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Abstract
Many machine learning regression methods lever-
age large datasets for training predictive models.
However, using large datasets may not be feasible
due to computational limitations or high labelling
costs. Therefore, sampling small training sets
from large pools of unlabelled data points is essen-
tial to maximize model performance while main-
taining computational efficiency. In this work,
we study a sampling approach aimed to minimize
the fill distance of the selected set. We derive an
upper bound for the maximum expected predic-
tion error that linearly depends on the training
set fill distance, conditional to the knowledge of
data features. For empirical validation, we per-
form experiments using two regression models
on two datasets. We empirically show that select-
ing a training set by aiming to minimize the fill
distance, thereby minimizing the bound, signifi-
cantly reduces the maximum prediction error of
various regression models, outperforming existing
sampling approaches by a large margin.

1. Introduction
Machine learning (ML) regression models are widely used
in applications, where we are in particular interested in
molecular property prediction (Montavon et al., 2013;
Hansen et al., 2015) and force field approximation (Chmiela
et al., 2017; Unke et al., 2021). One of the main goals of
ML regression is to label, with continuous values, pools of
unlabelled data points for which the existing labelling meth-
ods, e.g. numerical simulations or laboratory experiments,
are too expensive in terms of computation, time, or money.
To achieve this, a subset of the unlabelled pool is labelled
and used to train a ML model, which is then employed to
get fast predictions for the labels of points not considered
during training. However, the effectiveness of ML regres-
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sion models is strongly dependent on the training data used
for learning. Therefore, the selection of an efficient training
set is crucial for the quality of the model predictions. In this
context, our focus on selecting data points that can improve
the quality of predictions for different regression models.
This ansatz ensures that the labelling effort is not wasted on
subsets that may only be useful for specific learning models,
classes of models, or prediction tasks.

We distinguish between active and passive dataset selection
strategies. Active learning (Settles, 2009) involves itera-
tively updating the parameters of one or several regression
models and predicting uncertainties for unlabelled samples.
Unfortunately, it typically only benefits a specific model or
model class and optimizes the models’ performance for a
specific learning task, as it exploits the labels’ knowledge to
iteratively update the models’ parameters during the selec-
tion process. Passive sampling (Yu & Kim, 2010) is based
only on the feature space locations. Consequently, it has
the potential to offer advantages when considering multiple
learning tasks that pertain to the same data, as it is indepen-
dent of the label values associated with the analyzed data
points. We believe passive sampling can be further divided
into two subclasses: model-dependent and model-agnostic.
Model dependent passive sampling strategies are developed
to benefit specific learning models or model classes, such
as linear regression (Yu et al., 2006), k-nearest neighbors,
or naive Bayes (Wei et al., 2015), similar to active learning.
Contrarily, model-agnostic strategies have the potential to
benefit multiple classes of regression models rather than just
one. Farthest point sampling (FPS) (Eldar et al., 1994) is
a well-established passive sampling model-agnostic strat-
egy for training set selection already employed in various
application fields, such as image classification (Sener &
Savarese, 2018) or chemical and material science (Deringer
et al., 2021). FPS provides suboptimal solutions to the k-
center problem (Har-Peled, 2011), which involves selecting
a subset of k points from a given set by minimizing the
selected set’s fill distance, that is, the maximum distance
between a point in the set and its nearest selected element.

Our study aims to investigate theoretically and empirically
the impact of minimizing training set fill distance through
FPS for ML regression. For classification tasks, it was
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shown that minimizing training set fill distance reduces the
average prediction error of Lipschitz continuous classifica-
tion models with soft-max output layer and bounded error
function (Sener & Savarese, 2018). Unfortunately, these
results do not carry over to regression tasks, even for sim-
pler Lipschitz-continuous approaches, such as kernel ridge
regression with the Gaussian kernel (KRR) or feed-forward
neural networks (FNNs). In particular, we provide exam-
ples where reducing the training set fill distance does not
significantly lower the average prediction error compared to
random selection. The benefits of using FPS in regression
have been studied in various works (Yu & Kim, 2010; Wu
et al., 2019; Deringer et al., 2021), where it was argued
that passive sampling strategies such as FPS are more ef-
fective than active learning in terms of data efficiency and
prediction accuracy. However, these works lack theoretical
motivation, relying only on domain knowledge or heuristics.

In this work, we derive an upper bound for the maximum
expected prediction error of Lipschitz continuous regres-
sion models that is linearly dependent on the training set
fill distance. We show that minimizing the training set fill
distance significantly decreases the maximum approxima-
tion error of Lipschitz continuous regression models. We
compare the FPS approach with other model-agnostic sam-
pling techniques and demonstrate its superiority for low
training set budgets in terms of maximum prediction error
reduction. The maximum prediction error can be consid-
ered as a measure of the robustness of a model’s predictions
and is a helpful metric in various applications fields, such
as material science and chemistry (Zaverkin et al., 2022),
where the average error provides an incomplete evaluation
of a model’s predictions (Sutton et al., 2020; Gould & Dale,
2022). Our analysis offers theoretical and empirical results,
which set it apart from previous works. Specifically, we ex-
tend the theoretical work done in (Sener & Savarese, 2018)
for classification to regression, demonstrating that reducing
training set fill distance lowers the regression model’s max-
imum prediction error. Moreover, contrary to (Yu & Kim,
2010) and (Wu et al., 2019), who studied the advantages of
using FPS for regression tasks, our findings are supported
by mathematical results providing theoretical motivation
for what we show empirically. We emphasize that the ben-
efits we highlight regarding reducing the training set fill
distance using FPS were not detected in previous works,
either theoretically or empirically.

