
Dataset Interfaces: Diagnosing Model Failures
Using Controllable Counterfactual Generation

Joshua Vendrow * 1 Saachi Jain * 1 Logan Engstrom 1 Aleksander Madry 1

Abstract
Distribution shift is a major source of failure for
machine learning models. However, evaluating
model reliability under distribution shift can be
challenging, especially since it may be difficult
to acquire counterfactual examples that exhibit
a specified shift. In this work, we introduce the
notion of a dataset interface: a framework that,
given an input dataset and a user-specified shift,
returns instances from that input distribution that
exhibit the desired shift. We study a number
of natural implementations for such an interface,
and find that they often introduce confounding
shifts that complicate model evaluation. Moti-
vated by this, we propose a new implementation
that leverages Textual Inversion to tailor gener-
ation to the input distribution. We then demon-
strate how applying this dataset interface to the
ImageNet dataset enables studying model behav-
ior across a diverse array of distribution shifts,
including variations in background, lighting, and
attributes of the objects.

1. Introduction
Suppose we would like to deploy a vision model (for exam-
ple, one trained on ImageNet). Naturally, we would like this
model to perform reliably in a variety of real-world contexts
and, especially, with respect to any of the (inevitable) corner
cases, i.e., real-world inputs that are underrepresented in
the training dataset. Indeed, we have ample evidence that
machine learning models can fail when facing so-called dis-
tribution shift, including changes of the background (Beery
et al., 2018; Xiao et al., 2020; Barbu et al., 2019) and object
pose (Engstrom et al., 2019; Alcorn et al., 2019), as well as
variability in data collection pipelines (Recht et al., 2019;
Engstrom et al., 2020).

*Equal contribution 1Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, USA. Correspondence to: Joshua Vendrow
<jvendrow@mit.edu>.

How can we then ensure that our model will continue to
perform well in new environments? To make this more con-
crete, suppose that our hypothetical ImageNet-trained model
is being deployed to identify objects (such as dogs, chairs,
plates, etc.) in images. We would like to make sure that the
model will perform well regardless of the object’s type (e.g.,
“brown dog”, “ceramic plate”), condition (e.g., “dog with
harness”, “empty plate”), and setting (e.g., “dog on a beach”,
“plate at a picnic”). One powerful primitive for assessing
our model’s performance in such scenarios is counterfactual
generation — acquiring images (counterfactual examples)
that conform to the training distribution except for exhibiting
a specified change. For instance, to test the model’s perfor-
mance on “plate with utensils,” we might want to evaluate
our model on images of plates that match the distribution of
ImageNet (e.g., in terms of background, zoom, plate style)
except that they have utensils alongside them. But how can
we acquire such counterfactual examples? After all, without
access to the original data-generating process, collecting
new examples in a specified context can be challenging.

Currently, practitioners use a few natural methods for gen-
erating counterfactual examples. Returning to our example
of “plate with utensils,” one (labor intensive) strategy is
to manually take photographs of ImageNet-style scenes of
plates with and without utensils. More scalable approaches
include scraping images of plates with utensils from the
internet (e.g., using Google or Bing search engines), or
synthetically generating such images (e.g., using a text-to-
image diffusion model such as Stable Diffusion (Rombach
et al., 2022)). However, images produced using such ap-
proaches often reflect additional confounding shifts. For
example, querying Bing or Stable Diffusion with the prompt
“a photo of a plate with utensils” surfaces plates that are
almost exclusively empty, while in ImageNet the plates usu-
ally contain food (see Figure 1). Any observed change in
the model’s accuracy on these images might thus well be
due to this confounding shift rather than the shift of interest
(i.e., the presence of utensils).

Our Contributions

In this work, we unify approaches to counterfactual gen-
eration under a common notion of a dataset interface: a

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

Bing ImageNet*

Acquiring images of plates with utensils

ImageNet Stable Diffusion

Original Plates

Figure 1. Acquiring ImageNet counterfactual examples of “plates with utensils” using the Bing search engine, Stable Diffusion, or our
dataset interface ImageNet∗). The Bing and Stable Diffusion plates are almost exclusively empty, and thus do not fully match the images
in ImageNet (as the latter often contain food). In contrast, ImageNet∗ can generate counterfactual examples of “plates with utensils” that
match the ImageNet distribution much more closely.

primitive that, given an input dataset and a user-specified
shift, aims to return instances from the input distribution
that exhibit the desired shift. We then study a number of
existing strategies for implementing such an interface and
find that — due to a mismatch between the distribution
produced by the interface and that of the input dataset —
these approaches often introduce confounding shifts that
can complicate model evaluation.

