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Abstract
Supervised learning is an effective approach to
machine learning, but it can be expensive to ac-
quire labeled data. Active learning (AL) and par-
tial label learning (PLL) are two techniques that
can be used to reduce the annotation costs of su-
pervised learning. AL is a strategy for reduc-
ing the annotation budget by selecting and label-
ing the most informative samples, while PLL is
a weakly supervised learning approach to learn
from partially annotated data by identifying the
true hidden label. In this paper, we propose a
novel approach that combines AL and PLL tech-
niques to improve annotation efficiency. Our
method leverages AL to select informative binary
questions and PLL to identify the true label from
the set of possible answers. We conduct extensive
experiments on various benchmark datasets and
show that our method achieves state-of-the-art
(SoTA) performance with significantly reduced
annotation costs. Our findings suggest that our
method is a promising solution for cost-effective
annotation in real-world applications.

1. Introduction
Acquiring annotations of superior quality (Deng et al., 2009;
Everingham et al., 2010; Cordts et al., 2016) holds utmost
importance in the development of machine learning models
that excel in achieving state-of-the-art (SoTA) performance
across diverse tasks (He et al., 2016; 2017; Chen et al., 2018).
Nonetheless, the process of obtaining annotations can be
resource-intensive and time-consuming(Settles & Craven,
2008a). Active learning (Settles & Craven, 2008a) emerges
as a valuable technique to mitigate the costs and time asso-
ciated with annotation acquisition by employing an iterative
approach of querying a human expert to provide labels for a
subset of unlabeled data points (Yoo & Kweon, 2019; Gal
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et al., 2017; Sinha et al., 2019). The primary objective of
active learning is to intelligently select the most informa-
tive data points that warrant labeling, thereby facilitating
accelerated and accurate learning by the model.

Conventional supervised learning approaches necessitate
the assignment of a solitary, accurate label to each train-
ing instance (Deng et al., 2009; Everingham et al., 2010;
Cordts et al., 2016). Nevertheless, in numerous applica-
tions, obtaining a single ground-truth label can prove to be
a costly (Settles & Craven, 2008a), time-consuming (Settles
& Craven, 2008a), or even unattainable endeavor. An illus-
trative instance of such a challenge arises when attempting
to label images of rare avian species, where the expertise of
a qualified ornithologist may be scarce. Moreover, even if
experts are accessible, the potential for human error further
compounds the labeling process.

In juxtaposition to single labels, the acquisition of partial
labels (Cour et al., 2011) proves to be a relatively straightfor-
ward task. Partial labels (Jin & Ghahramani, 2002; Nguyen
& Caruana, 2008; Liu & Dietterich, 2012; Cour et al., 2011)
represent incomplete annotations that lack the comprehen-
sive information required to ascertain the true label of a data
point. For instance, consider a partial label assigned to an
image of a cat, such as ”feline.” While this label does not
divulge the precise breed of the cat, it does offer adequate
information to categorize the data point into the appropriate
class. The process of obtaining partial labels is consider-
ably more feasible than obtaining single labels, primarily
due to the cost-effectiveness, swiftness, and broader domain
expertise possessed by crowdworkers compared to domain-
specific experts.

Partial label learning (PLL) (Cour et al., 2011) has gained
a lot of traction recently due to its ability to learn from
data with partial labels. Most of the existing works focus
on learning to disambiguate partial labels and find the true
original labels (Jin & Ghahramani, 2002; Nguyen & Caru-
ana, 2008; Liu & Dietterich, 2012; Chen et al., 2014; Yu
& Zhang, 2017). However, one of the strong constraints of
PLL methods is that the true label has to be a part of the can-
didate set (Cour et al., 2011). This assumption makes it hard
to use PLL methods in many real-world applications. How-
ever, in this work, we astutely leverage this very constraint
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as an advantage to ease the annotation process.

In this work, we propose an approach to improve the efficacy
of the annotation process by combining active learning and
partial label learning. We use active learning to intelligently
select the binary questions that are most informative and em-
ploy partial label learning techniques to learn from partial
labels resulted due to these binary questions. By strategi-
cally optimizing the query selection process, our aim is to
achieve state-of-the-art (SoTA) performance with minimal
questioning. To summarize, our contributions encompass
the following key aspects:

1. A Novel Integration: We present a straightforward
yet highly effective methodology that combines active
learning and partial label learning techniques to signif-
icantly diminish the costs associated with annotation.
Our approach offers a compelling solution for opti-
mizing the annotation process while ensuring resource
efficiency.

