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Abstract

Human-centric computer vision (HCCV) data cu-
ration practices often neglect privacy and bias
concerns, leading to dataset retractions and un-
fair models. Further, HCCV datasets constructed
through nonconsensual web scraping lack the nec-
essary metadata for comprehensive fairness and
robustness evaluations. Current remedies address
issues post hoc, lack persuasive justification for
adoption, or fail to provide proper contextualiza-
tion for appropriate application. Our research
focuses on proactive, domain-specific recommen-
dations for curating HCCV datasets, addressing
privacy and bias. We adopt an ante hoc reflective
perspective and draw from current practices and
guidelines, guided by the ethical framework of
principlism.

1. Introduction
Contemporary human-centric computer vision (HCCV) data
curation practices which prioritize dataset features such as
size and utility have pushed issues related to privacy and bias
to the periphery, resulting in dataset retractions or modifica-
tions (Parkhi et al., 2015; Guo et al., 2016; Kemelmacher-
Shlizerman et al., 2016; Merler et al., 2019; Torralba et al.,
2008; Deng et al., 2009) as well as models that are unfair or
rely on spurious correlations (Hendricks et al., 2018; Menon
et al., 2020; Hill, 2020; Barr, 2015; Sagawa et al., 2020;
Geirhos et al., 2020; Beery et al., 2018; Rosenfeld et al.,
2018). HCCV datasets primarily rely on nonconsensual web
scraping (Mudditt, 2022; Raji & Fried, 2021; Stewart et al.,
2016; Ristani et al., 2016; Grgic et al., 2011; Günther et al.,
2017; Founds et al., 2011). These datasets not only regard
image subjects as free raw material (Birhane, 2020), but also
lack the ground-truth metadata required for fairness and ro-
bustness evaluations (Karras et al., 2019; Lin et al., 2014;
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Merler et al., 2019; Everingham et al., 2010). This makes
it challenging to obtain a comprehensive understanding of
model performance across dimensions, such as data sub-
jects, instruments, and environments, which are known to
influence performance (Mitchell et al., 2019). While, for ex-
ample, image subject attributes can be inferred (Karkkainen
& Joo, 2021; Or-El et al., 2020; Liu et al., 2015; Kuznetsova
et al., 2020; Schumann et al., 2021; Zhao et al., 2021; Buo-
lamwini & Gebru, 2018; Alvi et al., 2018; Robinson et al.,
2020; Wang et al., 2019), this is controversial for social
constructs, notably race and gender (Hanna et al., 2020;
Keyes, 2018; Benthall & Haynes, 2019; Khan & Fu, 2021).
Inference introduces additional biases (Reid & Nixon, 2011;
Segall et al., 1966; Balaresque & King, 2016; Hill, 2002;
Garcia & Abascal, 2016) and can induce psychological harm
when incorrect (Campbell & Troyer, 2007; Roth, 2016).

Recent efforts in machine learning (ML) to address these is-
sues often rely on post hoc reflective processes. Dataset doc-
umentation focuses on interrogating and describing datasets
after data collection (Holland et al., 2018; Bender & Fried-
man, 2018; Pushkarna et al., 2022; Srinivasan et al., 2021;
Rostamzadeh et al., 2022; Butcher et al., 2021; Fabris et al.,
2022b; Afzal et al., 2021; Papakyriakopoulos et al., 2023;
Gebru et al., 2018). Similarly, initiatives by NeurIPS and
ICML ask authors to consider the ethical and societal im-
plications of their research after completion (Prunkl et al.,
2021). Further, dataset audits (Shankar et al., 2017; Peng
et al., 2021) and bias detection tools (Wang et al., 2022;
Beretta et al., 2021) expose dataset management issues and
representational biases without offering guidance on respon-
sible data collection. In addition, proposals for artificial in-
telligence (AI) and data design guidelines (Peng et al., 2021;
Denton et al., 2021; Luccioni et al., 2022; Google PAIR,
2019; IBM, 2019; Prabhu & Birhane, 2021) and adopting
methodologies from more established fields exit (Hutchin-
son et al., 2021; Jo & Gebru, 2020; Huang & Liem, 2022).
However, general-purpose guidelines lack specificity for
specific domains and tasks (Srinivasan et al., 2021). For
example, Prabhu & Birhane (2021)’s remedies focus on pri-
vacy and governance, disregarding data composition and
image content. Other recommended practices lack persua-
sive justification for adoption (IBM, 2019) or fail to provide
proper contextualization for appropriate application. For
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instance, the People + AI Guidebook (Google PAIR, 2019)
suggests creating dataset specifications without explaining
the rationale, and privacy methodologies are advocated with-
out cognizant of privacy and data protection laws (Yang
et al., 2022a; Piergiovanni & Ryoo, 2020; Uittenbogaard
et al., 2019). While these efforts are important for responsi-
ble practices, they should be supplemented with proactive,
domain-specific recommendations to address privacy and
bias issues from the outset.

Our research directly addresses these critical issues by exam-
ining purpose (Section 3), consent and privacy (Section 4),
and diversity (Section 5). Compared to recent scholarship,
we adopt an ante hoc reflective perspective, offering consid-
erations and recommendations for curating HCCV datasets
for fairness and robustness evaluations. We draw insights
from current practices, guidelines, dataset withdrawals, and
audits to motivate each recommendation. Guided by the
ethical framework of principlism (Beauchamp & Childress,
1994; Beever & Brightman, 2016), encompassing autonomy,
beneficence, non-maleficence, and justice, our work aligns
with the call for domain-specific resources to operational-
ize fairness (Holstein et al., 2019). We specifically focus
on HCCV evaluation datasets with unique challenges (e.g.,
visual leakage of personally identifiable information) and
opportunities (e.g., leveraging image metadata for perfor-
mance analysis). Our proposals are not intended for the
evaluation of HCCV systems that detect, predict, or label
sensitive or objectionable attributes such as race, gender,
sexual orientation, or disability.