To mitigate this mismatch, we introduce a new implemen-
tation of a dataset interface that leverages Textual Inver-
sion (Gal et al., 2022) with Stable Diffusion. In particular,
this implementation encodes each class in the input dataset
as a token within the text-space of the diffusion model. By
integrating these tokens into natural language prompts, our
implementation can generate counterfactual examples that
conform to the input distribution while still exhibiting the
desired shift. Overall, this implementation:

• Is tailored to the input dataset: It can match key
aspects of the original dataset, even for objects and
attributes without a clear textual specification. For ex-
ample, if the input dataset contains a specific breed of
dog, our dataset interface can generate images match-
ing that breed, even if the underlying diffusion model
is unable to associate this breed with any natural lan-
guage description.

• Provides fine-grained control: It can generate im-
ages of a target object with a high level of control
over the desired distribution shift. This includes ma-
nipulating not only aspects such as backgrounds (e.g.,
“on a beach”) and lighting (e.g., “in studio lighting”),
but also more fine-grained adjustments such as co-
occurring objects (e.g., “with a person”) and attributes
of the objects themselves (e.g., “lying down”).

• Enables scalable counterfactual generation: It is
able to rapidly generate counterfactual examples, al-

lowing us to evaluate a model’s robustness across many
possible failure modes.

Finally, leveraging this implementation, we create
ImageNet∗, a dataset interface for the ImageNet
dataset (Russakovsky et al., 2015). We then demonstrate
how we can use this interface to evaluate the performance
of ImageNet-trained models under a diverse array of dis-
tribution shifts. In particular, due to our implementation’s
scalability and flexibility, we can use our interface to further
a shift-centric perspective on model robustness, by catego-
rizing how performance on different types of shifts scales
with model size, architecture, and pre-training regime.

2. Dataset Interfaces: Unifying methods for
Counterfactual Generation

Let us return to our example of deploying a vision model
for object classification. Suppose we wish to evaluate that
model’s ability to correctly classify images of a dog in a
variety of contexts (e.g., “on a beach”). To do so, we would
like to collect counterfactual examples, i.e., examples that
exhibit the required distribution shift (“on a beach”) but
still contain the original object (“dog”) as it appears in the
training distribution.

In order to unify such strategies for collecting counterfactual
examples, we introduce the notion of a dataset interface: a
primitive that, given an input dataset and a user-specified
shift, aims to return instances of a class from that dataset
that exhibit the desired shift. In general, users do not have
access to the original data-generating process, making it
difficult to retrieve new examples with a specified context.
A dataset interface thus serves as a proxy for the original
dataset that enables users to control (and edit) the desired
aspects of the surfaced images.

What makes a good dataset interface? In order to facil-
itate wide-scale model evaluation, a dataset interface needs

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

Through Arch Bridge

Im
ag

eN
et

Im
ag

eN
et

*
Cl

as
s

N
am

e

Newt Alaskan Tundra Wolf

Figure 2. Examples of real images from ImageNet (top) and images generated
either by prompting Stable Diffusion with the class name (e.g., “a photo of
a newt”) (middle) or by using our dataset interface ImageNet∗ (bottom).
For each class, the images from ImageNet∗ match ImageNet more closely
than the images generated using the class name (see, e.g., the columns in the
bridges). See Appendix B for further examples.

Through Arch Bridge

Im
ag

eN
et

Im
ag

eN
et

*
Cl

as
s

N
am

e

Newt

Bi
ng

Im
ag

eN
et

*
LA

IO
N

… in the forest … on a boat
A photo of a plate…

Alaskan Tundra Wolf

Figure 3. Examples of plates in various contexts col-
lected from Bing (top), LAION (middle), or gener-
ated using our dataset interface ImageNet∗ (bottom).
Plates queried via text-to-image retrieval often miss
either the object or shift, while the ImageNet∗ plates
contain both.

to fulfill three criteria: (1) images returned by the interface
should exhibit the desired shift; (2) images returned by the
interface should contain the specified object (as it appears
in the input distribution); and (3) the interface needs to re-
turn images quickly in order to scale to many classes and
contexts. In the following section, we discuss how existing
approaches perform under these three criteria.

2.1. Existing Instantiations of Dataset Interfaces

Currently, practitioners use a variety of techniques for sur-
facing counterfactual examples. Here, we discuss three
categories of existing approaches — manual data collec-
tion, text-to-image retrieval, and synthetic data generation —
that fit into the dataset interface framework. As a running
example, let’s return to our example of evaluating a “dog”
classifier on a variety of backgrounds (e.g., “a beach”).

