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Abstract

The impressive advances in large language and

joint language-and-visual understanding models

has led to an increased need to understand their

potential reasoning capabilities. However, the dif-

ficulty of gathering naturally-occurring data for

complex multi-modal reasoning tasks creates a

bottleneck for the evaluation of AI methods on

tasks which are not already covered by an aca-

demic dataset. In this work, we leverage recent

advances in high resolution text-to-image genera-

tion techniques to develop a framework for gen-

erating evaluation data for multi-modal reason-

ing tasks. We apply this framework to generate

context-dependent anomaly data, creating a syn-

thetic dataset on a challenging task which is not

well covered by existing datasets. We benchmark

the performance of a state-of-the-art visual ques-

tion answering (VQA) model against data gener-

ated with this method, and demonstrate that while

the task is tractable, the model performs signifi-

cantly worse on the context-dependent anomaly

detection task than on standard VQA tasks.

1. Introduction

Language models, particularly large language models

(LLMs) have demonstrated impressive performance on in-

creasingly difficult reasoning tasks. At the same time, multi-

modal models like BLIP-2 (Li et al., 2023) and GPT-4 (Ope-

nAI, 2023) which leverage LLMs have begun to show ex-

ceptional performance on tasks requiring both visual and

textual reasoning such as the visual question answering task

(VQA). This has led to increased interest in understand-

ing the capability of these models to perform complex rea-

soning tasks involving multi-modal information (Xu et al.,

2022). However, the process of gathering and labeling natu-
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rally occurring data to form datasets is both expensive and

time consuming. This limits the tasks on which the rea-

soning capabilities of LLMs can be evaluated to existing

academic datasets like VQAv2 and LSMDC (Goyal et al.,

2016; Rohrbach et al., 2015).

Context-dependent anomaly detection is one such under-

explored reasoning task. A context-dependent anomaly

occurs when an otherwise normal entity differs significantly

from the environment in which it is found. Reasoning about

context-dependent anomalies requires knowledge of the en-

tity and its relations to all possible contexts, making them

harder to detect than simpler point anomalies (Pang et al.,

2021). Detecting context-dependent anomalies is an open re-

search task (Pang et al., 2021) and one at which LLM-based

multi-modal models might excel given their powerful rea-

soning capabilities. However, to our knowledge no attempt

has been made to benchmark multi-modal LLM models on

context-dependent anomaly detection. This is likely due to

the difficulty of finding data; as noted in (Bozcan & Kaya-

can, 2021), data generation for context-dependent anomalies

is significantly more difficult than data generation for point

anomalies due to their increased complexity.

In parallel to the development of LLMs, the past few years

have seen an increase in interest in the text-to-image genera-

tion task. This has resulted in the release of diffusion models

like DALL-E-2 (Ramesh et al., 2022) and Stable Diffusion

(Rombach et al., 2021) which have set new performance

benchmarks on a variety of text-to-image generation tasks.

Since these models can generate outputs for a diverse set

of prompts, they offer a potential alternative for evaluating

models against a specific reasoning task. However, this

capability has not been widely explored.

We summarize our contributions as follows:

• We propose a general framework for creating synthetic

evaluation data for characterizing model performance

on data-starved tasks.

• We apply our framework to generate an image context-

dependent anomaly dataset that is 100 times larger than

the most similar existing dataset. We use only publicly

available data and models, a small amount of compute,

and no human supervision.
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• We frame image-based context-dependent anomaly de-

tection as a VQA task and identify a gap in the perfor-

mance of a state-of-the-art, LLM based VQA model

on the context-dependent anomaly detection task using

our synthetic data.

2. Related work

Image generation The text-based image generation task

takes a text description as an input and generates an image

matching that description. Deep neural network-based im-

age generation capabilities were initially popularized with

the development of generative adversarial networks (GAN)

(Goodfellow et al., 2020), which could generate images

from their training distribution. While GAN methods have

been extended to the text-based generation task, more re-

cently diffusion models like DALL-E-2 and Stable Diffu-

sion have surpassed GAN methods on common benchmarks

(Rombach et al., 2022). Diffusion models learn to recon-

struct an image from a latent space representation using a

learned reverse diffusion process. They have also been ap-

plied to text-based inpainting, in which a region of an image

is replaced with new visual information using a diffusion

model conditioned on text (Rombach et al., 2022).