2. Related work
Existing work concerning model-agnostic passive sampling
is mostly related to coresets approaches. Coresets (Feld-
man, 2019) identify the most informative training data sub-
set. The simplest coreset method is uniform sampling,
which randomly selects subsets from the given pool of data

points. Importance sampling approaches, such as the CUR
algorithm (Mahoney & Drineas, 2009), assign to samples
relevance-based weights. Grid-based methods, such as k-
medoids and k-medoids++ (Mannor et al., 2011), that are
adapted version of the k-means (Ahmed et al., 2020) and k-
means++ (Arthur & Vassilvitskii, 2007), segment the feature
space in clusters and select representative points from each
cluster. Greedy algorithms iteratively select the most infor-
mative data points based on a predefined criterion. Well-
known greedy approaches for subset selection are the sub-
modular function optimization algorithms (Fujishige, 2005;
Krause & Golovin, 2014), such as facility location (Frieze,
1974) and entropy function maximization (Sharma et al.,
2015). Various coresets strategies have also been designed
for specific classes of regression models, such as k-nearest
neighbours and naive Bayes (Wei et al., 2015), logistic re-
gression (Guo & Schuurmans, 2007), linear regression with
Gaussian noise (Yu et al., 2006) and support vector ma-
chines (Tsang et al., 2005). Assuming the learning model’s
knowledge may even lead to the development of optimal
training set selection strategies, as in the case of linear re-
gression (Yu et al., 2006). Unfortunately, these selection
strategies benefit only specific model classes. In this work,
we are interested in passive sampling strategies that are
model-agnostic, thus having the potential to benefit multiple
classes of regression models rather than just one.

We investigate the benefits of employing the FPS algo-
rithm (Eldar et al., 1994) for training dataset selection. The
farthest point sampling is a greedy algorithm that selects
elements by attempting to minimize the selected set’s fill
distance which is the maximal distance between the ele-
ments in the set of interest and their closest selected ele-
ment. The work most similar to our is (Sener & Savarese,
2018). In (Sener & Savarese, 2018) the authors show that
selecting the training set by fill distance minimization can
reduce the average prediction error on new points for convo-
lutional neural networks(CNNs) with softmax output layers
and bounded error function. However, these benefits do
not necessarily extend to regression problems, even with
simpler Lipschitz algorithms like KRR and FNN, as we
illustrate with our experiments. The advantages of using
FPS, thus of selecting training sets with a small fill distance,
have also been investigated in the context of ML regression.
For instance, in (Yu & Kim, 2010) the authors argue that for
regression problems passive sampling strategies, as FPS, are
a better choice than active learning techniques. Moreover,
in (Wu et al., 2019) and (Cersonsky et al., 2021), the authors
have proposed variations of FPS, and they argue that these
can result in more effective training sets. These variations
involve selecting the initial point according to a specific
strategy rather than randomly, and exploiting the knowledge
of labels, when these are known in advance, to obtain sub-
sets that are representative of the whole set in both feature
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and label spaces. However, these works only demonstrate
the advantages of FPS and its variations empirically and do
not provide any theoretical analysis to motivate the benefits
of using these techniques for regression.

3. Problem definition
We now formally define the problem. We consider a su-
pervised regression problem defined on the feature space
X ⊂ Rd and the label space Y ⊂ R. We assume the so-
lution of the regression problem to be in a function space
M := {f : X → Y}, and that for each set of weights
w ∈ Rm there exists a function in M associated with it.
M can be interpreted as the space of functions that we can
learn by training a given regression approach through the
optimization of its weights w ∈ Rm. Additionally, we con-
sider an error function l : X × Y ×M → R+. The error
function takes as input the features of a data point, its label,
and a trained regression model and outputs a real value that
measures the quality of the model’s prediction for the given
data point. The smaller the error, the better the prediction.

Furthermore, we consider a dataset D := {(xi, yi)}ki=1 ⊂
X × Y , k ∈ N, consisting of independent realizations of
random variables (X , Y ) taking values in Z := X × Y
with joint probability measure pZ . We study a scenario
in which we have only access to the realizations {xi}ki=1,
while the labels {yi}ki=1 are unknown, and the goal is to
use ML techniques to predict the labels accurately and
fast, recovering from data the relation between the ran-
dom variables X and Y . In supervised ML, we first la-
bel a subset L := {(xij , yij )}bj=1 ⊂ D, b ≪ k, with
ij ∈ {1, 2, . . . , k} ∀j. We then train a regression model
mL : X → Y using a learning algorithm A(·) : 2D → Rm

that maps a labelled subset L ⊂ D into weights w ∈ Rm

determining the learned function mL ∈ M used to pre-
dict the labels of the remaining unlabelled points. The
symbol 2D represents the set of all possible subsets of D.
In what follows, unless otherwise specified, the labelled
points in the selected set L are indexed with j, that is,
L := {(xj , yj)}bj=1, while the unlabelled points are indexed
with i, that is, U := D−L = {xi, yi}ni=1, where n = k− b
and the labels {yi}ni=1 are unknown. Furthermore, given
a set L := {(xj , yj)}bj=1 ⊂ D we define LX := {xj}bj=1,
LY := {yj}bj=1.

