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Abstract
Data valuation is a powerful framework for
providing statistical insights into which data
are beneficial or detrimental to model training.
Many Shapley-based data valuation methods have
shown promising results in various downstream
tasks, however, they are well known to be com-
putationally challenging as it requires training a
large number of models. To address this issue, we
propose Data-OOB, a new data valuation method
for a bagging model that utilizes the out-of-bag
estimate. The proposed method is computation-
ally efficient. Specifically, Data-OOB takes less
than 2.25 hours on a single CPU processor when
there are 106 samples to evaluate and the input
dimension is 100. We demonstrate that the pro-
posed method significantly outperforms existing
state-of-the-art data valuation methods in identify-
ing mislabeled data, highlighting the potential for
applying data values in real-world applications.

1. Introduction
Assessing the impact of data on a model’s performance is
important as it enhances our understanding of the data. The
main goal of data valuation is to establish a practical and
principled notion of the influence of individual data points
on the process of training a model.

A standard approach for evaluating the impact of data is
to use the marginal contribution, which is defined as the
average change in a model’s performance when a certain
datum is removed from a set of data points. Data Shapley
(Ghorbani & Zou, 2019), Distributional Shapley (Ghorbani
et al., 2020), and CS-Shapley (Schoch et al., 2022) belong to
this category. These methods have shown promising results
in many downstream tasks by leveraging every possible
marginal contribution (Ghorbani & Zou, 2019; Jia et al.,
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Figure 1. Illustration of the proposed data valuation method. The
OOB stands for the out-of-bag set. For each bootstrap sampling
procedure, we evaluate an estimate Tb(⋆) if the datum ⋆ is in the
OOB set. Here, Tb(⋆) is a score of the model trained with the
b-th bootstrap dataset evaluated at ⋆. The proposed data value
summarizes scores Tb(⋆) from the B bootstrap datasets. Details
are provided in Section 2.

2019). However, it often requires training a significant num-
ber of models to accurately estimate marginal contributions.
This has been recognized as the primary limitation in practi-
cal applications of data valuation.

In this paper, we propose Data-OOB, a new data valuation
framework for a bagging model that uses the out-of-bag
(OOB) estimate as illustrated in Figure 1. Our framework is
computationally efficient by leveraging trained weak learn-
ers and is even faster than KNN-Shapley which has a closed-
form expression. Our comprehensive experiments demon-
strate that the proposed method significantly better identifies
mislabeled data than existing state-of-the-art data valuation
methods.

2. Data-OOB: Out-Of-Bag Estimate as Data
Value

Suppose we have a trained bagging model that consists
of B weak learner models. For b ∈ [B] := {1, . . . , B},
we denote the b-th weak learner by f̂b : X → Y ,
which is trained on the b-th bootstrap dataset, i.e., f̂b :=
argminf∈F

1
n

∑n
j=1 wbjℓ(yj , f(xj)), where ℓ : Y × Y →

R is a loss function and wbj ∈ Z is the number of times
the j-th datum (xj , yj) is selected in the b-th bootstrap
dataset. We set wb := (wb1, . . . , wbn) for all b ∈ [B]. For
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Dataset n = 1000 n = 10000
KNN Shapley Data Shapley Beta Shapley AME Data-OOB KNN Shapley AME Data-OOB

pol 0.28± 0.003 0.50± 0.011 0.46± 0.010 0.09± 0.009 0.73± 0.004 0.28± 0.000 0.10± 0.012 0.88± 0.000
jannis 0.25± 0.004 0.23± 0.003 0.24± 0.003 0.09± 0.012 0.30± 0.001 0.28± 0.001 0.06± 0.012 0.33± 0.000
lawschool 0.45± 0.014 0.94± 0.003 0.94± 0.003 0.10± 0.009 0.96± 0.002 0.39± 0.005 0.08± 0.012 0.95± 0.000
fried 0.28± 0.005 0.32± 0.003 0.32± 0.004 0.09± 0.011 0.44± 0.004 0.35± 0.001 0.08± 0.012 0.54± 0.001
vehicle sensIT 0.20± 0.004 0.37± 0.006 0.39± 0.006 0.07± 0.011 0.49± 0.004 0.21± 0.004 0.09± 0.012 0.52± 0.001
electricity 0.26± 0.006 0.32± 0.004 0.34± 0.004 0.08± 0.010 0.35± 0.002 0.29± 0.001 0.08± 0.012 0.43± 0.001
2dplanes 0.30± 0.007 0.57± 0.006 0.54± 0.006 0.10± 0.009 0.58± 0.004 0.42± 0.004 0.10± 0.012 0.61± 0.001