Despite only developing recently, there is growing body

of work applying generative diffusion models to augment

or replace training data. Efforts have generated synthetic

training data with Stable Diffusion and trained ImageNet

classifiers (Bansal & Grover, 2023) and (Sariyildiz et al.,

2023), fine-tuned the Imagen diffusion model to produce

better training data for ImageNet classifiers (Azizi et al.,

2023), and used the GLIDE (Nichol et al., 2021) model

to improve few/zero shot classification on CIFAR-100 (He

et al., 2022). (Trabucco et al., 2023) is the closest to our

approach as they use diffusion models to augment individ-

ual images; however, their focus is on improving few-shot

detection rather than generating evaluation data. To our

knowledge, no prior work has explored the use of diffusion

models for generating evaluation data on novel tasks.

Multi-modal models There are a wide variety of multi-

modal models; in this work we will consider both joint em-

bedding models and visual question answering (VQA) mod-

els. In the joint visual-language embedding task, the goal

is to generate similar embeddings for images and text that

share semantic information. The CLIP architecture (Rad-

ford et al., 2021) approached this task using a contrastive

loss; other methods for joint embedding utilize more com-

plex methods (Sun et al., 2023). Joint embedding models

have been incorporated into a variety of other tasks, includ-

ing enabling zero shot detection in object detectors (Carion

et al., 2020), generating semantic embeddings for text-based

image generation (Rombach et al., 2021), and retrieving

knowledge for VQA tasks (Gui et al., 2021). In the VQA

task, the objective is to correctly answer a question based

on visual information. While initially formulated as a classi-

fication style task in which correct answers were predicted

from a fixed set, current VQA benchmarks (Agrawal et al.,

2015) are based on evaluating the similarity of free-form

text to the set of correct answers. Th Open Knowledge VQA

task, first introduced in (Marino et al., 2019), is another vari-

ant of the task in which the question cannot be correctly

answered solely based on the image; external knowledge

must be combined with visual information to arrive at the

correct answer. However, both standard and Open Knowl-

edge VQA datasets do not have good coverage of questions

relating to anomaly detection. For example, an inspection

of the ~14,000 training questions in the OK-VQA dataset

yields only six questions that relate to anomaly detection.

Anomaly detection Anomaly detection is the task of de-

tecting observations that differ from the standard distribution

of data and is relevant in many fields, including cybersecu-

rity, finance, and healthcare. Point anomalies, or anoma-

lies where an individual instance of an entity differs from

normal instances, are the most commonly studied type of

anomaly. Deep learning methods have demonstrated per-

formance on detecting a variety of point anomalies (Pang

et al., 2021). However, there are several other types of

anomalies which have been less well studied. One such

type of anomaly is a contextual anomaly, which is a normal

instance of an entity that is anomalous with respect to its

current context (Pang et al., 2021; Chandola et al., 2009).

Performing context-dependent anomaly detection usually

involves trying to reduce the problem to a point anomaly

detection problem, where multiple models may be condi-

tioned on specific contexts, which may not be feasible if

the class space is large (Bozcan & Kayacan, 2021; Chan-

dola et al., 2009). Aside from (Bozcan & Kayacan, 2021),

which evaluated a method for detecting context-dependent

anomalies in images on a small, aerial photo centric dataset

and (Vaska et al., 2022) which used knowledge graphs to

detect anomalies in data derived from images but did not

utilize visual information, there is little work on detecting

context-dependent anomalies in images.

3. Method

In order to generate datasets for complex reasoning tasks

on visual data, the outputs of the data generation process

must be consistent with respect to the process inputs. This

property allows the label of any generated data to be derived

from the pipeline’s input, which is critical for removing the

need for human labeling. Additionally, the outputs of the

pipeline should be close to natural images as possible so

that the dataset does not introduce an additional distribution

shift that could affect model performance.

To meet these requirements, we propose a data generation
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framework in which a targeted region of a natural image is

replaced with an image generated using a text description

that corresponds to the desired task. Since the majority

of the image is naturally occurring data, as long as the

edited region correctly corresponds to the text description,

this approach achieves both properties. One constraint on

this approach is that an appropriate input image must be

available in sufficient quantities; however, this constraint

does not pose a severe restriction on this method as there are

a plethora of publicly available datasets containing natural

images that are labeled at different levels of granularity.