In several applications the labelling process is computation-
ally expensive, therefore, given a budget b ≪ n of points
to label, the goal is to select a subset L ⊂ D with |L| = b
that is most beneficial to the learning process of algorithm
A(·). In this work we focus on promoting robustness of
the predictions, that is, we want to minimize the maximum
expected error of the labels’ predictions obtained with the
learned function. Specifically, the problem we want to solve

can be expressed as follows:

min
L⊂D,
|L|=b

max
(x,y)∈U

EpY |X [l(x, y,mL)|x], (1)

where pY |X is the conditional probability of the random
variable Y given X = x, that will be formally introduced
later. In other words, we aim to select and label a training set
L of cardinality b, so that the maximum expected error asso-
ciated to the trained regression model mL evaluated on the
unlabelled points is minimized. We remark that this work
focuses on model-agnostic training set sampling strategies
that have the potential to benefit various learning algorithms.
In particular, we do not optimize the data selection process
to benefit only a specific learning model class.

4. Method
Direct computation of the solution to the optimization prob-
lem in (1) is not possible as we do not know the labels for
the points. To cope with this issue, we derive an upper
bound for the minimization objective in (1) depending lin-
early on the training set fill distance, a quantity that can be
optimized. Afterwards, we describe FPS, which provides
a computationally feasible approach to obtain suboptimal
solution for minimizing the fill distance.

4.1. Effects of a training set fill distance minimization
approach.

First, we introduce the concept of fill distance, a quantity
we can associate with subsets of the pool of data points we
wish to label that can be calculated only considering the
data points’ features.

Definition 4.1. Given UX := {xi}ni=1 and LX = {xj}bj=1

disjoint subsets of X ⊂ Rd, the fill distance of LX in UX is
defined as

hLX ,UX := max
xi∈UX

min
xj∈LX

∥xi − xj∥2 (2)

where ∥ · ∥2 is the L2-norm. Put differently, we have that
any point xi ∈ UX has a point xxxj ∈ LX not farther away
than hLX ,UX .

Notice that the fill distance depends on the distance metric
we consider in the feature space X . In this work, for sim-
plicity, we consider the L2-distance, for both the feature and
label spaces, but the following result can be generalized to
other distance metrics.

Next, we present two assumptions we use in the theoret-
ical result. The first assumption concerns the data being
analyzed and the relationship between features and labels.

Assumption 4.2. We assume there exists ϵ ≥ 0 such that
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for each data point (xi, yi) ∈ D we have that

pY |X(y|xi) = 0 almost everywhere outside [yi− ϵ, yi+ ϵ]
(3)

where

pY |X(y|xi) :=
pZ(xi, y)

pX(xi)
and pX(xi) :=

∫
Y
pZ(xi, y)dy.

We refer to ‘ϵ’ as the labels’ uncertainty. Moreover, we
assume pY |X to be λp−Lipschitz continuous, that is,

|pY |X(y|x̂)− pY |X(y|x̃)| ≤ λp∥x̂− x̃∥2, (4)

∀y ∈ Y and x̂, x̃ ∈ X .

Thus, from (3) we have that given a realization X = xi,
with probability 1 the realizations of the random variable Y
take value in an ϵ-neighborhood of a specific point yi ∈ Y ,
that is, given xi ∈ X , a point in the feature space, the
value of the associated label is not fixed but localized in a
“small” region of the label space. This assumption on the
data aims to model those scenarios where the underlying
true mapping between the feature and label spaces is either
stochastic in nature or deterministic but subject to random
fluctuations with a maximum magnitude of ϵ. The Lipschitz
continuity in (4) is an assumption on the regularity of the
map connecting the feature space X with the label space Y .
It tells us that if two data points have close representations
in the feature space, then the conditional probabilities of the
associated labels are also close, that is, elements closer in
X are more likely to be associated labels close in Y .

The second assumption pertains to the error function used
to evaluate the model’s performance and the model’s pre-
diction quality on the training set. Firstly, to formalize the
notion that the prediction error of a trained model on the
training set is bounded. Secondly, to confine our analysis to
error functions that exhibit a certain level of regularity.

Assumption 4.3. We assume there exist ϵL ≥ 0, depending
on the labelled set L ⊂ D, such that for each labelled point
(xj , yj) ∈ L we have that

l(xj , y,mL) ≤ ϵL ∀ y ∈ [yj − ϵ, yj + ϵ], (5)

where ϵ is the label’s uncertainty introduced in Assump-
tion 4.2. We consider ϵL as the maximum prediction error
of the trained model mL on the labelled data L. Moreover,
we assume that for any y ∈ Y and L ⊂ D the error function
l(·, y,mL) is λlX -Lipschitz and that for any x ∈ X and
L ⊂ D, l(x, ·,mL) is λlY -Lipschitz.

With (5) we assume that the error on the training set is
bounded, and the bound takes into account that the realiza-
tions of the variable Y given X = xj may be affected by
small variations. Moreover, with the Lipschitz continuity
assumptions we limit our study to error functions that show

a certain regularity. However, these regularity assumptions
on the error function are not too restrictive and are con-
nected with the regularity of the evaluated trained model
as we show in Remark A.1, at the end of Appendix A. For
instance, the λlY -Lipschitz regularity is verified by all Lq-
norm error functions, with 1 ≤ q <∞.

Finally, we introduce the main theoretical result of this
work, which is a theorem that provides an upper bound for
the optimization objective in (1), depending linearly on the
fill distance of the selected training set.

Theorem 4.4. Given U := {(xi, yi)}ni=1 and L =
{(xj , yj)}bj=1 disjoint sets of independent realizations of
the random variables (X, Y ) taking values in Z := X ×Y
with joint probability measure pZ , trained model mL ∈M
and error function l : X × Y ×M → R+. If Assump-
tions 4.2 and 4.3 are fulfilled, then we have that

max
(x,y)∈U

EpY |X [l(x, y,mL)|x] ≤

hLX ,UX

(
λlX +O(ϵ)

)
+ ϵL,

(6)

where hLX ,UX is the fill distance of LX in UX , ϵ is the
labels’ uncertainty from assumption 4.2, λlX is the Lipschitz
constant of the error function, and ϵL is the maximum error
of the trained model’s predictions on the labelled set L.