Table 1. F1-score of different data valuation methods on the twelve datasets when (left) n = 1000 and (right) n = 10000. The average
and standard error of the F1-score based on 50 independent experiments are denoted by ‘average±standard error’. Bold numbers denote
the best method. In almost all situations, the proposed Data-OOB outperforms other methods in detecting mislabeled data.

ΘB := {(wb, f̂b)}Bb=1, we propose Data-OOB as follows.

ψ((xi, yi),ΘB) :=

∑B
b=1 1(wbi = 0)T (yi, f̂b(xi))∑B

b=1 1(wbi = 0)
. (1)

where T : Y × Y → R is a score function that repre-
sents the goodness of a weak learner f̂b at the i-th datum
(xi, yi). For instance, we can use the correctness func-
tion T (yi, f̂b(xi)) = 1(yi = f̂b(xi)) in classification set-
tings and the negative Euclidean distance T (yi, f̂b(xi)) =
−(yi − f̂b(xi))

2 in regression settings.

3. Experiments
In this section, we systematically investigate the practi-
cal effectiveness of the proposed data valuation method
Data-OOB in the mislabeled data detection. In Ap-
pendix C, we provide additional experimental results,
demonstrating that our method is computationally efficient
and highly effective in identifying mislabeled data.

Experimental settings We use seven classification
datasets that are publicly available in OpenML (Feurer et al.,
2021) and have at least 15000 samples. Also, we note that
many of these datasets were used in previous data valua-
tion papers (Ghorbani & Zou, 2019; Kwon & Zou, 2022a).
We compare Data-OOB with the following four data valu-
ation methods: KNN Shapley (Jia et al., 2019), Data
Shapley (Ghorbani & Zou, 2019), Beta Shapley
(Kwon & Zou, 2022a), and AME (Lin et al., 2022). We set
the training sample size to n ∈ {1000, 10000}, but Data
Shapley and Beta Shapley are computed only when
n = 1000 due to their low computational efficiency. All
methods except for Data-OOB require additional valida-
tion data to evaluate the utility function. We set the valida-
tion sample size to 10% of the training sample size n. As for
Data-OOB, we use a random forest model with B = 800
decision trees. To make our comparison fair, we use the
same number or a greater number of utility evaluations for
Data Shapley, Beta Shapley, and AME compared
to Data-OOB. Implementation details are provided in Ap-
pendix A.

3.1. Mislabeled Data Detection

Since mislabeled data often negatively affect the model
performance, it is desirable to assign low values to these
data points. To see the detection ability of Data-OOB, we
conduct mislabeled data detection experiment. We randomly
choose 10% of the entire data points and change its label
to one of other labels. We first compute data values as if
the contaminated dataset is the original dataset, and then
we evaluate the precision and the recall of data valuation
methods. Note that every method is not provided with an
annotation about which data point is mislabeled.

We assess the detection ability of different data valuation
methods. Following the mislabeled data detection task in
Kwon & Zou (2022a), we apply the K-means algorithm to
data values and divide data points into two clusters. (Arthur
& Vassilvitskii, 2007). We regard data points in a cluster
with a lower mean as the prediction for mislabeled data
points. Then, the F1-score is evaluated by comparing the
prediction with its actual annotations. Table 1 shows the
F1-score of different data valuation methods for the twelve
classification datasets. Overall, Data-OOB significantly
outperforms other state-of-the-art methods. In particular,
when dataset is ‘pol’ and n = 10000, Data-OOB achieves
3.1 and 8.7 times greater F1-score than KNN Shapley
and AME, respectively. As noted by Lin et al. (2022), the
F1-score for AME can be improved if the Model-X Knock-
off procedure is incorporated (Candes et al., 2018). How-
ever, it requires additional training LASSO models with
dummy variables, resulting in extra computational costs.
We demonstrate that Data-OOB shows strong performance
in detecting mislabeled data points without such procedures.