2. State-of-the-Art (SoTA) Performance: Our proposed
approach not only attains SoTA performance with only
a fraction of the entire data, but it also achieves this
by asking a substantially reduced number of binary
questions compared to approaches that solely rely on
either active learning or partial label learning.

2. Related Work
Active Learning: Active learning (Settles & Craven,
2008a) is a machine learning paradigm that can improve
the performance of machine learning models by reducing
the amount of labeled data required. The model actively
queries an oracle for labels on a specific set of data points,
this alleviates the cost and time required for annotating the
entire dataset while not performing on par or better than
models trained with fully-labeled datasets.

To choose what samples to label, various strategies like least
confidence (Lewis & Gale, 1994), margin sampling (Schef-
fer et al., 2001) and entropy sampling (Settles & Craven,
2008b) are used. With the emergence of deep learning, these
query strategies were later applied (Wang et al., 2017) on
deep neural networks with encouraging results. While new
strategies specific to deep neural networks(Yoo & Kweon,
2019; Gal et al., 2017; Sinha et al., 2019) have been pro-
posed, strategies like entropy and random sampling are still
strong competitors(Munjal et al., 2020). We refer the reader
to (Pengzhen et al., 2020) for a detailed survey of active
learning techniques in deep neural networks.

Partial Label Learning: Partial label learning
(PLL) (Cour et al., 2011) is a type of weakly super-
vised learning where each training example is associated

with a set of candidate labels, among which only one
is the true label. This setting arises in many real-world
applications where it is difficult to give one precise label
either due to a lack of knowledge of annotation budget or
the cost associated with obtaining precise labels might be
too high.

Partial label learning methods primarily focus on disam-
biguating the ground-truth label from the candidate label
set associated with each training example. Existing strate-
gies for disambiguation include identification and averag-
ing. Identification based methods (Jin & Ghahramani, 2002;
Nguyen & Caruana, 2008; Liu & Dietterich, 2012; Chen
et al., 2014; Yu & Zhang, 2017) identify the label that is
most frequently associated with the training example. Aver-
aging based methods (Hüllermeier & Beringer, 2005; Cour
et al., 2011; Yu & Zhang, 2017) treat all the candidate la-
bels equally and average the modeling outputs for making
predictions.

Active Partial Label Learning: While active learning
(AL) and partial label learning (PLL) have been extensively
investigated separately, there is a scarcity of research that
comprehensively combines both methodologies. Existing
AL+PLL methods (Zhang et al., 2023; Li et al., 2022) that
query labels from an oracle require the oracle to select the
label from a large number of classes, which can be difficult.
In contrast, our method divides the task of querying par-
tial labels into smaller and easier tasks of answering binary
questions. This makes labeling easier for the oracle and also
improves the performance of the active learning algorithm.
The work by (Hu et al., 2018), focuses on acquiring true
labels for all the samples with reduced annotation effort.
They train a multiclass classifier from the partial labels in
order to take advantage of the partial labels. However, their
method does not leverage partial label learning methods for
disambiguation purposes. Moreover, the approach assumes
access to the class ontology, which is not always available in
practical scenarios. Our approach addresses the challenges
associated with class ontology availability and disambigua-
tion while combining AL and PLL. We divide the task of
querying partial labels into smaller and easier tasks of an-
swering binary questions. This makes labeling easier for the
oracle. We also leverage partial label learning methods for
disambiguation purposes. This allows us to achieve better
performance as compared to baseline approaches.

3. Methodology
3.1. Preliminaries:

Pool-Based Active Learning: Pool-based active learning is
the most commonly adopted active learning strategy aimed
at reducing the number of labeled samples required for effec-
tive model training. The process unfolds iteratively, starting
with an unlabeled dataset T , which can be partitioned into

2



Submission and Formatting Instructions for ICML 2023

1 1 1 1

1 1 1 1

Dog?