The proof can be found in Appendix A. Formula (6) pro-
vides an upper bound for the minimization objective in (1)
that is linearly dependent on the fill distance. Therefore,
assuming that the maximum error on the labelled data (ϵL)
is negligible, the smaller the fill distance, the smaller the
bound for the maximum expected approximation error on
the unlabelled set, conditional to the knowledge of the data
features. Although ϵL is typically considered to be small,
its presence in the formula suggests that the maximum ex-
pected error on the unlabelled set is also dependent on the
maximum error of the predictions on the labelled set used
for training, thus, on how well the trained model fits the
training data. Note that the bound shown also depends on
the labels’ uncertainty ‘ϵ’. In particular, the larger the la-
bel uncertainty, the larger the bound for a fixed training
set fill distance. Additionally, the connection between the
bound and the regularity of the chosen error function is high-
lighted by the presence of the Lipschitz constant λlX of the
error function on the right-hand side of (6). If we consider
the error function to be the L2-distance between true and
predicted labels, Theorem 4.4 holds for all Lipschitz con-
tinuous regression models, such as kernel ridge regression
with Gaussian kernel and feed forward neural networks, as
we explain in Remark A.1 in Appendix A.

4.2. Selecting training sets with farthest point sampling

Theorem 4.4 provides an upper bound for the maximum
expected value of the error function on the unlabelled data,
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conditional to the knowledge of the data features. Our aim
is to select a training set by minimizing such a bound. As-
suming that the value of the maximum error on the training
set is negligible, we can attempt the minimization of the
upper bound in (6) by solving the following minimization
problem

min
L⊂D,
|L|=b

hLX ,UX (7)

where D := {(xi, yi)}ki=1 ⊂ X × Y is the pool of data
points we want to label, L := {(xj , yj)}bj=1 is the set of
labelled points we use for training and U := {(xi, yi)}ni=1

is the set of unlabelled point for which we want to compute
the predictions, with k = n + b. Notice that D = L ⊔ U ,
thus hLX ,UX = hLX ,DX . The minimization problem in (7)
is equivalent to the k-center clustering problem (Har-Peled,
2011). Given a set of points in a metric space, the k-center
clustering problem consists of selecting k points, or centers,
from the given set so that the maximum distance between
a point in the set and its closest center is minimized, thus,
so that the fill distance of the k centers in the set is mini-
mized. Unfortunately, the k-center clustering problem is
NP-Hard (Hochbaum, 1984). However, using farthest point
sampling (FPS), described in Algorithm 1, it is possible to
obtain training sets with fill distance at most a factor of 2
from the minimal fill distance (Har-Peled, 2011). Assume
O ⊂ D is a subset of cardinality b with minimal fill distance,
that is,

O := arg min
L⊂D,
|L|=b

hLX ,UX . (8)

Then, the fill distance of a set LFPS ⊂ D, |LFPS | = b,
obtained using FPS, is at most two times the minimal fill
distance, that is,

hLFPS
X ,DX ≤ 2hOX ,DX . (9)

FPS can be implemented using O(|D|) space and takes
O(|D||LFPS |) time (Har-Peled, 2011). It is worth to note
that reducing the factor of approximation below 2 would
require solving an NP-hard problem (Hochbaum & Shmoys,

Algorithm 1 Farthest Point Sampling (FPS)
Input Dataset DX = {xi}ki=1 ⊂ X and data budget
b ∈ N, b≪ k.
Output Subset LFPS

X ⊂ DX with |LFPS
X | = b.

1: Choose x̂ ∈ DX randomly and set LFPS
X = x̂.

2: while |LFPS
X | < b do

3: x̄ = arg max
xi∈DX

min
xj∈LFPS

X

∥xi − xj∥2.

4: LFPS
X ← LFPS

X ∪ x̄.
5: end while

1985). Thus, FPS provides a suboptimal solution, but obtain-
ing a better approximation with theoretical guarantees would
not be feasible in polynomial time. According to our recent
experiments, it takes approximately 17 minutes to select
1000 points from the training dataset provided within the
selection-for-vision DataPerf challenge (Mazumder et al.,
2022), consisting of circa 3.3 millions points in R256. We
used the Deep Graph python library (Wang et al., 2019)
to implement FPS on a 48-cores CPU with 384 GB RAM.
Such experiments give a qualitative understanding of the
data efficiency of FPS.

5. Experimental results
5.1. Datasets

We employ the datasets QM7 and QM9 in our experiments,
where the task is to predict the atomization energy. Addi-
tional information on the datasets, preprocessing procedures
and used descriptors are provided in Appendix B.

QM7 (Blum & Reymond, 2009; Rupp et al., 2012) is a
benchmark dataset in quantum chemistry, consisting of 7165
organic molecules with up to 23 atoms. It includes infor-
mation, such as the atoms Cartesian coordinates, and the
molecules’ atomization energy. We use the QM7 for a re-
gression task, where each molecule’s feature vector is the
Coulomb matrix (Rupp et al., 2012), that in the case of the
QM7 can be represented as an element in R529, and the
label value to predict is the atomization energy, measured in
electronvolt (eV).

QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) is
a publicly available quantum chemistry dataset containing
the properties of 133,885 organic molecules with up to nine
heavy atoms. The QM9 is frequently used for developing
and testing machine learning models for predicting molecu-
lar properties and for exploring the chemical space (Faber
et al., 2017; Ramakrishnan & von Lilienfeld, 2017; Pronobis
et al., 2018). Each molecule in our dataset is represented
by a vector in R1307, describing the molecule’s topological
structure, and the label value to predict is the atomization
energy measured in eV.

5.2. Regression models

In this work we use ML regression models that have been
utilized in previous works for molecular property predic-
tion tasks. Specifically, we consider the kernel ridge re-
gression with Gaussian kernel (KRR) (Stuke et al., 2019;
Deringer et al., 2021) and the feed forward neural networks
(FNNs) (Pinheiro et al., 2020). KRR and FNN are of inter-
est to us because of their Lipschitz continuity, which, from
Remark A.1, we know is a required property to validate our
theoretical analysis. A detailed description of the learning
models used in this work and information related to their
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(a) KRR on QM7
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(b) FNN on QM7
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(c) KRR on QM9
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(d) FNN on QM9
Figure 1. Results for atomization energy regression task on QM7 and QM9 using KRR and FNN trained on sets of various sizes and
selected with different sampling strategies. MAXAE (top row) and MAE (bottom row) of the predictions are shown for each regression
model, training set size and sampling approach.

Lipschitz continuity are provided in Appendix C.

5.3. Evaluation metrics

We consider two metrics to evaluate the performance of the
ML methods used for the regression tasks: Maximum Abso-
lute Error (MAXAE) and Mean Absolute Error (MAE). The
MAXAE is the maximum absolute difference between the
true target values {yi}ni=1 and the predicted values {ỹi}ni=1,
that is,

MAXAE := max
1≤i≤n

|yi − ỹi|, (10)

where n is the number of unlabelled data points in the ana-
lyzed data pool. The MAE is calculated by averaging the
absolute differences between the predicted values and the
true target values, that is,

MAE :=
1

n

n∑
i=1

|yi − ỹi|. (11)

5.4. Numerical Results

We investigate the effects of minimizing the training set fill
distance for the atomization energy regression task on the
QM7 and QM9 datasets using both KRR and FNN.

We compare the effects of minimizing the training set fill dis-
tance through the FPS algorithm with three coresets bench-
mark sampling strategies. Specifically, we consider random
sampling (RDM), the Facility Location algorithm and k-
medoids++. Random sampling (RDM) is considered the
natural benchmark for all the other coreset sampling strate-
gies (Feldman, 2019), and consists of choosing the points
to label and use for training uniformly at random from the
available pool of data points. Facility location (Frieze, 1974)

is a greedy algorithm that aims at minimizing the sum of the
distances between the points in the pool and their closest
selected element. k-medoids++ (Mannor et al., 2011) is a
variant of the k-means++ (Arthur & Vassilvitskii, 2007),
that partitions the data points into k clusters and, for each
cluster, selects one data point as the cluster center by mini-
mizing the distance between points labelled to be in a cluster
and the point designated as the center of that cluster. Both,
facility location and k-medoids++, attempt to minimize a
sum of pairwise distances. However, the fundamental dif-
ference is that facility location is a greedy technique, while
k-medoids++ is based on a segmentation of the data points
into clusters.

The experiments we perform involve testing the predictive
accuracy of each trained model on all data points not used
for training, in terms of the predictions’ MAXAE and MAE.
For each sampling strategy, we construct multiple training
sets consisting of different amounts of samples. For each
sampling strategy and training set size, the training set se-
lection process is independently run five times. In the case
of RDM, points are independently and uniformly selected
at each run, while for the other sampling techniques, the
initial point to initialize is randomly selected at each run.
Therefore, for each selection strategy and training set size,
each analyzed model is independently trained and tested five
times. The reported test results are the average of the five
runs. We also plot error bars representing the results’ stan-
dard deviation. We remark that, our experiments’ final goal
is to empirically show the benefits of using FPS compared to
other model-agnostic state-of-the-art sampling approaches.
We do not make any claims on the general prediction quality
of the employed models on any of the studied datasets.

6



Investigating minimizing the training set fill distance in machine learning regression

102 103

Number of training samples from QM7

20

30

40

50

60

70

80

fill
 di

sta
nc

e
FPS
RDM
FacilityLocation
k-medoids++

103 104

Number of training samples from QM9

2000

4000

6000

8000

10000

12000

fill
 di

sta
nc

e

FPS
RDM
FacilityLocation
k-medoids++

(a) Training sets fill distances.

0K 1K 2K 3K 4K 5K 6K 7K
molecules QM7

5

10

15

20

25

30

35

40

L 2-
dis

tan
ce

 to
 th

e c
los

es
t m

ole
cu

le

Mean

(b) Distances to nearest neighbour.

5 10 15 20 25 30 35 40
L2-distance to the closest molecule (QM7)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

de
ns

ity

0 1000 2000 3000 4000 5000
L2-distance to the closest molecule (QM9)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

de
ns

ity

(c) Density distances to nearest neighbour.

Figure 2. (a) Selected training sets fill distances. (b) Euclidean distances to the nearest neighbour and (c) density of such distances for
molecules in the QM7 (top row) and QM9 (bottom row). In (b) the red lines are the average distances between the molecules in the
datasets and their nearest neighbour and the molecules are sequentially numbered such that the distances decrease in magnitude as the
associated molecule numbers increase.