2. Development Process
Principlism, derived from guidelines for protecting human
subjects in research (Beauchamp & Childress, 2019; United
States. National Commission for the Protection of Human
Subjects of Biomedical and Behavioral Research, 1978),
offers a practical approach to ethical dilemmas. It is based
on four principles. Autonomy respects individuals’ self-
determination—e.g., through informed consent for HCCV
datasets. Beneficence and non-maleficence require assessing
harms and benefits during dataset design and considering
broader implications for society. Justice promotes the fair
distribution of risks, costs, and benefits, guiding decisions
on compensation, data accessibility, and diversity. Thus,
principlism provides a comprehensive framework for eth-
ical dataset development and decision-making. To ensure
comprehensive and consistent application of principlism,
we harnessed diverse expertise and followed contemporary
practices (Raji et al., 2021b; Romm, 1998; Srinivasan et al.,
2021). Our team comprises researchers, practitioners, and
lawyers with backgrounds in ML, CV, algorithmic fairness,
philosophy, and social science. With a range of ethnic,
cultural, and gender backgrounds, we bring extensive ex-

perience in designing CV datasets, training models, and
developing ethical guidelines. To align our expertise with
the ethical framework, we collaboratively discussed princi-
plism’s four pillars, considering each author’s background.
We identified key ethical issues in dataset design and refined
them iteratively into an initial draft of ethical considerations.
Through a comprehensive literature review, we incorporated
relevant studies and datasets to revise the considerations,
providing detailed explanations and recommendations for
responsible data curation.

3. Purpose
In ML, significant emphasis has been placed on the collec-
tion, and utilization, of general-purpose datasets (Raji et al.,
2021a). However, without a clearly defined task pre-data
collection, it becomes difficult to address data composition,
labels, data collection mechanisms, informed consent, and
data protection assessments. This section addresses conflict-
ing dataset motivations and provides recommendations.

3.1. Ethical considerations

Fairness-unaware datasets are inadequate for measuring
fairness. Datasets lacking explicit fairness considerations
are inadequate for mitigating or studying bias, as they of-
ten lack the necessary labels for fairness assessments. For
instance, the COCO dataset (Lin et al., 2014), focused on
scene understanding, lacks subject information, hindering
fairness assessments. Researchers resort to human annota-
tors to infer subject characteristics, limiting bias measure-
ment to visually inferable attributes. However, this approach
introduces annotation bias (Chen & Joo, 2021) and the po-
tential for harmful inferences (Campbell & Troyer, 2007).

Fairness-aware datasets are incompatible with common
computer vision tasks. Industry practitioners stress the im-
portance of carefully designed and collected fairness-aware
datasets to detect bias issues (Holstein et al., 2019). Fabris
et al. (2022a) found that out of 28 computer vision datasets
used in fairness research between 2014 and 2021, only eight
were specifically created with fairness in mind. Among
these, seven were (web scraped) HCCV datasets (Wang &
Deng, 2020; Tong & Kagal, 2020; Buolamwini & Gebru,
2018; Steed & Caliskan, 2021; Karkkainen & Joo, 2021;
Merler et al., 2019; Wang et al., 2019), including five fo-
cused on facial analysis. However, due to limited availability
and narrow task focus, fairness-unaware datasets (Lin et al.,
2014; Liu et al., 2015; Goyal et al., 2017; Zhang et al., 2014)
are repurposed (Wang et al., 2020; Manjunatha et al., 2019;
Hendricks et al., 2018). Fairness-aware datasets fall short
in addressing the original tasks associated with well-known
HCCV datasets, e.g., segmentation (Cordts et al., 2016; Mar-
tin et al., 2001), pose estimation (Lin et al., 2014; Andriluka
et al., 2014), localization and detection (Everingham et al.,
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2010; Dalal & Triggs, 2005; Geiger et al., 2012), identity
verification (Huang et al., 2008), action recognition (Kay
et al., 2017), as well as reconstruction, synthesis and manip-
ulation (Karras et al., 2019; Georghiades et al., 2001). The
absence of fairness-aware datasets with task-specific labels
hampers the practical evaluation of these systems, despite
their significance in applications such as healthcare (Mi-
hailidis et al., 2004; Huang et al., 2018), autonomous vehi-
cles (Janai et al., 2020), and sports (Thomas et al., 2017).
Additionally, fairness-aware datasets lack self-identified an-
notations from image subjects, relying on inferred attributes,
e.g., from online resources (Buolamwini & Gebru, 2018;
Steed & Caliskan, 2021; Tong & Kagal, 2020).

3.2. Practical recommendations

Refrain from repurposing datasets. Existing datasets,
repurposable but optimized for specific functions, can inad-
vertently perpetuate biases and undermine fairness (Koch
et al., 2021). Repurposing fairness-unaware data for fair-
ness evaluations can result in dirty data, characterized by
missing or incorrect information and distorted by individ-
ual and societal biases (Kim et al., 2003; Richardson et al.,
2019). Dirty data, including inferred data, can have signif-
icant downstream consequences for research, policy, and
decision-making (Wang et al., 2021; Cooper et al., 2021;
Richardson et al., 2019; Andrus et al., 2020). ML practi-
tioners widely agree that a proactive approach to fairness is
preferable, involving the collection of demographic informa-
tion from the outset (Holstein et al., 2019). To mitigate epis-
temic risk, curated datasets should capture key dimensions
influencing fairness and robustness evaluation of HCCV
models, i.e., data subjects, instruments, and environments.
Model Cards explicitly highlight the significance of these
dimensions in fairness and robustness assessments (Mitchell
et al., 2019).