1 0 1 1

0 1 0 0yes

no0 1 0 0

L

L

Initialize pool and Train Initial Model Image Sampling

Binary Question SamplingUpdate Pools and Retrain Model

M

M

M

B

 

 

 

Figure 1. This figure shows the end-to-end pipeline of our proposed strategy. Here M represents the model, DL represents the labeled
pool and B represents the selected batch of samples.

disjoint sets L and U such that L ∪ U = T and L ∩ U = ∅.
Initially, set L comprises randomly selected samples from
T , which are subsequently labeled by consulting an oracle.
The remaining unlabeled samples from T are included in
set U .

Model M is trained using the labeled set L. Subsequently,
multiple cycles of active learning commence. Within each
cycle, a query function Q is employed to sample a subset B
from the unlabeled set U . The samples in subset B are then
labeled, subsequently removed from the unlabeled set U ,
and added to the labeled set L. The model M is retrained
using the updated labeled set L. This process of active
learning cycles is repeated until the model converges or the
annotation budget is fully utilized.

Partial Label Learning (PLL) Partial Label Learning
(PLL) is a type of weakly supervised learning, where the
training set consists of pairs (xi,yi), representing the sam-
ples and their corresponding candidate label sets. The
dataset contains a total of n samples, denoted by T =
{(xi,yi)}ni=1, xi ∈ Rd denotes a sample from the train-
ing set.

In PLL, labels are defined as sets, which are often referred
to as candidate sets yi,yi ⊆ {1...C}, where C represents
the total number of possible classes. The candidate set yi

captures the potential labels associated with a given sample.
Within the PLL framework, it is assumed that each candidate
set yi includes a true label yi, expressed as yi = yi ∪ zi,
where zi represents the distractor set. While we have access
to the candidate set yi, the true label yi remains hidden.

The primary objective of PLL methods is to train a classi-

fier model M capable of learning the relationship between
the input instance xi and the true label yi. By leveraging
the available candidate sets, The challenge in PLL lies in
effectively handling the presence of distractors within the
candidate sets and disambiguating the true label from the
distractor labels. PLL algorithms aim to infer the underlying
true labels accurately.

3.2. Obtaining Partial Labels in an Active Manner

Obtaining Partial Labels through Binary Questions As
outlined in Section 1, acquiring a single definitive label can
often be costly or even unattainable. To address this, we
adopt a strategy of obtaining reliable partial labels through
binary questions posed to an oracle. By formulating binary
(yes/no) inquiries, we elicit partial labels efficiently.

The process involves presenting the oracle with an (image,
class) pair and asking the question, ”Does the specific image
belong to the given class?” The oracle provides a binary
response of either yes or no. This approach enables us to
obtain partial labels in a more resource-conscious manner,
alleviating the burden of annotating each sample with a
precise class label.

When the binary question receives a ”yes” response, we
identify the true label, thereby finding a single label within
our candidate set for that image which becomes the true la-
bel. Conversely, if the answer to the binary question is ”no,”
we can eliminate that particular class from the candidate set
associated with the image.

To reduce the overall annotation cost, we can strategically
choose binary questions that have a higher likelihood of
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receiving a ”yes” response. By minimizing the number of
binary questions required, we enhance the efficiency of the
annotation process, optimizing resource allocation.

Pipeline Figure 1 shows the entire pipeline. We are given
a set of unlabelled images of size n, a list of C classes
which the images must be classified into and a maximum
annotation budget of b questions. We divide the annotation
budget equally among all the samples and hence each sam-
ple gets an annotation budget of b/n questions. Initially, all
the images have all the classes in their respective candidate
sets. We start by randomly sampling a set of images and
adding them to our labeled set of samples. All the remaining
samples are added to the unlabeled set U . For every sample
in the labeled set L, we ask random binary questions till
we have obtained the true label or the per-image budget
is exhausted which would provide us with a true label or
partial label respectively. We use this partially labeled set L
to train a model M . Now we run multiple active learning
cycles where we use an image query function Qi to sample
a set of images B. For every image in the sampled set B,
we query questions based on a question sampling function
Qq till the true label is acquired or the per-image question
budget is exhausted. This partially labeled batch B is added
to the labeled set L and removed from the unlabeled set U .
The labeled set L is used to retrain a model M . This cycle
continues till desired performance is reached.

