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Abstract

Data selection has been studied in settings where
all samples from prospective sources are fully
revealed, however, in practical data exchange
scenarios, data providers often reveal only a
limited subset of samples before an acquisition
decision is made. We propose a novel frame-
work projektor , which predicts model per-
formance and supports data selection decisions
based on partial samples of prospective data
sources. We first leverage the Optimal Trans-
port distance to predict the model’s performance
for any data mixture within the range of dis-
closed data sizes; then, we extrapolate the per-
formance to larger undisclosed data sizes based
on a novel parameter-free mapping technique in-
spired by neural scaling laws. We further derive
an efficient gradient method to select data sources
based on projected model performance. Evalua-
tion over diverse applications demonstrates that
projektor significantly outperforms existing
performance scaling approaches in both predic-
tion accuracy and computational costs.

1. Introduction
The choice of training data is one of the most crucial compo-
nents when it comes to extracting the best performance out
of a model. Since data is typically acquired from various
sources (e.g., different organizations or vendors), machine
learning practitioners often encounter a central question:
how to select and combine samples from these data sources?
Although data selection has been extensively studied in the
literature related to active learning (Settles, 2012), coreset
selection (Guo et al., 2022), and data valuation (Jia et al.,
2019b; Ghorbani & Zou, 2019; Pruthi et al., 2020; Yan &
Procaccia, 2021; Just et al., 2023), most techniques are de-
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signed for a fully-observable setting where all data sources
are fully revealed to the model developer.
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Figure 1. Overview of projektor , predicting performance on
larger data scales and finding optimal data source composition
from limited pilot data.
The core ideas behind these techniques are to compare the
relative importance of different data points or enumerate
possible combinations of data points, all of which require
complete knowledge of the entire collection of data points.
While these methods have shown promising results, their
practical applications in real-world scenarios are limited
due to a significant gap: the acquisition decision-making
processes require knowledge of the entire data sets, while
data owners may only reveal limited samples before an
acquisition decision is made (e.g., (Dat; Inn) provide the
examples in real-world data markets).

2. Methods
For m prospective data providers with datasets (data
sources) Dall

1 , . . . , Dall
m, denote the public subset of each

data source as Dpi
i . Each provider i, upon accepting the

purchasing order for acquiring ni samples (ni ≤ N̄i), will
randomly sample a subset Si of size ni from Dall

i and return
the subset to the requester.1 Consider a data collector with a
validation set Dval, who would like to acquire samples from
the providers to train a model A with performance metric
L, where acquisition decisions must be made based only
on the pilot datasets. Given a selection budget of N sam-
ples and a mixing ratio of data sources p = {p1, . . . , pm},
denote the selected dataset by D(N,p) = S1 ∪ · · · ∪ Sm

where |Si| = piN . Consider a typical data acquisition
goal where the collector seeks to maximize the resulting
model performance by strategically choosing the mixing
ratio p of m data sources at a pre-specified selection budget
Ns ≤

∑m
i=1 N̄i–that is, maxp L(A(D(Ns,p)), D

val).
1Assume each provider honestly provides requested samples.
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projektor : prediction, projection, and selection
Optimal Transport (OT) is a metric for measuring the dis-
crepancy between probability distributions (Villani, 2009)
with advantageous analytical properties (Genevay et al.,
2018; Feydy et al., 2019). Given probability measures
µt, µv over the space Z , the OT distance is defined as
OT(µt, µv) := minπ∈Π(µt,µv)

∫
Z2 C(z, z′)dπ(z, z′). In-

spired by the theoretical results that the upper bound on
the difference between training loss and validation loss can
be tightly bounded by an affine transformation of the OT
distance (Edwards, 2011; Just et al., 2023), our first pro-
posed approach is to directly estimate this transformation by
empirically fitting data distances to model performance and
then the estimated transformation can be used for predicting
the model performance for different data mixtures, which is

L̂
(
A(D(N,p)), Dval

)
= a1 · OT

(
D(N,p), Dval

)
+ a0, (1)

where a0, a1 can be estimated through least-square fitting.
We refer to it as center-scaling (projektor/CS). a1 can
be considered an empirical estimate of the Lipschitz con-
stant. projektor/CS has only two parameters to be esti-
mated, which brings an important benefit of efficiency.

