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Abstract

For the task of image classification, neural net-
works primarily rely on visual patterns. In ro-
bust networks, we would expect visually similar
classes to be represented similarly. We consider
the problem of when semantically similar classes
are visually dissimilar, and when visual similarity
is present among non-similar classes. We propose
a data augmentation technique with the goal of
better aligning semantically similar classes with
arbitrary (non-visual) semantic relationships. We
leverage recent work in diffusion-based seman-
tic mixing to generate semantic hybrids of two
classes, and these hybrids are added to the train-
ing set as augmented data. We evaluate whether
the method increases semantic alignment by test-
ing model performance on adversarially perturbed
data, with the idea that it should be easier for an
adversary to switch one class to a similarly rep-
resented class. Results demonstrate that there is
an increase in alignment of semantically similar
classes when using our proposed data augmenta-
tion method.

1. Introduction

Within the common task of image classification, neural net-
works must rely on visual patterns in the images. While
semantic relationships often follow from visual alignment,
visuals and semantics are not always correlated. For in-
stance, in a system that aims to distinguish child-safe objects
from hazardous entities, a harmless object such as a spoon
may appear visually similar to a dangerous object such as a
knife, and a confusion between the two could have harmful
implications. This example highlights the idea of mistake
severity in neural networks classification — while most per-
formance measures of classification models treat all errors
equally, in reality some errors are much more damaging
than others. Despite their visual similarity, any instances of
confusion between a knife and a spoon would likely cause
extreme distrust in a system that is used to discriminate
between harmful and safe objects. To address this concern,
we propose a data augmentation method to incorporate prior
semantic knowledge into the training process. In particu-

lar, we focus on the case of when semantic alignment is
at odds with visual similarity, as in this case data-driven
learning based solely on visual features may fail due to a
lack of crucial information on object semantics and class
relationships.

With our method, we aim to increase alignment between se-
mantically similar objects despite a lack of visual similarity.
To measure this, we consider the metric of mistake severity
over perturbed conditions, with the idea being that a model
will be more likely to mistake one class for another if the
classes are similarly represented.

The contributions of this work are as follows:

* We propose a method of data augmentation using
diffusion-based semantic mixing to increase alignment
between semantically similar classes

* We construct a dataset with arbitrary class relationships
from CIFAR100 data to evaluate our method when
visual similarity is at odds with semantic similarity

* We evaluate our method on mistake severity over adver-
sarially perturbed conditions and find that our data aug-
mentation succeeds in increasing alignment between
semantically similar classes

2. Related Work

Previous work has considered methods of incorporating
semantic information into training, with methods such as
introducing hierarchical loss functions ((Bertinetto et al.,
2020), (Zhao et al., 2011), (Verma et al., 2012), (Wu et al.,
2016)) and aligning classes using adversarial perturbations
((Ma et al., 2021), (Abreu et al., 2022)). The notion of mis-
take severity arises in many of these works as an alternate
measure of model robustness, with the idea being that a mis-
take between classes that are highly dissimilar is worse than
a mistake between semantically similar classes. (Bertinetto
et al., 2020) notes that the improvement in the metric of mis-
take severity has been stagnant in recent years and argues
that the metric should be revisited.

Of particular interest in (Bertinetto et al., 2020) is a discus-
sion in which the authors randomize the class relationships
such that semantic proximity does not reflect visual simi-
larity. In this setting, the performance of the hierarchical
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methods considered deteriorates, suggesting that the visual
similarity of related classes in one’s hierarchy is essential
to the success of the proposed methods. The authors note,
“while one may wish to enforce application-specific relation-
ships using this approach. .., the effectiveness of doing so
may be constrained by underlying properties of the data”
((Bertinetto et al., 2020)). The work in (Abreu et al., 2022)
finds similar behavior when visual relationships no longer
support semantic ones. We aim to address this dependency
on visual similarity in our data augmentation method.

Additionally, there has been prior work in using diffusion
models to generate synthetic training data. (Azizi et al.,
2023) uses diffusion models to provide synthetic data for
image classification. (He et al., 2022) explores the use of
synthetic data generated from the text-to-image generation
model GLIDE ((Nichol et al., 2022)) in zero-shot and few-
shot settings, as well as for model pre-training. They find
that synthetic data can be beneficial in these settings, and
further investigate strategies to increase data diversity and re-
duce data noise for synthetic data generation. Similar to our
approach, (Trabucco et al., 2023) proposes a diffusion-based
data augmentation method. (Trabucco et al., 2023) uses dif-
fusion models to augment individual images to diversify
high-level semantic attributes of images; for instance, modi-
fying the appearance of the face of a truck or the landscape
of the background. Our work differs in that we apply our
augmentation to create semantic hybrids of images rather
than to diversify samples of a given class.