5.4.1. MOLECULAR ENERGY PREDICTION ON QM7 AND
QM9 DATASETS

Fig. 1 shows the results for the atomization energy regres-
sion task on the QM7 and QM9 datasets using the KRR
and FNN as learning models. The graphs on the top row
of Fig. 1, illustrating the maximum error of the predictions
on the unlabelled points, suggest that, independently of the
dataset and the regression model employed for the regres-
sion task, selecting the training set by fill distance mini-
mization using FPS, we can perform better than the other
baselines in terms of the maximum error of the predictions.

The graphs on the bottom row of Fig. 1 show the MAE of
the predictions on the QM7 and QM9 datasets for KRR and
FNN. The graphs indicate that selecting training sets with
FPS doesn’t drastically reduce the predictions’ MAE on
the unlabelled points with respect to the baselines, indepen-
dently of the dataset and regression model. On the contrary,
we can provide examples where FPS performs worse than
the baselines, e.g., with the FNN on the QM7 and QM9
for training set sizes of 400 and 4000, respectively. These
experiments suggest that, contrary to what has been shown
for classification (Sener & Savarese, 2018), selecting train-
ing sets by fill distance minimization does not provide any
significant advantage compared to the baselines in terms
of the average error. This marks a fundamental difference
between regression and classification tasks regarding the
benefits of reducing the training set fill distance.

Notice that KRR outperforms the FNN. This is attributed
to the fact that Neural Networks are generally less data-
efficient than KRR models and require more data points
for effective training of their parameters, but they can scale
better to larger datasets (Schütt et al., 2017).

5.4.2. EMPIRICAL ANALYSIS AND DISCUSSION

Interestingly, with FPS, the MAXAE converges fast to
a plateau value for both datasets and regression models
(Fig. 1). Differently, with the baseline approaches, the
MAXAE has much larger values in the low data regime
and tends to decrease gradually as the size of the training
sets increases. It is important to notice that, these trends of
the predictions’ MAXAE are directly correlated with the
fill distances of the respective labelled sets used for training,
illustrated in Fig. 2a. From Fig. 2a it can be clearly seen that
independently of the dataset considered, with FPS, the fill
distances are consistently lower even for small data budgets,
while with the benchmarks, the fill distances are much larger
in the low data regime and gradually decrease as the size
of the training set increases. These observations indicate
that the training set fill distance is directly correlated with
the maximum error of the predictions on the unlabelled set.
Consequently, by minimizing the training set fill distance,
we can drastically reduce the predictions MAXAE. Never-
theless, our theoretical analysis shows that the training set
fill distance is only linked to the maximum expected value of
the error function computed on the unlabelled points. More-
over, this bound also depends on other quantities we may
not know or that we cannot compute a priori. Namely, the
labels’ uncertainty on the unlabelled set and the maximum
prediction error on the training set, quantifying how well
the trained regression model fits the training data. Thus, we
believe that the training set fill distance should not be consid-
ered as the only parameter to obtain an a priori quantitative
evaluation of the predictions MAXAE, but as a qualitative
indicator of the model robustness that, if minimized, leads
to a substantial reduction of the predictions MAXAE.
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Figure 3. In blue, the Euclidean distances to the nearest neighbour for molecules in the QM7 and QM9. In orange are highlighted the
molecules selected with FPS and the other baselines. The sizes of the selected sets are 100 and 1000 for QM7 and QM9, respectively.

Previous work has established that FPS approach provides
suboptimal minimizers for the k-center problem (Har-Peled,
2011). Consequently, it can be employed to choose a train-
ing set by fill distance minimization since the problem of
selecting a training set with minimal fill distance is essen-
tially a k-center problem, as we mentioned in Subsection 4.2.
This insight, together with our proposed bound for the max-
imum expected prediction error, linearly dependent on the
fill distance, provides a theoretical motivation for the ef-
fectiveness of FPS in reducing the predictions’ MAXAE.
We now aim to provide a more empirical motivation for
effectiveness of FPS.

In our view, the effectiveness of FPS is also due to its ability
to sample, even for small training sets sizes, those points that
are at the tails of the data distribution and that are convenient
to label, as the predictive accuracy of the learning methods
on those points would be limited due to the lack of data
information in the portions of the feature space where data
points are more sparsely distributed. To see this empirically,
let us first consider Fig. 2b and Fig. 2c, showing for each
molecule the Euclidean distance to the respective closest
molecule and the density of such distances, respectively, for
the QM7 and QM9 datasets. Fig. 2b shows that, in both
datasets, there are “isolated” molecules for which the Eu-
clidean distance to the nearest molecule is more than twice
the average distance between the molecules in the dataset
and their nearest neighbour, represented by the red line in
the graphs. Fig. 2c, representing the density distribution of
the molecules’ distances to the closest data point, tells us
that the “isolated” molecules are only a very small portion of
the dataset and, therefore, represent the tail of the data distri-
bution. We now see that FPS, contrary to the other baselines,
can effectively sample the isolated molecules even for a low
training data budget. Fig. 3 highlights the Euclidean dis-
tances to the closest neighbour for molecules selected with
FPS, and the other baseline strategies, from the QM7 and
QM9 datasets. FPS, facility location, and k-medoids++ have
been initialized with the same random element for better
comparison. The size of the selected sets is 100 and 1000 for
the QM7 and QM9, respectively. Specifically, we are ana-
lyzing the same elements selected in the lowest training data
budget we considered for the atomization energy regression
tasks in Fig. 1. Fig. 3 clearly illustrates that, independently
of the dataset, FPS selects points across the whole density
spectrum. On the contrary, the baseline methods mainly

sample points that have a closer nearest neighbour and that
are nearer to the center of the data distribution (Fig. 2c).