To ground our framework in a specific task, we will focus on

generating data for a context-dependent anomaly detection

task. Under this task definition, our framework’s goal is to

replace a region of a image with visual information that is

out of place compared to the original image. The following

sections describe the specific anomaly detection task and

the details of our approach.

3.1. Synthetic anomaly generation

Let us define our class of contextual anomalies as objects

which do not belong in the indoor scene type in which they

are found (e.g. a pizza is anomalous in a bathroom but not

a kitchen). More specifically, let O be a set of potential

objects and S a set of possible scenes. Consider an image

which depicts a scene si ∈ S and a number of objects

Oi = [o1, ..., on] where Oi ⊂ O. The image also contains

a single anomalous object oa ∈ O that is anomalous in

the context of si and Oi. The context-dependent anomaly

detection task can be defined as correctly identifying oa
from oa ∪ Oi. Note that under this task definition every

image is guaranteed to contain one and only one anomaly.

3.1.1. INJECTING TARGETED ANOMALOUS VISUAL

INFORMATION

The first step in generating a synthetic context-dependent

anomaly dataset is to inject anomalous visual information

into non-anomalous images such that resulting images can

be confidently labeled as containing the injected anomalies.

Let q be a non-anomalous image with an associated scene

type s and a masked region m. For each s ∈ S, ∃Os ⊂ O,

where Os is a set of objects that are anomalous with respect

to that scene. Select an anomalous object oa ∈ Os. Let g

be a text-to-image inpainting model which takes a target

object, an image, and a masked region as input. Its output is

the anomalous object’s corresponding visual representation,

which we denote va:

g(oa, q,m) = va

Within q, replace m with va to create a new candidate image

p, in which oa exists as a context-dependent anomaly.

3.1.2. ENSURING CONSISTENCY OF DATA GENERATION

WITH FILTERING

Text-to-image generation models may generate outputs cor-

responding to a different class or introduce artifacts which

significantly distort the generated visual information, gen-

erating an undesirable distribution shift. To improve the

quality of samples generated by our pipeline, we utilize a

joint visual-language embedding model to filter out genera-

tions which differ significantly from the intended target.

Let P be an image dataset of candidate anomalous images.

We consider each image as a potential addition to PA, our

desired, filtered dataset that is comprised of images that are

more realistic representations of our anomalies. Given a

joint visual-language embedding model f , we compute a set

Z of similarity scores between the the visual information

of the image’s anomalous object va and every object label

oi ∈ O, including oa:

f(va, oi) = zi

f(va, oa) = za

Z = {za ∪

|O|
⋃

i=1

zi}

Then each element p ∈ P is an input image which we rep-

resent as p = (oa, va, Z) to indicate included information

about the image’s anomalous object, visual representation

of said object, and its associated similarity scores. We use

these similarity scores to determine whether p is likely to be

visually realistic or aligned with the target object.

If the similarity score za is in the top-k similarities, then

we include p in PA. Additionally, consider a set of objects

Ot ⊂ O, where a high similarity between va and an object

in Ot indicates the presence of an artifact. For example, in

our experience, human body parts (i.e., arms, legs) would

appear in some generated images. To prevent inadvertently

including images that contain artifacts, we also check that

the scores corresponding to these objects in Ot are low. If

the similarity scores f(va, ot) = zt∀ot ∈ Ot are not in the

top k, then we can include p in PA. This process is repeated

for every image in P :

top-k(z) =

{

1 if z is in the top-k elements of Z

0 otherwise

PA = {p ∈ P : top-k(za) = 1andtop-k(zt) = 0∀ot ∈ Ot}
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4. Experiments

Figure 1 is a high-level illustration of our data generation

pipeline. We first apply our pipeline to generate an example

dataset for the indoor object context-dependent anomaly de-

tection task. We demonstrate the value of the synthetically

generated data by comparing the performance of current

VQA models to a simple, similarity-based anomaly detec-

tion method on our task, highlighting gaps in the reasoning

capability of the VQA models. We provide details on the

dataset generation and evaluation methods below.