Create purpose statements. Pre-data collection, dataset
creators should establish purpose statements, focusing on
motivation rather than cause (Hanley et al., 2020). Pur-
pose statements address, e.g., data collection motivation,
desired composition, permissible uses, and intended con-
sumers. While dataset documentation (Gebru et al., 2018;
Pushkarna et al., 2022) covers similar questions, it is a re-
flective process and can be manipulated to fit the narrative
of the collected data, resulting in hindsight bias (Fiedler &
Schwarz, 2016; Kerr, 1998; Chambers & Tzavella, 2022), as
opposed to directing the narrative of the data to be collected.
Purpose statements can prevent purpose creep, ensuring
alignment with stakeholders’ consent and intentions (Ku-
gler, 2019). Enhancing transparency and accountability, as
recommended by Peng et al. (2021), purpose statements can
undergo peer review, similar to registered reports (Nosek &
Lakens, 2014). Registered reports, recognized by the UK
2021 Research Excellence Framework, incentivize rigorous

research practices and potential institutional funding (Cham-
bers & Tzavella, 2022).

4. Consent and Privacy
Informed consent is crucial in research ethics involving hu-
mans (Nijhawan et al., 2013; National Commission for the
Proptection of Human Subjects of Biomedicaland Behav-
ioral Research, Bethesda, Md, 1978), ensuring participant
safety, protection, and research integrity (Code, 1949; Poli-
tou et al., 2018). It consists of three elements: information,
comprehension, and voluntariness, shaping data collection
practices in various fields. While consent is not the only
legal basis for data processing, it is globally preferred for
its legitimacy and ability to foster trust (Politou et al., 2018;
Edwards, 2016). We address concerns related to consent
and privacy, and provide recommendations.

4.1. Ethical considerations

Human-subjects research. HCCV research often amasses
millions of images without obtaining informed consent or
participation, raising ethical concerns (Prabhu & Birhane,
2021; Harvey & LaPlace, 2021; Paullada et al., 2021; Solon,
2019). This exemption from research ethics principles stems
from the perception that HCCV research does not fall un-
der human-subjects research and publicly available data is
considered low-risk for human subjects. Thus bypassing
Institutional Review Board supervision. However, this ap-
proach is problematic due to the potential for predictive
privacy harms when seemingly non-identifiable data is com-
bined (Crawford & Schultz, 2014; Metcalf & Crawford,
2016; Prabhu & Birhane, 2021). Collecting data without
informed consent hinders researchers and practitioners from
fully understanding and addressing potential harms to image
subjects (Van Noorden, 2020; Metcalf & Crawford, 2016).
Some argue that consent is pivotal as it provides individ-
uals with a last line of defense against the misuse of their
personal information, particularly when it contradicts their
interests or well-being (Mittelstadt & Floridi, 2016; De Hert
& Papakonstantinou, 2016; Politou et al., 2018; Paullada
et al., 2021).

Creative Commons loophole. Some datasets have been
created based on the misconception that the “unlocking [of]
restrictive copyright” (Prabhu & Birhane, 2021) through
Creative Commons licenses implies data subject consent.
However, the Illinois Biometric Information Privacy Act
(BIPA) (Illinois Legislature, 2008) mandates data subject
consent, even for publicly available images (Yew & Xiang,
2022). In the UK and EU General Data Protection Regula-
tion (GDPR) (European Commission, 2016) Article 4(11),
images containing faces are considered biometric data, re-
quiring “freely given, specific, informed, and unambiguous”
consent from data subjects for data processing. Similarly, in
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China, the Personal Information Protection Law (PIPL) (Na-
tional People’s Congress, 2021) Article 29 mandates ob-
taining individual consent for processing sensitive personal
information, including biometric data (Article 28). While
a Creative Commons license may release copyright restric-
tions on specific artistic expressions within images (Yew &
Xiang, 2022), it does not apply to image regions containing
biometric data, e.g., faces, which are protected by privacy
and data protection laws (Sobel, 2020).

Vulnerable persons. Nonconsensual data collection meth-
ods can result in the inclusion of vulnerable individuals
who are unable to consent or oppose data processing due
to power imbalances, limited capacity, or increased risks of
harm (European Data Protection Board (Article 29 Working
Party), 2017; Malgieri & Niklas, 2020). While scraping vul-
nerable individuals’ biometric data may be incidental, some
researchers actively target them, jeopardizing their sensi-
tive information without guardian consent (Raji & Fried,
2021; Han et al., 2017). Paradoxically, attempts to address
racial bias in data have involved soliciting homeless persons
of color, further compromising their vulnerability (Fussell,
2019). When participation is due to economic, or situa-
tional, vulnerability, as opposed to one’s best interests, mon-
etary offerings may be perceived as inducement (Gordon,
2020). Further ethical concerns manifest when it is unclear
whether participants were adequately informed about a re-
search study. For instance, research on ethnicity recognition,
despite obtaining informed consent, received criticism for
training a model that discriminates between Chinese Uyghur,
Korean, and Tibetan faces, considering the human rights
violations against Chinese Uyghurs (Cunrui et al., 2019).
Although the study’s focus is on the technology itself (Tech
Inquiry, 2019), its potential use in enhancing surveillance on
Uyghur faces raises ethical questions (Van Noorden, 2020).

Consent revocation. Dataset creators sometimes view
autonomy as a challenge to collecting biometric data
for HCCV, especially when data subjects prioritize pri-
vacy (Scheuerman et al., 2021; Meng et al., 2006; Singh
et al., 2010). Nonetheless, informed consent emphasizes
voluntariness, encompassing both the ability to give consent
and the right to withdraw it at any time (Dankar et al., 2019).
GDPR grants explicit revocation rights (Article 7) and the
right to request erasure of personal data (Article 17) (Whit-
ley, 2009). However, image subjects whose data is collected
without consent are denied these rights. The nonconsensual
FFHQ face dataset (Karras et al., 2019) offers an opt-out
mechanism, but since inclusion was involuntary, subjects
may be unaware of their inclusion, rendering the revoca-
tion option hollow. Moreover, this burdens data subjects
with tracking the usage of their data in datasets, primarily
accessible by approved researchers (Dulhanty, 2020).