Manual data collection Perhaps the most straightforward
strategy (as implemented in ObjectNet (Barbu et al., 2019),
iWildCam (Beery et al., 2018)) for acquiring counterfactual
examples is to manually collect them from the real world.
In our example, we could find the same types of dogs that
appeared in our original dataset, and then take photos of
those dogs on different backgrounds. This kind of data
collection gives practitioners strong control over what the
images they collect contain, but can be very expensive and
time-consuming (and, for rarer objects like “polar bear”,
may be infeasible).

Text-to-image retrieval A more common (and far more
scalable) method is to find images from the internet using
a textual query that matches our desired context (e.g., “a
photo of a dog on a beach”). One such approach (as imple-
mented in ImageNet-R (Hendrycks et al., 2020), ImageNet-

Sketch (Wang et al., 2019)) is to query an image search
engine like Bing or Google. Another strategy (as im-
plemented in ADAVISION (Gao et al., 2022)) is to re-
trieve images from a (huge) dataset of text-image pairs
(e.g., LAION-5B (Schuhmann et al., 2022)). For exam-
ple, clip-retrieval (Beaumont, 2022) uses a KNN
index on top of a CLIP (Radford et al., 2021) latent space
— a joint language-image embedding space learned with a
contrastive objective — to return images corresponding to a
textual prompt. However, such text-to-image retrieval meth-
ods typically assume that a valid counterfactual example
exists within the provided pool of images. We find that for
many uncommon examples these methods are often unable
to find a valid counterfactual example that includes both the
desired object and shift (see Figure 3).

Synthetically generated data Synthetic generation pro-
vides a more flexible mechanism for generating images in
rarer contexts. Until recently, synthetic counterfactual ex-
amples were generated either by pre-processing images to
induce distribution shifts (e.g., ImageNet-C (Hendrycks &
Dietterich, 2019)), or rendering scenes using a 3D simu-
lator (Hamdi et al., 2018; Alcorn et al., 2019; Hamdi &
Ghanem, 2019; Shu et al., 2020; Jain et al., 2020; Leclerc
et al., 2021). However, these methods often produce images
that are not photorealistic, or require involved processing
steps (e.g., collecting a 3D scan of an object). More recently,
taking advantage of current progress in generative models,
other works (Kattakinda et al., 2022; Wiles et al., 2022)
employ off-the-shelf text-to-image models such as Stable
Diffusion (Rombach et al., 2022), DALL-E 2 (Ramesh et al.,
2022), and Imagen (Saharia et al., 2022) to generate pho-
torealistic images conditioned on a textual prompt. In our
running example, we could prompt Stable Diffusion to gen-

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

A photo of a 𝚂dog

Cross Attention

Text
Conditioning

𝑧𝑡-1 𝑧𝑡

𝚂tench :

2. Learned Tokens

A photo of a 𝚂dog A photo of a 𝚂dog in the snow

A photo of a 𝚂dog wearing glasses

𝚂kite :

𝚂vase :

…

{

 }

…

A photo of a 𝚂dog in a car

1. Textual Inversion

3. Generate Counterfactual Examples

Denoising Network

Figure 4. Construction of our dataset interface. For each class in the input dataset, we use Textual Inversion (see Section 3) to learn a
token in the text space of a text-to-image diffusion model. This token is intended to capture the distribution of the corresponding class.
Then, by incorporating these tokens in natural language prompts, we can scalably generate a dataset of counterfactual examples.

erate dogs on different backgrounds using a corresponding
textual query (such as “a photo of a dog on a beach.”)

However, synthetic generation can often introduce biases
that result in confounding shifts. For example, suppose that
the input dataset only contains certain breeds of dogs. In this
case, the diffusion model’s conception of “dog” could differ
from the dogs in the “input” dataset (e.g., a completely
different set of breeds). As a result, simply employing
prompts that use the class name might not be sufficient to
faithfully match the distribution of that dataset. In fact, we
find that for a number of classes in the ImageNet dataset,
there is a visual discrepancy between images generated by
Stable Diffusion using the class name (e.g., “dog”) and the
images in that dataset itself. For instance, as we show in
Figure 2, there might be a mismatch in the specific type
or appearance of the object (e.g., a subspecies of wolf, or
columns in bridges). How can we then generate images that
faithfully correspond to the distribution of the input dataset?