4.1. Dataset generation

We used the set of objects from the Open Images object

detection dataset (Kuznetsova et al., 2020) as our overall

set of object classes. We identified eight different scene

types which presented different indoor contexts, selected

50 objects from our overall object set to serve as anomaly

targets, and characterized whether each object would be

anomalous in each scene type. We also categorized each

object’s size as small ( apple-sized), medium ( microwave-

sized), or large ( appliance-sized). We chose to limit the

number of anomalous object classes to allow more oversight

into the generated data; however, our method can easily

be extended to additional anomalous objects since the only

human input required is a size classification and a small

number of binary decisions on which scene types an object

is anomalous in. The full list of anomalies and scene types

can be found in Appendix B. We then filtered the Visual

Genome (VG) dataset (Krishna et al., 2017) for images

matching the selected scene types and chose an unbalanced

selection of 80 base images. We manually selected images

to ensure that a large number of objects were present in

each image, since cluttered scenes have large amounts of

task relevant context. Images could have also been selected

automatically based on dataset criterion like the number of

object detections; however, we did not explore automatic

image selection in this work. For each image, we applied

3-4 rectangular masks around objects in the scene and also

coded each mask as small, medium, or large.

For each image and mask pair, we selected the set of objects

considered anomalous for the image’s scene type. We then

removed any objects which did not have the same size label

as the mask, as we found that the inpainting model we

used, Stable Diffusion inpainting (Rombach et al., 2021),

often distorted the size of the object to match the size of

the mask even if this greatly changed the object proportions

relative to the scene. We also found that object replacement

was more consistent when the object was the focal point of

the scene, so we cropped images to a window around the

masked region. As shown on the left side of Fig. 1, we then

ran each cropped image, mask, and object triplet through

the inpainting model to generate ten candidate replacement

images for the masked area. Candidate images were filtered

both for lack of object consistency and for the presence of

human attributes (arm, leg, etc), which often indicated a

distorted generation, which is shown on the right side of Fig.

1. Filtering was done using a full object description instead

of just the object name (e.g. ”apple: a red fruit ...” instead

of apple), as we found that this improved filtering quality,

and with k = 5. Any candidate images that passed through

the filtering were injected into the original image in place

of the mask to generate the final anomalous images.

4.2. VQA-based anomaly detection

VQA methods take an image and a question as input, and

return an answer to the question based on the image content

as an output. To frame our image-based context-dependent

anomaly detection as a VQA task, no major modifications

are needed. It is sufficient to write the query posed to the

VQA model such that, given an image containing a single

anomalous object, the correct answer to the query can only

correspond to the anomalous object.

4.3. VQA evaluation methods

Calculating the accuracy of the VQA model on the anomaly

detection task is non-trivial since the model returns free

form text. To correctly calculate accuracy, the text outputs

must be accurately mapped to the object class labels. Pre-

vious VQA datasets have handled this by giving weighted

credit based on the number of human participants who gave

each answer (Agrawal et al., 2015). Since our pipeline only

provides exact class labels, this method is not directly ap-

plicable; we instead utilize three different evaluation tactics.

First, we calculate a VQA-like direct word matching, giving

the model credit for a response if the response contains the

true answer as a discrete word. As this method penalizes

responses which use synonyms (i.e. llama instead of alpaca)

we also use an embedding language model to perform zero-

shot classification on the response, mapping it to the classes

in the Open Images object detection dataset. This handles

synonyms and related concepts better than the VQA-like

method, but may incorrectly penalize the model for predict-

ing a semantically close object. To address this issue, we

also perform a zero-shot prediction over ten representative

classes (i.e. tool, food). This metric is unlikely to penal-

ize the model for predicting semantically similar classes,

but greatly simplifies the anomaly prediction task. For the

zero-shot prediction methods we also generate and append

a description of the category or model response when gener-

ating the embeddings to improve matching quality.

4.4. Similarity-based anomaly detection

A valid concern when evaluating models using synthetic

data is that the targeted task may be intractable if quality
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Figure 1. Anomaly generation pipeline. Given that an image of a bathroom has been selected and a large object has been masked, crocodile

is selected as the anomalous object. An off the shelf inpainting model is used to create several candidate replacement images, and

embedding based content filters are used to remove examples which are too different from the target object.

of the generated data is poor. For instance, if the goal is

to identify that an apple is anomalous in a particular image

but the apple looks more like a baseball, there is no viable

way for an anomaly detection model to correctly identify

the anomaly with the correct reasoning. In order to better

understand whether the data generated by our pipeline is

sufficiently high quality for the anomaly detection task to

be tractable, we develop a simple feature-based method for

detecting context-dependent anomalies in image data.