4. Concluding Remarks
In this paper, we propose Data-OOB that is suitable for
any tabular machine learning datasets as it is easy to train a
random forest model on such datasets. With comprehensive
numerical experiments, we demonstrate that Data-OOB is
significantly powerful in identifying helpful and harmful
data points for model training.
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A. Implementation Details
In this section, we provide implementation details. Our Python-based implementation codes are publicly available at
https://github.com/ykwon0407/dataoob.

Datasets We use seven classification datasets in Section 3. Every dataset is downloaded from ‘OpenML’ (Feurer et al.,
2021). Table 2 shows a summary of classification datasets.

We apply a standard normalization procedure. Each feature is normalized to have zero mean and one standard deviation.
After this preprocessing, we split it into the three datasets, namely, a training dataset, a validation dataset, and a test dataset.
We evaluate the value of data in the training dataset and use the validation dataset to evaluate the utility function. Note that
the proposed method does not use this validation dataset, and it essentially uses a smaller dataset. The test dataset is used for
point removal experiments only when evaluating the test accuracy. The training dataset size n is either 1000 or 10000, and
the validation size is fixed to 10% of the training sample size. The test dataset size is fixed to 3000.

Name Sample size Input dimension Number of Classes OpenML ID Minor class proportion

law-school-admission-bianry 20800 6 2 43890 0.321
electricity 38474 6 2 44080 0.5
fried 40768 10 2 901 0.498
2dplanes 40768 10 2 727 0.499
pol 15000 48 2 722 0.336
jannis 57580 54 2 43977 0.5
vehicle sensIT 98528 100 2 357 0.5

Table 2. A summary of seven classification datasets used in our experiments. We provide the dataset-specific OpenML ID in the column
‘OpenML ID’.

Hyperparameters for data valuation methods

• For KNN Shapley, the only hyperparameter is the number of nearest neighbors. Since there is no optimal fixed
number for hyperparameter, we set it to be 10% of the sample size n motivated by Jia et al. (2019).

• For Data Shapley and Beta Shapley, following Kwon & Zou (2022a), we use a Monte Carlo-based algorithm.
Specifically, it consists of two stages. In the first stage, we estimate every marginal contribution and in the second
stage, we compute the Shapley value or semivalues. The second stage is straightforward, so here we explain the first
stage. We first randomly draw a cardinality j from a discrete uniform distribution on [n]. Then, we uniformly draw a
subset S from a set of subsets with the cardinality j. After that, we evaluate utility U(S). We construct 10 independent
Monte Carlo chains for this procedure and compute the Gelman-Rubin statistics to check the convergence of a simple
average of marginal contributions. For each data point, we can compute the Gelman-Rubin statistics, and we consider
the maximum of these statistics across samples. We stop the algorithm if the maximum value is less than the threshold
value 1.05, which is less than a usual threshold 1.1 (Gelman et al., 1995). We use a decision tree model for the utility
evaluation for a fair comparison with the proposed method.

• For AME, we set the number of utility evaluations to be 800. Following Lin et al. (2022), we consider the same uniform
distribution for constructing subsets. That is, for each p ∈ {0.2, 0.4, 0.6, 0.8}, we randomly generate 200 subsets such
that the probability that a datum is included in the subset is p. The number of utility evaluation is chosen to be same
with the number of weak learners B of the proposed algorithm for a fair comparison. Like Data Shapley and
Beta Shapley, we use a decision tree model for the utility evaluation. As for the Lasso model, we optimize the
regularization parameter using ‘LassoCV’ in ‘scikit-learn’ with its default parameter values.

• The proposed method fits a random forest model with B = 800 decision trees using ‘scikit-learn’. In classification
settings, we use T (y1, y2) = 1(y1 = y2).
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B. Related Works
Bagging Bootstrap aggregation, which is also known as bagging, is an ensemble technique that trains multiple weak
learners where each learner is trained using a bootstrap dataset (Breiman, 1996). One popular and powerful bagging model is
the random forest in which multiple numbers of decision trees are trained with a randomly selected set of features (Breiman,
2001; Wager et al., 2014; Athey et al., 2019). While the primary usage of bagging is to improve a model’s performance by
decreasing the variance of its predictions, the proposed Data-OOB presents a distinct application of bagging.