Image- and metadata-level privacy attributes. Re-

searchers have focused on obfuscation techniques, e.g., blur-
ring, inpainting, and overlaying, to reduce private informa-
tion leakage of nonconsensual individuals (Xu et al., 2021;
Frome et al., 2009; Uittenbogaard et al., 2019; Caesar et al.,
2020; Piergiovanni & Ryoo, 2020; Yang et al., 2022a; Li
et al., 2021; Sun et al., 2018; Li & Lin, 2019; McPherson
et al., 2016). Face detection algorithms used in obfuscation
may raise concerns, particularly if they involve predicting
facial landmarks, potentially violating BIPA (Yew & Xi-
ang, 2022; Complaint, Vance v. IBM, 2020). BIPA focuses
on collecting and using face geometry scans regardless of
identification capability, while GDPR protects any identifi-
able person, requiring data holders to safeguard the privacy
of nonconsenting individuals. However, reliance on auto-
mated face detection methods raises ethical concerns, as
demonstrated by the higher precision of pedestrian detec-
tion models on lighter skin types compared to darker skin
types (Wilson et al., 2019). This predictive inequity leads to
allocative harm, denying certain groups opportunities and
resources, including the rights to safety (Twigg, 2003) and
privacy (Diggelmann & Cleis, 2014). In addition, face ob-
fuscation methods may not guarantee privacy (Yang et al.,
2022a). The Visual Redactions dataset (Orekondy et al.,
2018) includes 68 image-level privacy attributes, covering
biometrics, sensitive attributes, tattoos, national identifiers,
signatures, and contact information. Training faceless per-
son recognition systems using full-body cues reveals higher
than chance re-identification rates for face blurring and over-
laying (Oh et al., 2016), indicating that simply perturbing or
removing face information may be insufficient under GDPR.
Furthermore, image metadata can disclose sensitive details,
e.g., date, time, and location, as well as copyright infor-
mation that may include names (Andrews, 2021; Oh et al.,
2016). This is worrisome for users of commonly targeted
platforms like Flickr, which retains metadata by default.

4.2. Practical recommendations

Obtain voluntary informed consent. Similar to recent
consent-driven HCCV datasets (Hazirbas et al., 2021; Por-
gali et al., 2023; Rojas et al., 2022), explicit informed con-
sent should be obtained from each person depicted in, or
otherwise identifiable, in a dataset, allowing the sharing of
their facial, body, and biometric information for evaluating
the fairness and robustness of HCCV technologies. Datasets
collected with consent reduce the risk of being fractured,
however, data subjects may later revoke their consent over,
e.g., privacy concerns they may not have been aware of at the
time of providing consent or language nuances (Corrigan,
2003; Zimmer, 2010). Thus, following GDPR (Article 7),
plain language consent and notice forms are recommended
to address the lack of public understanding of AI technolo-
gies (Long & Magerko, 2020). When collecting images
of individuals under the age of majority or those whose
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ability to protect themselves is significantly impaired on
account of disability, illness, or otherwise, guardian consent
is necessary (Klima et al., 2014). However, relying solely
on guardian consent overlooks the views and dignity of the
vulnerable person (Henkelman & Everall, 2001). To address
this, in addition to guardian consent, voluntary informed as-
sent can be sought from a vulnerable person, in accordance
with UNICEF’s principlism-guided data collection proce-
dures (UNICEF et al., 2015; Berman & Albright, 2017).
When employing appropriate language and tools, assent es-
tablishes the vulnerable person understands the use of their
data and willingly participates (Berman & Albright, 2017).
If a vulnerable person expresses dissent or unwillingness
to participate, their data should not be collected, regard-
less of guardian wishes. Informed by the U.S. National
Bioethics Advisory Commission’s contextual vulnerabil-
ity framework (Commission et al., 2001), dataset creators
should assess vulnerability on a continuous scale. That is,
the circumstances of participation should be considered,
which may require, e.g., a participatory design approach,
assurances over compensation, supplementary educational
materials, and insulation from hierarchical or authoritative
systems (Gordon, 2020).

Adopt techniques for consent revocation. To permit con-
sent revocation, dataset creators should implement an appro-
priate mechanism. One option is dynamic consent, where
personalized communication interfaces enable participants
to engage more actively in research activities (Kaye et al.,
2015; Weber et al., 2014). This approach has been im-
plemented successfully through online platforms, offering
options for blanket consent, case-by-case selection, or opt-in
depending on the data’s use (Kaye et al., 2015; Mascalzoni
et al., 2022; Teare et al., 2021). Another suggested option
is to establish a steering board or charitable trust composed
of representative dataset participants to make decisions re-
garding data use (Price & Cohen, 2019). The feasibility
of these techniques may vary based on the dataset’s scale.
However, at a minimum, data subjects should be provided a
simple and easily accessible one-step method to revoke con-
sent (Hazirbas et al., 2021; Porgali et al., 2023; Rojas et al.,
2022). As underscored by the UK Information Commis-
sion’s Office, data subjects should be provided alternatives
to online-based revocation processes to account for varying
levels of technology competency and internet access (UK
Information Commissioner’s Office, n.d.).