At a high-level, the similarity-based anomaly detection

method uses a region proposal network to split the image

into regions corresponding to objects, applies a set of simi-

larity functions to calculate scores representing how similar

each region is to a component of the image’s context, and

then calculates an overall similarity score. The anomaly

detection problem is then reduced to selecting the region

with the lowest similarity score and predicting the class of

the object corresponding to that region. This approach is

similar to the method used in (Vaska et al., 2022), and full

details on this method can be found in Appendix C.

The similarity functions drive the reasoning capabilities of

this approach. Intuitively, similarity functions can be de-

rived from visual features (a chair looks like a table) or

semantic features (a chair is semantically similar to a table).

Visual features can be extracted directly from image regions

using an image embedding model. Calculating semantic

features for a region requires associating outside knowledge

with that region; we associate text-based semantic knowl-

edge from a knowledge base with each region following the

approach from (Gui et al., 2021). We then calculate the se-

mantic features from the knowledge using a text embedding

model. Given visual features and semantic features, simi-

larity functions can be defined to compare regions to each

other and the full image to calculate a score representing

how similar each region is to the overall scene context. We

define three sets of similarity functions for our evaluation:

functions which use only semantic features (Knowledge),

functions which use only visual features (Visual), and the

set of all functions (All).

4.5. Model details

A variety of models are required for the similarity and

VQA-based anomaly detection models. For the similarity-

based method, a region proposal network and a joint-visual

language embedding network are required. For our ex-

periments, we utilized the DETR model’s (Carion et al.,

2020) region proposal network and the CLIP model (Rad-

ford et al., 2021) for joint visual and language embedding

in the similarity functions and evaluation metrics. Addi-

tionally, the knowledge-based similarity function and our

evaluation method required object descriptions for all Open

Images objects. We utilized the text generation capabilities

of ChatGPT (OpenAI, 2023) to generate these descriptions

and manually verified that the descriptions were accurate.

See the Appendix B for additional details on this process.

For the VQA-based anomaly detector, we chose to utilize

the recent BLIP-2 model (Li et al., 2023). BLIP-2 has

demonstrated state-of-the-art performance on standard VQA

benchmarks and, in contrast to many other competitive VQA

models, has open implementations available. We utilized

the FlanT5-XL and FlanT5-XXL BLIP-2 model variants

that had not been fine-tuned on other VQA datasets to avoid

any dataset-specific biases. For model prompting, we exper-
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Table 1. Comparison of Generated Dataset to Existing Image Anomaly Datasets

Dataset Domain
Anomalous

Samples

Anomaly

Type

Generation

Method

MVTec AD (Bergmann et al., 2019) Defect Detection 1258 Point Image Collection

UCI letter (Han et al., 2022) Handwriting 100 Point Data Subsampling

UCI opt.digits (Han et al., 2022) Handwriting 150 Point Data Subsampling

UCI skin (Han et al., 2022) Human Features 50859 Point Data Subsampling

AU-AIR Anomaly (Bozcan & Kayacan, 2021) Traffic Surveillance 120 Contextual Manual Editing

Ours Household Images 10,527 Contextual
Text-Based

Inpainting

(a) spice rack in a hotel room (b) helmet in a dining room (c) snowman in a bedroom (d) apple in a bathroom

(e) chainsaw in a kitchen (f) dishwasher in a living room (g) oyster in a cubicle (h) fire hydrant in a classroom

Figure 2. Examples generated using pipeline. A single context-dependent anomaly has been injected into each image.

imented with a variety of different prompt wordings, ulti-

mately using the following question wording: ”Question: A

context-dependent anomaly is an object that is anomalous

based only on the context in which it is found. What object is

the context-dependent anomaly in this scene? Short answer:

”. Other hyperparameters for text generation were set to the

default values provided in the BLIP-2 paper.