In our method, we utilize semantic perturbations of the train-
ing samples as a way of incorporating semantic knowledge.
Specifically, we use semantic mixing of training samples, a
recent task that aims to blend two different concepts to syn-
thesize a new concept. (Liew et al., 2022) present a method
called MagicMix to semantically mix concepts based on
pre-trained text-conditioned diffusion models. MagicMix
does not require any spatial mask or re-training, making it
lightweight enough to be applied over a large dataset.

We use adversarial perturbations in our evaluation to provide
insight on how the model aligns the representation of classes.
Adversarial perturbations, as introduced in (Szegedy et al.,
2014), are small perturbations that can change the model’s
prediction of an image. (Madry et al., 2018) provides an
optimization view of adversarial perturbations that allows
us to solve for attacks of an l-bounded projected gradient
descent (PGD) adversary.

3. Method

We embed semantic knowledge into the training process
by incorporating “semantically mixed” data in the training
process. Specifically, we propose a data augmentation tech-
nique in which the training data is used to generate new
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Figure 1. Diagram of method. The semantic mixing module is
illustrated with an example used in our experiment, where “But-
terfly”, “Couch”, “Lion”, “Rose”, and “Motorcycle” are grouped
as an arbitrary superclass. In the semantic mixing module, an
instance of a butterfly is used to generate new hybrid images by
mixing with other concepts in the same superclass. A subset of
these mixed images is added to the original clean training data
from CIFAR100 to form the final augmented set of training data.
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Figure 2. Five images in superclass C, illustrating visual dissimi-
larity between images in the same “semantic” superclass.

training samples which are hybrids of two semantically sim-
ilar classes. For efficiency, we pre-generate this data using
the MagicMix pipeline: for each image in the training set,
we generate a new mixed image towards each other class in
its superclass (See Figure 1).

We vary the amount of augmented data used in training
by specifying a probability of adding an augmented image
of the class of any given instance encountered in training.
Given the high ratio of augmented data to clean training data,
this method allows us to prevent the augmented data from
completely dominating the clean data. In our experiments,
we refer to ”low augmentation” as having a 25% probability
of adding an augmented image for any given instance in
training, and “high augmentation” as having a 50% proba-
bility of adding an augmented image. The augmented image
is chosen by randomly selecting a pre-generated image with
the same base class as the given instance. Augmented in-
stances are treated 50% as the base class and 50% as the
target class when performing optimization.
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Superclass | Flowers Furniture Insects Carnivores Vehicles
A Orchid Bed Bee Bear Bicycle
B Poppy Chair Beetle Leopard Bus
C Rose Couch Butterfly Lion Motorcycle
D Sunflower Table Caterpillar Tiger Pickup truck
E Tulip Wardrobe = Cockroach Wolf Train

Table 1. Chart depicting refactored superclasses. The columns depict the original superclasses (Flowers, Furniture, Insects, Carnivores,
Vehicles), and the rows depict the new superclasses (A,B,C,D,E). Note that there is high visual similarity within classes in the same

column, but not in the same row.
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Figure 3. Examples of generated images. The top row, middle row, and bottom row show the original image and images generated with a

mix factor of 0.50 and 0.75 respectively.

4. Experiments

To test whether our method could successfully increase
alignment with respect to arbitrary class relationships, we
formed our training and testing datasets to minimize vi-
sual similarity of classes within the same superclass and
maxmize visual similarity of classes between different su-
perclasses. We selected five visually dissimilar superclasses
from CIFARI100 ((Krizhevsky, 2009)) and redistributed
classes such that one class from each original superclass was
in each of the new superclasses. Our superclass groupings
are shown in Table 1. We will refer to the original super-
classes (Flowers, Furniture, Insects, Carnivores, Vehicles)
as visual superclasses and the new superclasses (A, B, C, D,
E) as semantic superclasses to avoid confusion.

We pre-generate our hybrid images using the MagicMix
pipeline from (Liew et al., 2022) using image-text mixing.
For each image in the training set, we create four hybrid
images, one hybrid image per each other fine class within
the same superclass. The image from the training set is used
as the base image and the prompt in the MagicMix module
is set to the fine class name in the same superclass. The
MagicMix module allows a mix factor in the range [0, 1]
to be set to define the strength of the mixing towards the

target prompt. We vary the mix factor over models - for low
mix strength, we use a mix factor of 0.50 and for high mix
strength, we use a mix factor of 0.75. Example images are
shown in Figure 3.

