac-
cessed: 2023-05-11. 6

Virtual library of simulation experiments. https:
//www.sfu.ca/˜ssurjano/index.html. Ac-
cessed: 2023-05-01. 6

Boston housing. https://scikit-learn.org/1.
0/modules/generated/sklearn.datasets.
load_boston.html. Accessed: 2023-05-11. 6

Delve datasets. https://www.cs.toronto.edu/

˜delve/data/datasets.html. Accessed: 2023-
05-11. 6

Amini, A., Schwarting, W., Soleimany, A., and Rus, D.
Deep evidential regression. Advances in Neural Informa-
tion Processing Systems, 33:14927–14937, 2020. 1

Baek, C., Jiang, Y., Raghunathan, A., and Kolter, J. Z.
Agreement-on-the-line: Predicting the performance of
neural networks under distribution shift. Advances in Neu-
ral Information Processing Systems, 35:19274–19289,
2022. 1

Bishop, C. M. and Nasrabadi, N. M. Pattern Recognition

and Machine Learning. J. Electronic Imaging, 16(4):
049901, 2007. 6

Chen, M., Goel, K., Sohoni, N. S., Poms, F., Fatahalian,
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