5. Results

5.1. Dataset generation Results

Two A100 GPUs were used for data generation, and all data

was generated during an ~8 hour generation run. Of the

25,204 instances generated with the pipeline, 10,527 were

accepted by the content filters resulting in an acceptance

rate of 41.8%. Figure 2 shows example images altered using

our data generation pipeline; qualitatively, the generated

images align with the desired classes. Additional example

generations are shown in Appendix A. Table 1 compares the

generated dataset to existing anomaly datasets that relate to

image data; the dataset is about 100x the size of the only

other image-based contextual anomaly dataset despite using

a low amount of compute and no human supervision.

5.2. VQA-based method

Table 2 shows the performance of each variant of the

BLIP-2 model using each evaluation method. Notably, the

VQA models performed poorly on all evaluation methods.

The XXL model was the best performing model, but only

achieved 12.32% accuracy on the VQA-like metric and

13.41% performance on the matching metric. Additionally,

a qualitative review of incorrect responses indicates that the

model often selected a random, non-anomalous object as the
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Table 2. Performance of VQA-based method on contextual anomaly detection

VQA-like Accuracy
Matching Accuracy

with Descriptions

Broad Category Matching

Accuracy with Descriptions

Model Variant Top 1 Top 1 Top 3 Top 1 Top 3

BLIP-2 Flan T5 xl 10.54 11.61 11.94 21.63 46.57

BLIP-2 Flan T5 xxl 12.31 13.41 13.92 22.13 48.42

(a) There are two beds in the room (b) tulips in the kitchen (c) a bathroom with a bathtub

Figure 3. Examples where the VQA model predicted the incorrect answer. The VQA model often responds with an ordinary object in the

scene, apparently not understanding the point of the question.

anomaly. Examples of model responses are shown in Fig.

3. This behavior aligns with the broad category matching

results; if the model was responding with semantically cor-

rect answers, the accuracy on the broad category matching

metric would be high. Instead, the best VQA model only

achieved 22.13% top 1 accuracy. Given that there are only

ten possible categories for this metric, the VQA model only

marginally outperforms a random baseline. The broad cate-

gory confusion matrix, given in Figure 4, further highlights

this behavior; the model only beats 50% performance on the

animal and child’s toy categories, consistently predicting

the wrong category for all other classes.

5.3. Similarity-based anomaly detection

Table 3 records the full results for the similarity-based

anomaly detection method; note that this metric corresponds

to the VQA matching metric as both metrics make predic-

tions over the Open Images objects. The similarity-based

anomaly detection method achieved a maximum top 1 accu-

racy of 38.00% on the generated anomaly dataset. Accuracy

was highest when using all similarity functions, dropping

slightly to 36.31% when only visual similarity functions

were used and dropping significantly to 12.24% when only

the knowledge-based similarity function was used.

6. Discussion and conclusions

Since the data generation pipeline was computationally

lightweight, the resulting dataset of context-dependent

anomalies was still much larger than any comparable dataset,

even though a substantial fraction of generated samples did

not pass the content filter. Qualitatively, most samples that

passed the content filter during evaluation align with the

intended label, and were smoothly integrated into the image.

However, artifacts are still present in the accepted images;

in particular, the pose or size of the inserted object is often

slightly wrong and in some cases the background of the in-

serted visual information does not match surrounding image.

Future work should consider improved methods for filter-

ing out these artifacts; however, while undesirable, these

artifacts do not change the apparent class of the injected

visual data. This ensures that data containing these artifacts

remains anomalous, and thus does not prevent the generated

dataset from serving as an anomaly detection benchmark. In

all likelihood artifacts should make the detection of anoma-

lies easier, as they introduce other information which can

potentially be used to detect the anomalous region.

Context-dependent anomaly detection is a challenging task;

however, the similarity-based anomaly detection method

was able to identify a reasonable fraction of anomalies de-

spite using a relativelt simple method to reason about the

anomalies. The method performed significantly worse when

relying on only semantic features as opposed to visual fea-

tures, and further experimentation is needed to gain more

insight into why semantic features underperformed. How-

ever, the overall performance of the similarity-based method

indicates that the quality of the synthetic data is sufficient

for the anomaly detection task to be tractable.
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Figure 4. Confusion matrix for the VQA broad category matching.