For samples from different data sources (i.e., data lying in
different manifolds of the input space), Lipschitz constant
of the model along the combined manifold may vary with
the mixing ratio. Hence, we supplement projektor/CS
with simple nonlinear terms to characterize the depen-
dence on each data source, leading to the pseudo-quadratic
(projektor/PQ) method, which is
L̂(A(D(N,p)), D

val
) =

m∑
i=1

(b
i
2 · p2i + b

i
1 · pi + b0) · OT(D(N,p), D

val
)

+

m∑
i=1

(c
i
2 · p2i + c

i
1 · pi + c0),

(2)

Then, we need to project these predictions onto the target
data scales. Neural scaling laws showcase the predictability
of empirical performance with respect to the size of the train-
ing dataset, where it typically follows a log-linear scaling re-
lationship as EV [L(A(D(N,p));Dval)] ≈ −α log(N)+C
where α and C are some constants (Kaplan et al., 2020). Yet,
model performance for different data mixtures p scales with
different rates (Bahri et al., 2021). With the performance
prediction tools proposed above, one can directly predict
model performance of any data mixture at the scale the tool
has been fitted. Thus, by performing the fitting process at
different small scales for once, for any desired data mixture,
we can directly fit the neural scaling laws for this particular
distribution and project it onto larger data scales, which is
Theorem 1. Consider log-linear performance scaling
relationship depending on both data size N and data
composition p given as EV [L(A(D(N,p));Dval)] =
−α(p) log(N) + C(p). Assume one has completed
the fitting of the performance predictor on two different
scales N0 < N1, which gives L̂(A(D(N0,p));D

val) and
L̂(A(D(N1,p));D

val) for all data mixtures p. Then, the
model performance L̂(A(D(N,p));Dval) for any data mix-
ture p at any data scale N can be predicted as

L̂(A(D(N,p);D
val

) =

(
log

N1

N0

)−1 [
log

N

N0

L̂(A(D(N1,p));D
val

)

− log
N

N1

L̂(A(D(N0,p);D
val

)

] (3)

Further, we expect the predictions to support deter-
mining the optimal data acquisition strategy p∗ =
argmaxp L̂(A(D(Ns,p)), D

val). These problems are con-
vex and differentiable and thus can be solved effectively via
gradient methods, where calibrated gradient of OT from
(Just et al., 2023) allows almost free gradient c calculation.

3. Empirical Results
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Figure 2. Performance projection vs. actual model performance of
selected optimal mixture ratios onto 50K ImageNet-100 from 10K
samples. Please refer to Appendix B.2 for baseline details.
Performance projection onto larger data scale N. In this
experiment, we assume a more realistic setting, where data
sources may contain some portion of mislabeled data due to
labeling errors (Karimi et al., 2020). Given 3 data sources
formed by sampling CIFAR-10, each of which releases a
pilot dataset of size 1K, we project performance for vari-
ous mixing ratios onto larger data sizes, i.e. 2K, 5K, 7K,
and 10K. We then measure mean absolute errors across all
data scales. We observe that projektor achieves the best
projection performance compared to all baseline methods.
projektor/PQ achieves the lowest MAE score below
2% and projektor/CS is slightly above 2%. The im-
proved performance of our method can be attributed to the
incorporation of actual data distance computation, which
allows for a more accurate dataset representation (e.g. mis-
labeled information), whereas baseline methods completely
neglect this crucial information. projektor not only ex-
cels at projecting performance but also at detecting irregu-
larity in data sources.

Optimal mixing ratio with performance projection. We
demonstrate improving model performance by choosing
training data strategically. We consider a problem of finding
the best mixing ratio of 50K samples from 3 data sources
(with 10K pilot data each) to train ResNet-50 on ImageNet-
100. Using our method, we can find a mixing ratio that
achieves the best performance among all baseline methods
with 2-3% accuracy improvement over the best baseline.
Then, we predict performance for selected mixing ratios and
observe that projektor achieves the lowest prediction
error (Fig. 2). Unlike baseline methods that assume the
same optimal composition for all data scales, our method
finds the optimal composition specific to each data scale.

For additional visualization of our results, we refer the read-
ers to Fig. 4 and Fig. 5 in App. B.
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A. projektor : Framework and Algorithms
A.1. projektor Pipeline

I. Training Data Preparation. For data distance-based performance prediction, the first step of the pipeline is to prepare
"training data" (i.e., data mixture-model performance pairs) to fit parameters of Equations 1 and 2. The data consists of
different data source compositions for some given data scales N0, N1, where for each composition p, we compute the OT
distance of the composed dataset D(N1,p) to the validation data and then train a model on D(N1,p) to get the actual model
performance. For simplicity, we select compositions through grid search. This step is represented in Algorithm 1 from lines
4-9 and is the first (I) step in the pipeline Figure 3.

II. Fitting Predictor Function. Once the training data is prepared, we proceed to fit our function in Eqs. 1 and 2. This
step is shown in lines 10-11 in Algorithm 1 and is the second (II) step of the pipeline Figure 3. Then, with the performance
predictors fitted for data scales N0 and N1, we move on to the inference stage, where we can perform 2 tasks: performance
projection and data source selection.