Our hypothesis that selecting isolated molecules is beneficial
in terms of the MAXAE reduction is also supported by our
theoretical analysis. As a matter of fact, from Theorem 4.4,
we know that the maximum expected error of the predictions
on the unlabelled dataset is directly correlated with the fill
distance, that is, the maximal distance in the feature space
between the points for which we want to predict the labels
and their closest selected element. Consequently, a sampling
strategy that aims to reduce the prediction’s maximum error
should include the isolated molecules in the training set, as
their distance to the nearest neighbour is much larger than
the average.

6. Conclusion
We study the effects of minimizing the training set fill dis-
tance for Lipschitz continuous regression models. Our nu-
merical results have shown that using FPS to select training
sets by fill distance minimization increases the models ro-
bustness by significantly reducing the prediction maximum
error, in correspondence to our theoretical motivation.

Our empirical analysis indicates that using FPS can be
advantageous in the low training data budget, as it al-
lows including early in the sampling process the “isolated”
molecules. But, once the data points at the tails of the data
distribution have been included, we believe that there may
be more convenient sampling strategies than FPS to select
points at the center of the distribution, where more infor-
mation is available. Further research in this direction is
warranted.
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A. Proof Theorem 4.4
Proof. First we want to find an upper bound for EpY |X [l(xi, Y,mL)|xi] for each xi ∈ UX , i = 1, . . . , n. Fixed xi ∈ UX ,
by definition of fill distance we know there exists xj ∈ LX such that ∥xi − xj∥2 ≤ hLX ,UX .

EpY |X [l(xi, Y,mL)|xi] =

∫
Y
l(xi, y,mL)pY |X(y|xi)dy

≤
∫
Y
|l(xi, y,mL)− l(xj , y,mL)|pY |X(y|xi)dy +

∫
Y
l(xj , y,mL)pY |X(y|xi)dy

≤ hLX ,UXλ
lX +

∫
Y
l(xj , y,mL)pY |X(y|xi)dy

(12)

where λlX from Assumption 4.3 and xj ∈ LX such that ∥xi−xj∥2 ≤ hLX ,UX . The second inequality in (12) follows from
the λlX -Lipschitz continuity of the error function. We can bound the remaining term as follows∫
Y
l(xj , y,mL)pY |X(y|xi)dy ≤

∫ yi+ϵ

yi−ϵ

l(xj , y,mL)|pY |X(y|xi)− pY |X(y|xj)|dy +
∫ yi+ϵ

yi−ϵ

l(xj , y,mL)pY |X(y|xj)dy

≤ λphLX ,UX

∫ yi+ϵ

yi−ϵ

l(xj , y,mL)dy + ϵL

≤ λphLX ,UX

(∫ yi+ϵ

yi−ϵ

|l(xj , y,mL)− l(xj , yj ,mL)|dy +
∫ yi+ϵ

yi−ϵ

l(xj , yj ,mL)dy

)
+ ϵL

≤ λphLX ,UX

(
λlY

∫ yi+ϵ

yi−ϵ

(∥y − yi∥2 + ∥yi − yj∥2) dy + 2ϵϵL

)
+ ϵL

≤ λphLX ,UX

2ϵλlY

ϵ+ max
yi∈UY
yj∈LY

∥yi − yj∥2

+ 2ϵϵL

+ ϵL

= hLX ,UX ϵλ
pM + ϵL

(13)

where M := 2

λlY

ϵ+ max
yi∈UY
yj∈LY

∥yi − yj∥2

+ ϵL

. The integration’s range change after the first inequality in (13)

follows from Assumption 4.2. The second inequality follows from the λp-Lipschitz continuity of the conditional probability
pY |X and the fourth inequality from the λlY -Lipschitz continuity of the error function. Since the above inequality holds for
each xi ∈ Ux, we have that

max
1≤i≤n

EpY |X [l(xi, yi,mL)|xi] ≤ hLX ,UX

(
λlX +O(ϵ)

)
+ ϵL, (14)

Remark A.1. If the trained model mL ∈ M is λlX−Lipschitz continuous, then also the L2-norm error function is
λlX−Lipschitz continuous. To see this, fix y ∈ Y , L ⊂ D and x, x̃ ∈ X . Then we have

|l(x, y,mL)− l(x̃, y,mL)| = |∥mL(x)− y∥2 − ∥mL(x̃)− y∥2| ≤ ∥mL(x)−mL(x̃)∥2.

Moreover, the L2-norm error function is always λlY -Lipschitz with λlY = 1. As a matter of fact, fixed x ∈ X , mL ∈M
and y, ỹ ∈ Y we have

|l(x, y,mL)− l(x, ỹ,mL)| = |∥mL(x)− y∥2 − ∥mL(x)− ỹ∥2| ≤ ∥y − ỹ∥2.

Finally, it is important to notice that, since the label values are scalars, the L2-norm error function is the absolute difference
between the true and predicted values.
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B. Datasets
This appendix provides an extended version of the datasets’ description in Subsection 5.1, including additional information
related to the datasets, preprocessing procedures and molecular descriptors used.

QM7

The QM7 (Blum & Reymond, 2009; Rupp et al., 2012) is a benchmark dataset in quantum chemistry, consisting of 7165
small organic molecules with up to 23 atoms including 7 heavy atoms: C, N, O and S. It includes information such as
the Cartesian coordinates of each atom, and their atomization energy. We use the QM7 for a regression task, where each
molecule’s feature vector is the Coulomb matrix (Rupp et al., 2012) and the label value to predict is the atomization energy,
a scalar value describing amount of energy in electronvolt (eV) required to completely separate all the atoms in a molecule
into individual gas-phase atoms. The Coulomb matrix is defined as

Ci,j =

{
1
2z

2.4
i if i = j
zizj

∥ri−rj∥2
if i ̸= j

(15)

where zi is the nuclear charge of the i-th atom and ri is its position.