Table 3. Performance of similarity-based method on contextual

anomaly detection

Accuracy

Set of Similarity

Functions
Top 1 Top 3

All 38.00 38.61

Visual 36.31 36.91

Knowledge 12.24 12.63

All variants of the BLIP-2 VQA model performed poorly on

the synthetically generated anomaly dataset, regardless of

evaluation technique. It is unlikely that this failure stemmed

from BLIP-2’s vision module, as the image encoder it

uses is similar to the encoder used by the similarity-based

method. Since the synthetic data is qualitatively convinc-

ing and tractable to the similarity-based method, it is much

more likely that the reasoning capabilities of the underlying

LLM used by BLIP-2 were not aligned with the context-

dependent anomaly detection task we posed. This result

contrasts with BLIP-2s competitive zero-shot performance

on the VQAv2 dataset (65%) and the Open Knowledge

VQA dataset (45.9%) (Li et al., 2023), and indicates that

these datasets may not provide suitable benchmarks for tasks

which require reasoning about anomalies.

The ability of the synthetic data to challenge the VQA model

on the context-dependent anomaly detection task highlights

the potential for synthetic data to provide insight on other

challenging reasoning tasks. For example, with minimal

adjustments our pipeline could be used to generate data

for object state queries (e.g. has the apple been eaten) or

task completion queries (e.g. has the bed been made). Our

framework could also be used for augmenting existing data

for class balance (i.e. replacing a common dog breed with a

rare one) or robustness (e.g. changing the type of utensils

at a table for a semantic distribution shift), but additional

work is needed to determine whether our method is a viable

approach for these augmentation tasks. The primary limita-

tion of our method is the capability of the image generation

model used; if the model cannot generate high quality in-

stances of the target object in a specified state, the quality of

the generated dataset may be insufficient to serve as a useful

benchmark for the task. An appropriate method for filtering

out undesirable samples must also be available; while the

process we defined in this work is applicable to data gener-

ation for a variety of tasks, there may be tasks for which a

different filtering method must be developed.

Our work demonstrates that it is possible to generate a chal-

lenging, task specific bench mark for a multi-modal model

using existing text-to-image generation capabilities at a low

cost. We do not expect this capability to replace the tradi-

tional paradigm of dataset development that has powered

the development of deep learning models, as naturally oc-

curring data is by definition the gold standard for evaluation.

However, our pipeline offers a low-cost diagnostic tool that

can be used to better understand the current capability of AI

models on tasks, like context-dependent anomaly detection,

for which datasets of naturally-occurring data do not exist.

This may allow researchers to gain more insight into the

performance gaps of current models and ultimately develop

new architectures and training methods to address them.
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A. Additional examples of generated synthetic data

Figures 7 and 8 show additional examples of anomalies generated using our synethetic data generation framework. Although

relatively few underlying natural images are used, diversity is introduced through the choice of mask, anomaly, and

text-to-image generator random seed, resulting in a substantial amount of variation in the generated images.

Due to the limitations of current text-to-image generation models, some of the generated images contain artifacts. Figure 5

shows common types of artifacts; these include incorrectly posed objects, objects in which the background does not match

the surrounding scene, objects which are significantly distorted, and generations which include a human or parts of humans

(i.e., limbs). While these artifacts are undesirable, they also make the anomaly detection problem easier by introducing point

anomaly features which could be provide additional information during evaluation. However, as the performance of the

VQA models is still poor, the generated data appears to still be challenging despite the occasional presence of these artifacts.

Figure 6 shows example generations that were rejected by the content filters. In many cases, filter decisions are reasonable;

removing images with humans in them or ones in which the target object (e.g.: cutting board, washing machine) was

not accurately produced. However, the filters also remove instances in which the generation is reasonable. This does not

pose a significant issue for our framework; since data generation is computationally lightweight, the images removed by

conservative filters can be easily replaced by generating additional sample.

(a)
Incorrect object pose
with respect to scene

(b)
Incorrect background
infilling

(c)
Significant distortion
in object

(d)
Human was not
filtered out

Figure 5. Common artifact types in generated images

(a) Incorrect generations which were correctly filtered out

(b) Correct generations which were incorrectly filtered out

Figure 6. Example generated images that were rejected by content filters
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(a) bathrooms with anomalies

(b) hotel rooms with anomalies

(c) classrooms with anomalies

(d) cubicles with anomalies

Figure 7. Additional examples of generated anomalous data for selected scene types
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(a) dining rooms with anomalies

(b) hotel rooms with anomalies

(c) kitchens with anomalies

(d) living rooms with anomalies

Figure 8. Additional examples of generated anomalous data for remaining scene types
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B. Objects, anomaly definitions, and scene types

Table 4 shows the full list of objects and scenes. Scenes types were selected based by their availability in the Visual Genome

dataset. Objects were selected from the set of objects included in the Open Images object dataset to provide coverage of

different object sizes and types. Objects were also selected to ensure that each scene type had some anomalous object types

associate with it; this classification was done manually to ensure consistency in anomaly definition. There are also a few

objects included in the dataset like llama or traffic light which are considered to be anomalous in every scene type; these

were included to expand the space of anomalies considered.