Collect country of residence information. Anonymizing
nonconsensual persons through face obfuscation, as done
in datasets like ImageNet (Yang et al., 2022a), may not re-
spect the privacy laws specific to the subjects’ country of
residence. To comply with relevant data protection laws,
dataset curators should collect the country of residence from
each data subject to determine their legal obligations, help-
ing to ensure that data subjects’ rights are protected and

future legislative changes are addressed (Rojas et al., 2022;
Phillips, 2018). For instance, GDPR Article 7(3) grants data
subjects the right to withdraw consent at any time, which
was not explicitly addressed in its predecessor (Politou et al.,
2018).

Redact privacy leaking image regions and metadata.
According to the European Data Protection Board (Arti-
cle 29 Working Party), anonymization of personal data re-
quires safeguards against re-identification risks, e.g., sin-
gling out, linkability, and inference (Data Protection Com-
mission, 2019). As re-identification of nonconsensual
human subjects whose faces have been obfuscated can
still occur through other body parts or contextual informa-
tion (Orekondy et al., 2018), one solution is therefore to
completely redact all privacy-leaking regions. That is, the
removal of regions related to nonconsensual image subjects
(including their entire bodies, clothing, and accessories) and
text (excluding copyright owner information). Anonymiza-
tion approaches should be validated empirically, especially
when using methods without formal privacy guarantees.
Moreover, to mitigate algorithmic failures or biases, human
annotators should be involved in creating region proposals,
as well as verifying automatically generated proposals, for
anonymizing image regions with identifying or private in-
formation (Yang et al., 2022a). It is important to note that
for residents of certain jurisdictions (e.g., Illinois, Califor-
nia, Washington, and Texas), automated region proposals
requiring biometric identifiers for nonconsensual subjects
should be avoided, and human annotators should generate
the proposals. To further protect privacy, dataset creators
should take steps to ensure that image metadata does not
reveal identifying information that data subjects did not con-
sent to sharing. This includes removing or replacing exact
geolocation with a more general representation (e.g., city
and country) and removing user-added information from
metatags if it includes personal identifying details, as long
as it does not violate copyright. However, we do not advise
blanket redaction of all metadata, as it contains valuable
image capture information that can be useful for assessing
model bias and robustness related to instrument factors.

5. Diversity
HCCV dataset creators widely acknowledge the signifi-
cance of diversity, realism, and difficulty in datasets to
enhance fairness and robustness in real-world applica-
tions (Karkkainen & Joo, 2021; Lin et al., 2014; Deng et al.,
2009; Karras et al., 2019; Kay et al., 2017; Andriluka et al.,
2014; Cordts et al., 2016; Sarkar et al., 2005; Xiong et al.,
2015; Yang et al., 2016; Huang et al., 2008; Jesorsky et al.,
2001; Dalal & Triggs, 2005; Angelova et al., 2005; Ever-
ingham et al., 2010; Liu et al., 2015; Geiger et al., 2012).
Previous research (Buolamwini & Gebru, 2018; Liu et al.,
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2020; Mitchell et al., 2019; Scheuerman et al., 2021) has
emphasized diversity across image subjects, environments,
and instruments, but there are many ethical complexities
involved in specifying diversity criteria (Andrus et al., 2020;
2021). This section examines taxonomy challenges for these
attributes and offers recommendations.

5.1. Ethical considerations

Representational and historical biases. The Council of
Europe have expressed concerns about the threat posed
by AI systems to equality and non-discrimination princi-
ples (Council of Europe, n.d.). Many dataset creators often
prioritize protected attributes, i.e., gender, race, and age, as
key factors of dataset diversity (Scheuerman et al., 2021).
Nevertheless, most HCCV datasets exhibit historical and
representational biases (Suresh & Guttag, 2021; Jo & Ge-
bru, 2020; Yang et al., 2020; Kay et al., 2015; Prabhu &
Birhane, 2021). These biases can be pernicious, particularly
when models learn and reinforce them. For instance, image
captioning models may rely on contextual cues related to ac-
tivities like shopping (Zhao et al., 2017) and laundry (Zhao
et al., 2023) to generate gendered captions. Spurious correla-
tions are detrimental, as they are not causally related and per-
petuate harmful associations (Sagawa et al., 2020; Geirhos
et al., 2020). In addition, prominent examples in HCCV
research demonstrate disparate algorithmic performance
based on race and skin color (Grother et al., 2019; Vangara
et al., 2019; Hirota et al., 2022; Zhao et al., 2021; Phillips
et al., 2011; Buolamwini & Gebru, 2018; Buolamwini, n.d.;
Snow, 2018; Rose, 2010; Chen, 2009; Hern, 2020). Most
recently, autonomous robots have displayed racist, sexist,
and physiognomic stereotypes (Hundt et al., 2022). Further-
more, face detection models have shown lower accuracy
when processing images of older individuals compared to
younger individuals (Yang et al., 2022b). While not endors-
ing these applications, discrepancies have been observed
in facial emotion recognition services for children in both
commercial and research systems (Howard et al., 2017; Xu
et al., 2020), as well as age estimation (Lou et al., 2017;
Clapés et al., 2018; Georgopoulos et al., 2020).

Despite concerns regarding privacy, liability, and public re-
lations, the collection of special and sensitive category data
is crucial for bias assessments (Andrus et al., 2021). GDPR
guidance from the UK Information Commissioner’s Office
confirms that sensitive attributes can be collected for fairness
purposes (UK Information Commissioner’s Office, 2020).
However, obtaining this information presents challenges,
e.g., historical mistrust in clinical research among African-
Americans (Eyal, 2014; Lee & Rich, 2021). In HCCV,
there is a tension between privacy and fairness, as remain-
ing unseen does not protect against being mis-seen (Xiang,
2022). Nonetheless, marginalized communities may require
explicit explanations and assurances about data usage to

address concerns related to service provision, security, allo-
cation, and representation (Xiang, 2022).