3.3. Sampling Strategies

3.3.1. IMAGE SAMPLING STRATEGIES

In this section, we describe the different uncertainty-based
active learning approaches.

Random: The random sampling strategy selects samples
randomly from the unlabeled pool without considering any
specific criterion.

Confidence: The confidence sampling strategy, as intro-
duced in (Lewis & Gale, 1994), selects samples with the
least confidence score. The confidence score of a sample is
determined by the probability pm of its highest probability
class, calculated as:

s = pm

Here pm is the probability of the highest probability class
for the sample.

Entropy: The entropy sampling strategy, proposed in (Set-
tles & Craven, 2008b), chooses samples with the highest
entropy score. The entropy score of a sample is computed
using the class probabilities pc, and is defined as:

s = −
∑

c∈{1...C}

pc log pc

In the above equation, pc represents the probability of class
c for a given sample.

These sampling strategies enable the active learning process
to select informative samples based on their uncertainty,
allowing the model to learn from the most challenging and
uncertain instances during training.

3.3.2. QUESTION SAMPLING STRATEGIES

In this section, we discuss different active learning ap-
proaches for sampling which class to choose when asking
a binary question for annotation. These strategies are used
when the true label for a particular sample has not been
revealed yet and there is a budget left for that given sample.

Random: The random question sampling strategy selects
a class randomly from the set of available classes that have
not been asked previously for that sample.

Highest Probability: The highest probability question sam-
pling strategy selects the class with the highest probability
according to the current model’s predictions. This strategy
aims to prioritize the class that is considered most likely by
the model.

By employing these question sampling strategies, active
learning can effectively determine which class to inquire
about, contributing to the iterative learning process and
improving annotation efficiency.

Method Number of Questions Accuracy
PLL (30%) 134K 79.38 ± 0.39
PLL (60%) 224K 81.50 ± 0.99
PLL (90%) 270K 81.88 ± 0.37

OURS 76K 80.55 ± 0.20

Table 1. The table shows the comparison of our proposed approach
with different partial label annotation budgets. Our method outper-
forms the partial label approaches with respect to the number of
questions by a large margin.

4. Experiments:
In this section, we provide details about the experimental
setting architectures, the dataset we use to test our approach
along with the evaluation criteria.

4.1. Experimental Setting:

Datasets and Training Settings In order to show the ef-
fectiveness of our proposed approach, we evaluated it on
three standard image classification datasets: MNIST (Le-
Cun et al., 1998), CIFAR10(Krizhevsky et al., 2009) and
CIFAR100(Krizhevsky et al., 2009). For all MNIST exper-
iments, we train a three-layer MLP (Laine & Aila, 2016)
model. For CIFAR10 and CIFAR100, we train a ResNet
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Figure 2. The figure shows the comparison of our proposed approach of partially labeling the dataset actively (OURS) with the vanilla
active learning baseline approaches which are shown as Sample selection strategy (S) + Question selection strategy (Q). OURS uses
Random as the sample selection strategy and highest probability as the question sampling strategy. We also show a comparison with
vanilla partial label learning.

(He et al., 2016) model with SGD (Robbins & Monro, 1951)
optimizer. We use a learning rate of 1e-2 for MNIST and
5e-2 for CIFAR10 and CIFAR100. Next, we provide details
about the baselines, evaluation criterion, learning from par-
tial labels, and active learning settings in our experiments.

Baselines: We compare our proposed strategy with tradi-
tional active learning approaches which include random,
least confidence (Lewis & Gale, 1994) and entropy (Settles
& Craven, 2008b) sampling strategies.

Evaluation Criterion: We evaluated the performance of
all methods based on the top-1 accuracy of the models and
the number of binary questions required to achieve it. This
criterion provided a measure of both accuracy and efficiency
for the different approaches.

Learning from Partial Labels: To train our model using
the partial labels obtained from querying binary questions,
we employ the strategy proposed in the PRODEN paper
by Lv et al. (Lv et al., 2020). This strategy is designed to
iteratively identify the true label and improve the model’s
performance.