QM9

The QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) is a publicly available quantum chemistry dataset containing
the properties of 133,885 small organic molecules with up to nine heavy atoms (C, N, O, F). The QM9 is frequently used for
developing and testing machine learning models for predicting molecular properties and for exploring the chemical space
of small organic molecules (Faber et al., 2017; Ramakrishnan & von Lilienfeld, 2017; Pronobis et al., 2018). The dataset
contains the SMILES representation (Weininger, 1988) of the relaxed molecules, as well as their geometric configurations
and 19 physical and chemical properties. In order to ensure the integrity of the dataset, we have excluded all 3054 molecules
that did not pass the consistency test proposed by (Ramakrishnan et al., 2014). Additionally, we have removed the 612
compounds that could not be interpreted by the RDKit package (Landrum, 2012). Furthermore, in order to ensure the
uniqueness of data points, we have excluded 17 molecules that had SMILES representations that were identical to those of
other molecules in the dataset. Following this preprocessing procedure, we obtained a smaller version of the QM9 dataset
comprising 130202 molecules. The molecular representation we employ is based on Mordred (Moriwaki et al., 2018), a
publicly available library that exploits the molecules’ topological information encoded in the SMILES strings to provide
1826 physical and chemical features. To work with a more compact representation, we remove 519 features for which the
values across the dataset have zero variance. Thus, each molecule in our dataset is represented by a vector in R1307. We
use the QM9 for the atomization energy regression task using as data features the Mordred-based, vector-valued molecular
representation we introduced.

C. Regression models
This appendix provides a detailed description of the regression models used in this work. The Lipschitz continuity of the
described models is also discussed.

C.1. Kernel ridge regression with Gaussian kernel (KRR)

Kernel ridge regression is a machine learning technique that combines the concepts of kernel methods and ridge regression
to perform non-parametric, regularized regression (Deringer et al., 2021). In this work, we use a Gaussian kernel function to
transform the input features into a high-dimensional space where the relationship between the input features and output
labels is learned. Given a training set L = {(xj , yj)}bj=1, the Gaussian kernel is defined as follows:

k(xxxi,xxxj) := e−γ∥xxxi−xxxj∥2
2 , (16)
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where xi,xj ∈ LX and γ ∈ R is a kernel hyperparameter to be selected through an optimization process. Given x ∈ X its
associated predicted label y(x) is defined as follows

y(x) :=

b∑
j=1

αjk(x,xj). (17)

where the vector ααα = [α1, α2, . . . , αb]
T ∈ Rb is the solution of the following minimization problem

ααα = arg min
ᾱαα

b∑
j=1

(y(xj)− yj)
2 + λᾱααTKKKᾱαα. (18)

KKK is the kernel matrix, i.e., KKKi,j = k(xi,xj), and the parameter λ ∈ R is the so-called regularization parameter that
penalizes larger weights. The analytic solution to the minimization problem in (18) is given by

ααα = (KKK + λIII)−1y (19)

where y = [y(x1), y(x2), . . . , y(xb)]
T . To show the Lipschitz continuity of the KRR with Gaussian kernel, we propose the

following lemma:

Lemma C.1. If the error function is the absolute difference between the true and predicted labels, then the regression
function provided by the kernel ridge regression algorithm with Gaussian kernel is Lipschitz continuous.

Proof. Consider the training set features LX = {xj}bj=1 and set of learned weightsαααL := [α1, α2, . . . , αb]
T ∈ Rb obtained

by training the KRR on L. Then, given x ∈ X the predicted label y(x) provided the KRR approximation function can be
computed as follows:

y(x) =

b∑
j=1

αjk(x,xj) = αααT
Lkx, (20)

where k(x,xj) := e−γ∥x−xj∥2
2 , and kx := [k(x,x1), k(x,x2), . . . , k(x,xb)]

T ∈ Rb. Next, considering x̃, x̂ ∈ X , we
have

|y(x̃)− y(x̂)| ≤ |αααT
Lkx̃ −αααT

Lkx̂|
≤ ∥αααL∥2∥kx̃ − kx̂∥2

= ∥αααL∥2

√√√√ b∑
j=1

(
e−γ∥x̃−xj∥2

2 − e−γ∥x̂−xj∥2
2

)2
≤ ∥αααL∥2

√
bλk∥x̃− x̂∥2,

where λk is the Lipschitz constant of the function e−γr2 , r ∈ R+

C.2. Feed Forward Neural Networks (FNNs)

Feed-forward neural networks (Goodfellow et al., 2016) (FNNs) are probably the simplest deep neural networks. Given
x ∈ X the predicted label y(x) provided by a FNN, with l ∈ N layers, can be expressed as the output of a composition of
functions, that is,

y(x) := ϕl ◦ σl ◦ ϕl−1 ◦ σl−1 ◦ · · · ◦ ϕ1(x), (21)

where the ϕi are affine linear functions or pooling operations and the σi are nonlinear activation functions. Following
along (Pinheiro et al., 2020), we set l = 3, consider only ReLu activation functions and define

ϕi(x) = W i(x) + bi (22)

where the weight matrices W i and the biases bi are learned by minimizing n L2-norm error between the true and predicted
labels of the data points in the training set. The Lipschitz continuity of FNN and other more advanced neural networks has
been already shown in literature (Scaman & Virmaux, 2018; Gouk et al., 2020).

14