The digital divide and accessibility. Healthcare datasets
often lack representation of minority populations, compro-
mising the reliability of automated decisions (World Health
Organization and others, 2021). The World Health Orga-
nization (WHO) emphasizes the need for data accuracy,
completeness, and diversity, particularly regarding age, in
order to address ageism in AI (World Health Organization,
2022). ML systems may prioritize younger populations for
resource allocation, assuming they would benefit the most in
terms of life expectancy (World Health Organization, 2022).
The digital divide further exacerbates the underrepresen-
tation of vulnerable groups, including older generations,
low-income school-aged children, and children in East Asia
and the South Pacific who lack access to digital technol-
ogy and learning opportunities (World Economic Forum,
2022; UNICEF, 2020). Insufficient access to digital tech-
nology hampers the representation of vulnerable individuals
in datasets (Schumann et al., 2021).

Confused taxonomies. Sex and gender are often used in-
terchangeably, equating gender as a consequence of one’s
assigned sex at birth (Fausto-Sterling, 2000). However, this
approach erases intersex individuals who possess non-binary
physiological sex characteristics (Fausto-Sterling, 2000).
Treating sex and gender as interchangeable perpetuates nor-
mative views by casting gender as binary, immutable, and
solely based on biological sex (Keyes, 2018). This perspec-
tive disregards transgender and gender nonconforming indi-
viduals. Moreover, sex, like gender, is a social construct, as
sexed bodies do not exist outside of their social context (But-
ler, 1988). Similar to sex and gender, race and ethnicity are
often used synonymously (Valentine et al., 2016). Nations
employ diverse census questions to ascertain ethnic group
composition, encompassing factors, e.g., nationality, race,
color, language, religion, customs, and tribe (United Na-
tions, 1998). However, these categories and their definitions
lack consistency over time and geography, often influenced
by political agendas and socio-cultural shifts (Scheuerman
et al., 2020b). As a result, collecting globally representative
and meaningful data on ethnic groups becomes challenging.
Several HCCV datasets have incorporated inconsistent and
arbitrary racial categorization systems (Wang et al., 2019;
Zhang et al., 2017; Robinson et al., 2020; Alvi et al., 2018).
For instance, the FairFace dataset (Karkkainen & Joo, 2021)
creators reference the U.S. Census Bureau’s racial cate-
gories without considering the social definition of race they
represent (OpenReview, 2019). The U.S. Census Bureau
explicitly states that their categories reflect a social defi-
nition rather than a biological, anthropological, or genetic
one. Consequently, labeling the “physical race” of image
subjects based on nonphysiological categories is contradic-
tory. Furthermore, the FairFace creators do not disclose the
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demographics or cultural compatibility of their annotators.

Own-anchor bias. HCCV approaches for encoding age
in datasets vary, using either integer labels (Ricanek &
Tesafaye, 2006; Guo et al., 2008; Fu et al., 2007; Rothe
et al., 2018; 2015; Chen et al., 2014; Niu et al., 2016; Zhang
et al., 2017; Moschoglou et al., 2017) or group labels (Gal-
lagher & Chen, 2009; Somanath et al., 2011; Eidinger et al.,
2014; Levi & Hassner, 2015). Age groupings are often
preferred when collecting unconstrained images from the
web, as human annotators must infer subjects’ ages, which
is challenging (Carcagnı̀ et al., 2015). This is evident in
crowdsourced annotations, where 40.2% of individuals in
the OpenImages MIAP dataset (Schumann et al., 2021)
could not be categorized into an age group. Factors unre-
lated to age, e.g., facial expression (Ganel, 2015; Wang et al.,
2015; Norja et al., 2022) and makeup (Tagai et al., 2016;
Egan & Cordan, 2009; Norja et al., 2022), influence age
perception. Furthermore, annotators have exhibited lower
accuracy when labeling people outside of their own demo-
graphic group (Anastasi & Rhodes, 2005; 2006; Sörqvist
et al., 2011; Vestlund et al., 2009; Voelkle et al., 2012;
George & Hole, 1995; Rowe, 2001).

Post hoc rationalization of the use of physiological mark-
ers. Gender information about data subjects is obtained
through inference (Karkkainen & Joo, 2021; Wang et al.,
2019; Zhang et al., 2017; Schumann et al., 2021; Rothe
et al., 2018; 2015; Zhang et al., 2017; Niu et al., 2016; Chen
et al., 2014; Kumar et al., 2009; Liu et al., 2015; Ricanek
& Tesafaye, 2006) or self-identification (Ma et al., 2015;
2021; Hazirbas et al., 2021; Lakshmi et al., 2021; Zhao
et al., 2021). Inference raises concerns as it assumes that
gender can be determined solely from imagery without con-
sent or consultation with the subject, which is noninclusive
and harmful (Keyes, 2018; Hamidi et al., 2018; Engelmann
et al., 2022). Even when combined with non-image-based
information, inferred gender fails to account for the fluidity
of identity, potentially mislabeling subjects at the time of
image capture (Rothe et al., 2018; 2015). Moreover, physi-
cal traits are just one of many dimensions, including posture,
clothing, and vocal cues, used to infer not only gender but
also race (Kessler & McKenna, 1985; Freeman et al., 2011).

Erasure of nonstereotypical individuals. HCCV datasets
often adopt a U.S.-based racial schema (Karkkainen & Joo,
2021; Wang et al., 2019; Ma et al., 2015; Lakshmi et al.,
2021; Ma et al., 2021; Ricanek & Tesafaye, 2006), which
can create disjoint and essentialized groups (Telles, 2002).
However, this schema may not align with other models, e.g.,
the continuum-based color system used in Brazil, which con-
siders a range of physical characteristics. Nonconsensual im-
age datasets rely on annotators to assign semantic categories,
perpetuating stereotypes and disseminating them beyond
their cultural context (Khan & Fu, 2021). Notably, images

without label consensus are often discarded (Karkkainen &
Joo, 2021; Wang et al., 2019; Robinson et al., 2020), po-
tentially excluding individuals who defy stereotypes, e.g.,
multi-ethnic individuals (Rothbart & Taylor, 1992).