Table 4. Object anomaly

Scene Type

Object bathroom bedroom classroom cubicle
dining

room

hotel

room
kitchen

living

room

apple X X

alpaca X X X X X X X X

baseball

glove
X X X X

binoculars X X X X X X

bidet X X X X X X X

chainsaw X X X X X X X X

computer X X X X

crocodile X X X X X X X X

cutting board X X X X X X

dishwasher X X X X X X X

doll X X X X X

drum X X X X X X

dumbbell X X X X X X

fire hydrant X X X X X X X X

fish X X X X X

helmet X X X X X X X

frying pan X X X X X X

golf ball X X X X X

hamburger X X

harpsichord X X X X X X

lifejacket X X X X X X X X

microwave X X X X X

office

supplies
X X

oyster X X X X X X

panda X X X X X X X X

perfume X X X X

pizza X X

printer X X X X

punching

bag
X X X X X X X

rocket X X X X X

saxophone X X X X X

sewing

machine
X X X X X

slow cooker X X X X X X

snowman X X X X X X X X

spice rack X X X X X X X

spoon X X

squirrel X X X X X X X X

stationary

bicycle
X X X X X X X

stethoscope X X X X X X X X

stretcher X X X X X X X X

surfboard X X X X X X X X

syringe X X X X X X X X

toilet paper X X X X X X X

toothbrush X X X X X X X

towel X X X X X

traffic light X X X X X X X X

violin X X X X X

washing

machine
X X X X X X X X
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C. Additional details on method

Text descriptions of objects were needed for multiple components of our methods, including the similarity function

knowledge base, the object descriptions for improving matching accuracy, and the answer descriptions for matching. We

used the same text completion prompting regardless of the the text generation model used. This prompt involved several

human-written descriptions for other objects (e.g. ”dog: a type of pet...”) followed by the target text for which a description

was needed and a blank space. We found that this prompting consistently generated high quality descriptions, but in order to

ensure that the knowledge base was accurate, all knowledge-based entries were read and regenerated if any factual or logical

errors were noticed.

Three different similarity functions were defined to compute similarity scores for each region; image-region visual similarity

(IRV ), region-region visual similarity (RRV ), and knowledge-based similarity (KB). All three similarity functions utilized

a joint visual-language embedding model f to compute similarity scores.

Let f(I) = eI be the image embedding (i.e., the visual features of the entire image). Let f(r) = er be the visual embedding

for a region, and Er be the set of visual embeddings of all regions.

The IRV similarity function calculates embeddings for the visual features of the full image and each region; the more

similar the region’s embedding is to the full image embedding, the higher the similarity score:

IRV (er) = ei · er, ∀er ∈ Er

The RRV similarity function only compares visual embeddings between regions, and calculates a similarity score based on

how similar an individual regions features are from all other regions:

RRV (er) =
1

|Er|

∑

e∈Er

er · e

The KB similarity function compares the semantic information associated with a region against the semantic information

associated with other regions. The score represents how semantically close the knowledge associated with each region is to

the overall semantic context of the scene. Let f(o) = eo be the semantic embedding generated from the natural language

description of an object class o, and Eo be the set of semantic embeddings for all object classes. We first calculate the

similarity so between the visual features for the region and the semantic embedding of an object class, repeating for all

object classes:

so = er · eo, ∀eo ∈ Eo

Object descriptions corresponding to the top-k values of all so (i.e., most similar classes to each region) are retrieved from a

knowledge base and concatenated into a text we denote as d; an additional set of embeddings for these joint descriptions is

calculated as f(d) = ed for each region. The set of these description embeddings is written as Ed, and a region-to-region

similarity score is calculated with these embeddings:

KB(ed) =
1

|Ed|

∑

e∈Ed

ed · e