All models used a ResNet50 architecture as described in (He
et al., 2016) and were trained on the dataset described above.
We used a learning rate of 0.1, a batch size of 100, and stan-
dard values for remaining training parameters. Additional
data augmentation was applied in the form of random crop-
ping and random horizontal flipping. Models were trained
for 100 epochs.

We evaluate our method primarily using superclass accuracy
on mistakes made by the trained models. Under this metric,
models are given credit if their mistakes occur within the
correct superclass. In particular, we test models against
adversarially-perturbed samples of increasing severity; if
a model is not semantically-aligned with respect to the de-
sired semantics, the adversarial perturbation will be able to
easily shift the mode’s prediction to a class in the incorrect
superclass. We also record standard accuracy and semantic
superclass accuracy.

Adversarial attacks are modeled with an [5-bounded pro-
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Figure 4. Top: Percent of mistakes that were made within the same
semantic superclass. For instance, a tulip getting mistaken for a
wardrobe (Class E). Bottom: Percent of mistakes that were made
within the same visual superclass. For instance, a tulip being
mistaken for a rose (Class Flowers).

jected gradient descent adversary as proposed in (Madry
et al., 2018). For a model f with learned parameters 6 over
a data distribution D and loss function £, we find an adver-
sarial perturbation ¢ of a given instance x with label y by
solving

mats.||s||<e E(m,y)ND[‘C(f@(x + 6)) y)]
where ¢ is the [5 bound of the adversary.

The models we compared were as follows:

e Standard model: Model trained with no additional
augmented data

¢ Low augmentation, low mix strength: Model trained
with 25% additional augmented data and mix strength
of 0.5

e Low augmentation, high mix strength: Model
trained with 25% additional augmented data and mix
strength of 0.75

¢ High augmentation, low mix strength: Model trained
with 50% additional augmented data and mix strength
of 0.5
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Figure 5. Top: Fine class accuracy over all test instances. Bottom:
Superclass accuracy overall (percent of test instances classified as
a fine class in the correct semantic superclass).

e High augmentation, high mix strength: Model
trained with 50% additional augmented data and mix
strength of 0.75

5. Results

In this section, we will show results on mistake severity over
adversarial perturbations of increasing severity. First, we
will demonstrate that the models with our proposed augmen-
tation technique perform better in terms of mistake severity
on adversarially perturbed instances. We will additionally
demonstrate that our technique decreases mistakes across vi-
sually similar classes. These results indicate that our method
helps to increase semantic alignment at odds with visual
similarities.

The models using our data augmentation technique have
considerably higher superclass accuracy on mistakes on per-
turbed instances than the standard model, as seen in Figure
4. The high data augmentation, high mix strength model
performs best overall on this metric, with performance close
to the standard model on the clean data and best perfor-
mance on all nonzero levels of perturbation. To address the
similar performance of the standard and data augmentation
models on the clean data, we posit that the simplicity of
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the CIFAR100 dataset causes the models to only makes
mistakes on difficult examples (e.g., ones with unique or
misleading features) at low levels of perturbation. As the
perturbation level increases, the models may start to makes
mistakes on examples with more standard features, which
offers an explanation to the fact that better performance of
the models with data augmentation is only present on more
highly perturbed data.

The models using the data augmentation technique addi-
tionally have lower percents of mistakes between classes
in the same visual superclasses (e.g. “Flowers”) (shown in
Figure 4). This demonstrates that the model learn lower
correlations between visually similar classes that are not
given as semantically similar.

Finally, we show overall model accuracy and semantic su-
perclass accuracy in Figure 5. The models using the data
augmentation technique improve on both metrics over all
non-zero levels of adversarial perturbation, and the high aug-
mentation, high mix strength model additionally improves
on standard accuracy and superclass accuracy. As the dataset
is not very challenging, the improvement of even the best
performing model with data augmentation is marginal on
clean accuracy and superclass accuracy. As the data set gets
more challenging with added perturbation, our method im-
proves on performance as MagicMix distortions help group
features of classes in the same semantic superclass. Even at
the highest level of perturbation, some semantic alignment
is maintained in the models with data augmentation.

6. Discussion and Conclusions

Our findings give promising first results for using data aug-
mentation as a method of increasing semantic alignment
between classes with arbitrary visual relationships. More
generally, this finding suggests potential for synthetic data
to inject prior knowledge into training. As future work, we
would like to apply our method to a more complex dataset,
where the model is more likely to see ambiguous images
or images otherwise more difficult to classify. Addition-
ally, the method could be extended to an application with
domain-specific knowledge that needs to be incorporated
rather than arbitrary class relationships.
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