Phenotypic attributes. Protected attributes may not be the
most appropriate criteria for evaluating HCCV models (Buo-
lamwini & Gebru, 2018). Social constructs like race and
gender lack clear delineations for subgroup membership
based on visible or invisible characteristics. These labels
capture invisible aspects of identity that are not solely de-
termined by visible appearance. Moreover, the phenotypic
characteristics within and across subgroups exhibit signifi-
cant variability (Becerra-Riera et al., 2019; Carcagnı̀ et al.,
2015; Feliciano, 2016; Khan & Fu, 2021; Ware et al., 2020).

Environment and instrument. The image capture de-
vice and environmental conditions significantly influence
model performance, and their impact should be consid-
ered (Mitchell et al., 2019). Factors such as camera soft-
ware, hardware, and environmental conditions affect HCCV
model robustness in various settings (Windrim et al., 2016;
Nascimento et al., 2018; Xie et al., 2019; Xu & Wang, 2019;
Liu et al., 2020; Hendrycks & Dietterich, 2019; Afifi &
Brown, 2019; Yin et al., 2019; Mintun et al., 2021). Under-
standing performance differences is crucial from ethical and
scientific perspectives. For example, sensitivity to illumina-
tion or white balance may be linked to sensitive attributes,
e.g., skin tone (Zhou et al., 2018; Cook et al., 2019; Ko-
rtylewski et al., 2018; 2019), while available instruments
or environmental co-occurrences may correlate with demo-
graphic attributes (Silver, 2020; Hendricks et al., 2018).

Annotator positionality. Psychological research high-
lights the influence of annotators’ sociocultural background
on their visual perception (Reid & Nixon, 2011; Balaresque
& King, 2016; Roth, 2016; Garcia & Abascal, 2016; Hill,
2002; Segall et al., 1966; Balaresque & King, 2016). How-
ever, recent empirical studies have evidenced a lack of re-
gard for the impact an annotator’s social identity has on
data (Denton et al., 2021; Geiger et al., 2020) with only a
handful of HCCV datasets providing annotator demographic
details (Scheuerman et al., 2021; Chen & Joo, 2021; Zhao
et al., 2021; Andrews et al., 2023).

Recruitment and compensation. Data collected without
consent patently lacks compensation. Balancing between
excessive and deficient payment is crucial to avoid coer-
cion or exploitation (National Health and Medical Research
Council, 2019; Rojas et al., 2022). An additional concern is
the employment of remote workers from disadvantaged re-
gions (Perrigo, 2022), often with low wages and fast-paced
work conditions (Croce & Musa, 2019; Hata et al., 2017;
Irani, 2015; Malevé, 2020). This can lead to arbitrary denial
of payment based on opaque quality criteria (Fieseler et al.,
2019) and prevents union formation (Malevé, 2020), creat-
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ing a sense of invisibility and uncertainty for workers (Toxtli
et al., 2021).

5.2. Practical recommendations

Obtain self-reported annotations. Practitioners are cau-
tious about inferring labels about people to avoid biases (An-
drus et al., 2021). Moreover, data access request rights,
e.g., as offered by GDPR, CCPA, and PIPL, may require
data holders to disclose inferred information. To avoid
stereotypical annotations and minimize harm from misclas-
sification (Roth, 2016), accurate labels should be collected
directly from image subjects, who possess contextual knowl-
edge and awareness of their own attributes.

Provide open-ended response options. Closed-ended
questions, such as those on census forms, may lead to
incongruous responses and inadequate options for self-
identification (Roth, 2012; Hughes et al., 2016; Keyes,
2018). Open-ended questions provide more accurate an-
swers but can be taxing, require extensive coding, and are
harder to analyze (Bradburn, 1997; Keusch, 2014; Smyth
et al., 2009; Geer, 1991). To strike a balance, closed-ended
questions should be augmented with an open-ended re-
sponse option, avoiding the term “other”, which implies
othering norms (Scheuerman et al., 2020a). This gives re-
spondents a voice (Singer & Couper, 2017; Neuert et al.,
2021) and allows for future question design improvement.

Acknowledge the mutability and multiplicity of identity.
The concept of identity shift is often overlooked, i.e., the
intentional self-transformation in mediated contexts (Carr
et al., 2021). To address this, we propose collecting self-
identified information on a per-image basis, recognizing that
identity is temporal and non-static. In addition, particularly
for sensitive attributes, the selection of multiple identity
categories without limitations is preferable (Spiel et al.,
2019; Stevens, n.d.).

Collect age, pronouns, and ancestry. First, to capture
accurate age information, dataset curators should collect
the exact biological age in years from image subjects, cor-
responding to their age at the time of image capture. This
approach offers flexibility, insofar as permitting the appro-
priate disaggregation of the collected data. This is impor-
tant given the lack of consistent age groupings in the lit-
erature. Second, dataset curators should consider opting
to collect self-identified pronouns. This promotes mutual
respect and common courtesy, reducing the likelihood of
causing harm through misgendering (Human Rights Cam-
paign Foundation, n.d.). Self-identified pronouns are par-
ticularly important for sexual and gender minority com-
munities as they “convey and affirm gender identity” (Na-
tional Institutes of Health – Division of Program Coordina-
tion, Planning and Strategic Initiatives, 2022). Significantly,
pronoun use is increasingly prevalent in social media plat-