III. Two-Stage Performance Projection. For performance projection, we project the performance to any data size N for
any mixing ratio p in two stages. (1) We predict the performance given the mixing ratio p at data scales N0 and N1. (2) We
use Eq. 3 to project performance prediction to any data size N . This process is represented in line 12 of Algorithm 1 and is
the third (III) step of the pipeline Figure 3.

IV. Optimal Data Source Selection. For optimal data source selection, we solve an optimization problem through gradient
descent. The gradient computation uses parameters of the fitted functions from step II and the process terminates when the
mixing ratio converges. This process is represented in line 12 of Algorithm 2 and is the fourth (IV) step of pipeline Figure 3.

Algorithm 1: projektor performance predictor.

In :Pilot Datasets Dpi
1 , Dpi

2 , . . . , Dpi
m; Query Data Budget N ; Query Mixing Ratio p;

0-Data Scale Size N0; 1-Data Scale Size N1; Learning Algorithm A; Performance Metric
Function L(·, Dval); OT Distance Function OT (·, Dval).

Out :Projected Model Performance→ [0, 1].
1 P← Generate mixing ratios
2 DT0, DT1← Initialize empty lists to store OT distances
3 L0, L1← Initialize empty lists to store performance values
4 for Mixing Ratio pi in P do
5 S0, S1 = D(N0,pi),D(N1,pi) newly composed datasets of size N0, N1

6 DT0← append OT (S0, D
val) Optimal Transport distance between S0 and Dval

7 DT1← append OT (S1, D
val) Optimal Transport distance between S1 and Dval

8 L0← append L(A(S0), D
val) Performance of a model trained on S0

9 L1← append L(A(S1), D
val) Performance of a model trained on S1

10 L̂(A(D(N0, ·)), Dval)← Fit the function from Eq. 2 with ((P, DT0), L0)
11 L̂(A(D(N1, ·)), Dval)← Fit the function from Eq. 2 with ((P, DT1), L1)
12 L̂(A(D(N,p));Dval)← Project performance by substituting L̂(A(D(N0,p)), D

val) and L̂(A(D(N1,p)), D
val)

into Eq. 3
13 return L̂(A(D(N,p);Dval)

B. Experiment Details and Additional Results
B.1. Details on Baseline Methods

For N samples from m data sources with a mixing ratio p = {p1, . . . , pm}, we consider the following baselines:

Linear: L̂(A(D(N,p);Dval) := a′p+ b log(N) + c, where a = {a0, a1, ..., am}, b, and c are coefficients to be fitted.

Leave-one-out (LOO) and Shapley can be considered special cases for Linear, where the coefficients are calculated as the
marginal contribution of the data source (LOO) or its averaged contribution to different combinations of other data sources
(Shapley) (Jia et al., 2019a), as opposed to the least-square fitting as in Linear.

Pseudo-quadratic: L̂(A(D(N,p);Dval) :=
∑m

i=1(c
i
2 · p2i + ci1 · pi + c0) + b log(N)
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Algorithm 2: Optimal data source composition p∗ Update.

In : Pilot Datasets Dpi
1 , Dpi

2 , . . . , Dpi
m; Query Data Budget N ; Query Mixing Ratio p;

0-Data Scale Size N0; 1-Data Scale Size N1; Trained projektor Models with N0 and N1 Data Budgets:
f0, f1; Enquired Data Budget: N ; OT Distance Function OT (·, Dval) Validation Set: Dval.
Out :Optimal data source composition p∗.

1 p← Initialize Random Data Source Composition
2 while p not converged do
3 S0, S1 = D(N0,pi),D(N1,pi) newly composed datasets of size N0, N1

4 gradient← Compute gradient w.r.t. p
5 p← Update composition p with the gradient update
6 return p
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Figure 3. projektor

Quadratic: L̂(A(D(N,p);Dval) :=
∑m

i=1(c
i
2 · p2i + ci1 · pi + c0) +

∑m
i=1

∑i
j=1(c

ij
3 · pipj) + b log(N)

Rational: L̂(A(D(N,p);Dval) :=
∑m

i=1

(∑m
j=1 c

ij · pj
)−1

+ b log(N)

We fit the Rational baseline according to the setup detailed in (Hashimoto, 2021) and to our best effort. Originally, the
method is intended for predicting log loss, whereas in our case, we aim to predict model accuracy. Thus, we replaced the
log loss with log (1− accuracy) for the prediction target.

B.2. Evaluation Metric
We use mean absolute error (MAE) to evaluate the performance of our method by calculating the absolute difference
between the predicted and the actual accuracy.

Figure 4. Performance projections from 1K CIFAR-10 samples
across various mixing ratios and larger data scales: 2K, 5K, 7K,
10K. Comparison between projektor and baselines. Figure 5. Optimal data source composition selection for 50K

ImageNet-100 from 10K samples and actual model performance.5