Marginal contribution-based methods in machine learning Marginal contribution-based methods have been studied
and applied to various machine learning problems, for instance, feature attribution problems (Lundberg & Lee, 2017;
Covert et al., 2021; Kwon & Zou, 2022b), model explanation (Stier et al., 2018), collaborative learning (Sim et al., 2020),
and federated learning (Wang, 2019; Wang et al., 2020). The Shapley value is one of the most widely used marginal
contribution-based methods, and many alternative approaches have been studied by relaxing some of the underlying fair
division axioms (Yan & Procaccia, 2021; Kwon & Zou, 2022a; Wang & Jia, 2022; Rozemberczki et al., 2022).

C. Additional results
C.1. Elapsed Time Comparison

We first assess the computational efficiency of Data-OOB using a synthetic binary classification dataset. For d ∈ {10, 100},
an input X ∈ Rd is randomly generated from a multivariate Gaussian distribution with zero mean and an identity covariance
matrix, and an output Y ∈ {0, 1} is generated from a Bernoulli distribution with a success probability p(X). Here,
p(X) := 1/(1 + exp(−XT η)) and each element of η ∈ Rd is generated from a standard Gaussian distribution. We only
generate η once, and the same η is used to generate different data points. A set of sample sizes n is {104, 2.5× 104, 5×
104, 105, 2.5× 105, 5× 105}. We measure the elapsed time with a single Intel Xeon E5-2640v4 CPU processor. For a fair
comparison, the elapsed time for Data-OOB includes the training time for the random forest.

As Figure 2 shows, Data-OOB achieves better computational efficiency than existing methods KNN Shapley and AME
in various n and d. Specifically, Data-OOB is 54 times faster than KNN Shapley when (n, d) = (105, 10). Interestingly,
we find KNN Shapley is slow despite having the closed-form expression because it needs to sort n data points for each
validation data point. When (n, d) = (5 × 105, 100) and the validation sample size is 104, KNN Shapley exceeds 24
hours. For this reason, we exclude this setting from Figure 2. KNN Shapley can be more efficient if the validation size is
smaller, but it would cost the quality of data values. In comparison with AME, Data-OOB does not require training LASSO
models, achieving better computational efficiency.

As for the algorithmic complexity, when a random forest is used, the computational complexity of Data-OOB will be
O(Bdn log(n)) where B is the number of trees, d is the number of features and n is the number of data points in the
training dataset. This is because the computational cost of Data-OOB is mainly from training a random forest model,
and its computational complexity is O(Bdn log(n)) (Hassine et al., 2019). Meanwhile, the computational complexity of
KNN Shapley will be O(n2 log(n)) when the number of data points in the validation dataset is O(n) (e.g. 10% of n).
These results support why the elapsed time for Data-OOB increases linearly and that of the KNN-Shapley increases
polynomially in Figure 2. In addition, it shows that ours can be beneficial when n is increasing but B and d are fixed.

Our method is highly efficient and it takes less than 2.25 hours when (n, d) = (106, 100) on a single CPU processor. The
proposed method can be more efficient with the use of trained multiple weak learners. For instance, when (n, d) = (105, 10),
the computation of Data-OOB takes only 13% of the entire training time for a random forest.

C.2. Mislabeled data detection

Figure 3 compares the precision-recall curves of different data valuation methods. AME is not displayed because it assigns
the exactly zero value for most data points, resulting in meaningless precision and recall values. Data-OOB shows better or
comparable performance than existing marginal contribution-based methods in various settings.
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Figure 2. Elapsed time comparison between KNN Shapley, AME, and Data-OOB. We use a synthetic binary classification dataset with
(left) d = 10 and (right) d = 100. We exclude the setting (n, d) = (5× 105, 100) as KNN Shapley exceeds 24 hours. The error bar
indicates a 95% confidence interval based on 5 independent experiments. Data-OOB is significantly faster than KNN Shapley and
AME. The time for training the random forest is included in the time for Data-OOB.
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Figure 3. Precision-recall curves of different data valuation methods on the three datasets when (top) n = 1000 and (bottom) n = 10000.
The larger area under the curve is, the better method is. The proposed method shows superior or comparable identification performance in
various settings.
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