forms (Jiang et al., 2022; Joshi, 2019; Elks, 2021), work-
places (Chen, 2021), and education settings (Barlow & Scott,
2022; McKie, 2018), fostering gender inclusivity (Baron,
2020). However, subjects should always have the option of
not disclosing this information. Finally, to address issues
with ethnic and racial classification systems (Scheuerman
et al., 2020b; Khan & Fu, 2021), dataset creators should con-
sider collecting ancestry information instead. Ancestry is
defined by historically shaped borders and has been shown
to offer a more stable and less confusing concept (Aspinall,
2001). The United Nations’ M49 geoscheme can be used to
operationalize ancestry (United Nations Statistics Division,
n.d.), where subjects select regions that best describe their
ancestry. To situate responses, subjects could be asked, e.g.,
“Where do your ancestors (e.g., great-grandparents) come
from?”. Proxies, e.g., skin tone, risk normalizing their inad-
equacies without reflecting their limitations (Andrus et al.,
2021).

Collect aggregate data for commonly ignored groups.
Additional sensitive attributes should also be collected, e.g.,
disability and pregnancy status, when voluntarily disclosed
by subjects. These attributes should be reported in aggregate
data to reduce the safety concerns of subjects (Stevens, n.d.;
Whittaker et al., 2019). Given that definitions of these at-
tributes may be inconsistent and tied to culture, identity, and
histories of oppression (Blaser & Ladner, 2020; Bragg et al.,
2021), navigating tensions between benefits and risks is
necessary. Despite potential reluctance, sourcing data from
underrepresented communities contributes to dataset inclu-
sivity (Blaser & Ladner, 2020; Kamikubo et al., 2021). For
disability, the American Community Survey (United States
Census Bureau, 2021) covers categories related to hearing,
vision, cognitive, ambulatory, self-care, and independent
living difficulties.

Collect phenotypic and neutral performative features.
Collecting phenotypic characteristics can serve as objective
measures of diversity, i.e., attributes which, in evolutionary
terms, contribute to individual-level recognition (Christakis
& Fowler, 2014), e.g., skin color, eye color, hair type, hair
color, height, and weight (Balaresque & King, 2016). These
attributes have enabled finer-grained analysis of model per-
formance and biases (Wen et al., 2022; Buolamwini & Ge-
bru, 2018; Dash et al., 2022; Siddiqui et al., 2022; Yucer
et al., 2022). Additionally, considering a multiplicity of
neutral performative features, e.g., facial hair, hairstyle, cos-
metics, clothing, and accessories, is important to surface the
perpetuation of social stereotypes and spurious relationships
in trained models (Scheuerman et al., 2019; Balakrishnan
et al., 2021; Wang et al., 2022; Albiero et al., 2021).

Record environment and instrument information. Data
should capture variations in environmental conditions and
imaging devices, e.g., image capture time, season, weather,
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ambient lighting, scene, geography, camera position, dis-
tance, lens, sensor, stabilization, use of flash, and post-
processing software. Instrument-related factors may be
easily captured, by restricting data collection to images with
Exif metadata. The remaining factors, e.g., season and
weather can be self-reported or coarsely estimated utilizing
information such as image capture time and location.

Recontextualize annotators as contributors. Dataset cre-
ators should document the identities of annotators and their
contributions to the dataset (Denton et al., 2021; Andrews
et al., 2023), rather than treating them as anonymous entities
responsible for data labeling alone (Malevé, 2020; Chan-
cellor et al., 2019). While many datasets (Lin et al., 2014;
Deng et al., 2009; Hazirbas et al., 2022) neglect to report
annotator demographics, assuming objectivity in annotation
for visual categories is flawed (Kapania et al., 2023; Miceli
et al., 2020; Barrett et al., 2023). Furthermore, using ma-
jority voting to reach the assumed ground truth, disregards
minority opinions, treating them as noise (Kapania et al.,
2023). Annotator characteristics, including pronouns, age,
and ancestry, should be recorded and reported to quantify
and address annotator perspectives and bias in datasets (Gor-
don et al., 2022; Andrews et al., 2023). Additionally, allow-
ing annotators freedom in labeling helps to avoid replicating
socially dominant viewpoints (Miceli et al., 2020).

Fair treatment and compensation for contributors. Fol-
lowing guidance from Australia’s National Health and Med-
ical Research Council (National Health and Medical Re-
search Council, 2019) and the WHO (Council for Interna-
tional Organizations of Medical Sciences and others, 2017),
dataset contributors should not only be guaranteed compen-
sation above the minimum hourly wage of their country of
residence (Różyńska, 2022), but also according to the com-
plexity of tasks to be performed. An alternative payment
model based on the average hourly wage, however, may
better promote justice and diversity by increasing the likeli-
hood of higher socio-economic status contributors (Phillips,
2011). Besides payment, the implementation of direct
communication channels and feedback mechanisms, e.g.,
anonymized feedback forms (Pavlichenko et al., 2021), can
help to address issues faced by annotators while providing a
level of protection from retribution. Complementarily, the
creation of plain language guides can ease task completion
and reduce quality control overheads. Ideally, recruitment
and compensation processes should be well-documented
and undergo ethics review, which can help to further reduce
“glaring ethical lapses” (Shmueli et al., 2021).

6. Conclusion
Building upon recent scholarship addressing privacy and
bias concerns, we have highlighted key ethical considera-
tions and challenges in collecting HCCV data for fairness

and robustness evaluations. Guided by principlism, we have
concentrated on purpose, consent and privacy, as well as
diversity, offering proactive recommendations that priori-
tize autonomy, beneficence, non-maleficence, and justice.
While our recommendations hold broader relevance, we
have placed specific emphasis on the distinctive attributes of
HCCV datasets. We therefore encourage dataset creators to
tailor these recommendations to suit their particular domain
and task, fostering further discussions around responsible
data curation.
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