Active Learning Settings: In our active learning experi-
ments, we use a batch size of 1000 images for the MNIST
dataset and 5000 images for the CIFAR10 and CIFAR100
datasets. This batch size determines the number of sam-
ples selected for annotation in each iteration of the active
learning process.

For all our experimental results, we report the average ac-
curacy based on three independent runs. This ensures a
more robust evaluation of the performance of our proposed
approach across different datasets and random initialization
conditions.

4.2. Results

4.2.1. PERFORMANCE COMPARISON WITH VANILLA
ACTIVE LEARNING

To demonstrate the effectiveness of our approach, we com-
pare our proposed pipeline with traditional active learning
approaches. Figure 2 presents the results of our experi-
ments, and we make the following observations: (1) Our
method consistently outperforms the vanilla active learn-
ing approaches on all three datasets: MNIST, CIFAR10,
and CIFAR100. (2) On the CIFAR100 dataset, we achieve
95% of the accuracy obtained with full supervision, using
only 8% of the overall annotation budget. This highlights
the efficiency of our approach in achieving high accuracy
with limited annotations. (3) For the same top-1 accuracy,
our proposed method requires approximately 20% fewer
binary questions compared to the vanilla active learning
approaches. This reduction in the annotation budget further
emphasizes the efficiency of our approach. (4) Although the
highest probability question sampling strategy improves the
performance of the vanilla active learning approaches, our
proposed pipeline still outperforms it. This demonstrates
the additional benefits and effectiveness of our strategy be-
yond simple question sampling. (5) We also outperform
the vanilla partial label learning approach by a significant
number of questions.

4.2.2. PERFORMANCE COMPARISON WITH VANILLA
PARTIAL LABEL LEARNING

In Table 1, we compare the performance of our method with
vanilla partial label learning approaches on the CIFAR10
dataset. The corresponding results are also indicated by a
cross mark in Figure 2 for the other datasets. We observe
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Figure 3. The figure shows the comparison of sample selection strategy on our proposed approach(OURS). The methods are represented
as Sample selection strategy (S) + Question selection strategy (Q).

the following: (1) The performance of the model increases
as the number of questions per sample increases from 30%
to 60% and then to 90%. (2) Our method achieves similar
accuracy but with less than half the annotation budget. This
demonstrates the efficiency of our approach in achieving
comparable results while significantly reducing the number
of binary questions required.

4.2.3. EFFICIENT IMAGE SAMPLING WITH OUR
PROPOSED PIPELINE

We analyze the impact of different image sampling strategies
in our proposed pipeline. Figure 3 presents the results of this
comparison on all three datasets: MNIST, CIFAR10, and
CIFAR100. We compare the image sampling strategies of
random, high confidence, low confidence, high entropy, and
low entropy. We observe the following trends: (1) Sampling
easy samples first provides a performance gain compared
to random sampling for CIFAR100. This is because finding
the true class in CIFAR100 is a more challenging task, and
labeling easy samples initially can help simplify the pro-
cess. The performance gain obtained from finding the true
class outweighs the drop in performance caused by labeling
easy samples. (2) However, for MNIST, we observe the
opposite trend. The performance gain from finding the true
class is unable to compensate for the drop in performance
caused by labeling easy samples. Therefore, random sam-
pling performs better than sampling easy samples first in
the case of MNIST. These observations highlight the impor-
tance of considering dataset characteristics when selecting
the image sampling strategy. The effectiveness of different
strategies can vary depending on the dataset, and finding
the right balance between sampling easy samples and fo-
cusing on finding the true class is crucial for optimizing the
performance of our proposed pipeline.

5. Conclusion
In this study, we have presented a novel integration of ac-
tive learning (AL) and partial label learning (PLL) tech-
niques to effectively reduce annotation costs in supervised
machine learning. By incorporating binary questions de-
veloped through AL+PLL, we streamline the annotation
process and obtain high-quality labels while significantly
decreasing the overall annotation burden. Through extensive
experimentation on diverse benchmark datasets, we have
shown that our AL+PLL framework achieves remarkable
performance while significantly reducing annotation costs.
We believe that our findings pave the way for more efficient
and cost-effective annotation strategies that leverage AL and
PLL
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