3. Generating dataset-specific counterfactual
examples

To overcome this mismatch, we propose an implementation
of a dataset interface that bridges the gap between the dataset
interface and the corresponding input dataset. Specifically,
we leverage recent work in personalized text-to-image gen-
eration, which tries to incorporate user-provided visual con-
cepts within a text-to-image diffusion model. By doing so,
we can generate images that faithfully capture the properties
of the corresponding class in the input dataset and avoid con-
founding shifts. In this work, we use Textual Inversion (Gal
et al., 2022) (although it is possible to implement a similar

interface with other methods for personalized generation
such as DreamBooth (Ruiz et al., 2022)).

Textual Inversion Given a set of user-provided images
containing a desired visual concept, Textual Inversion aims
to find a “word” (token) S∗ in the diffusion model’s text
space to precisely capture that concept. This token can then
be included in natural language prompts to generate images
incorporating the desired concept. So, for example, using
the prompt “a monochrome photo of a S∗” should result in
generating black and white images with that concept.

In order to create such a customized token S∗, Textual In-
version learns a corresponding embedding vector v∗ in the
text embedding space of the diffusion model. To learn this
embedding vector v∗, Textual Inversion freezes the weights
of the pre-trained diffusion model and then finds v∗ that
minimizes the diffusion model’s original training objective,
while using only the user-provided images that capture the
desired visual concept paired with prompts containing S∗
(e.g., “a photo of a S∗”).

Encoding the input dataset as tokens in text space
With Textual Inversion in hand, we aim to guide a text-
to-image diffusion model to generate images more closely
aligned with the objects in the input dataset. Specifically, for
each class c from that dataset, we run Textual Inversion on
the training images of that class to learn an embedding vec-
tor vc for a corresponding new class token Sc. We can then
incorporate these class tokens into our prompts to generate
images under our desired shift. For example, to generate
an image of a dog on the beach, we can use the prompt “A
photo of a Sdog on the beach.” We present an overview of
our construction in Figure 4.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

Beach Blue Night Sketch Snow
0.0

0.2

0.4

0.6

0.8

se
le

ct
io

n
fre

qu
en

cy
Task: Shift Faithfulness

Base Beach Blue Night Sketch Snow

Task: Label Faithfulness

Negative control
Bing
LAION
ImageNet*
ImageNet* (filtered)
ImageNet

Figure 5. Selection frequencies (see Section 4) for images from ImageNet, images scraped using Bing, image retrieval from LAION, and
images generated with ImageNet∗ when asking workers to identify either presence of a specific distribution shift (left) or presence of a
ImageNet class (right) in the image. The ImageNet∗ images exhibit the desired context and object more often than those from both Bing
and LAION. Filtering the images with the CLIP metrics consistently increases selection frequency for both the shift and the object.

3.1. Controlling the quality of counterfactual examples

Text-to-image diffusion models can sometimes make mis-
takes, and as a result some of the counterfactual examples
generated by our text prompts might either (1) not con-
tain the original object or (2) not depict the desired dis-
tribution shift. We thus leverage CLIP (Radford et al.,
2021) to control the quality of “candidate” counterfac-
tual examples based on these two criteria. Specifically,
given a text label <class> of a class (e.g., “dog”) and a
text description <shift> of the desired distribution shift
(e.g., “on the beach”), we construct the captions cclass =
“a photo of a <class>” and cshift = “a photo <shift>.”

Then, to quantify the presence of the original object and
the desired distribution shift within an image, we measure
the CLIP similarity, i.e., the similarity between the CLIP
embedding of the image and the text embeddings of cap-
tions cclass and cshift respectively1. We use these metrics
to automatically filter and remove images that do not meet
the above criteria (see Appendix A.3 for details, and Ap-
pendix C for yield rates.) A user study in Section 4 confirms
that this filtering step indeed improves the quality of the
resulting dataset of counterfactual examples.

3.2. ImageNet∗

We apply the construction described above to create
ImageNet∗, a dataset interface for the ImageNet dataset
(we defer results for other datasets to Appendix D) and
we publicly release the resulting set of 1,000 learned class
tokens.

In Section 6, we will use ImageNet∗ to create a distribution
shift robustness benchmark consisting of counterfactual ex-
amples for 23 different distribution shifts, including shifts in

1For shifts describing art styles (e.g., “a sketch of a ...”) we
instead use cclass = “a <class>” as they are no longer a “photo.”

background, lighting, style, and object co-occurrence. We
publicly release this benchmark as well, but we also encour-
age users to generate their own counterfactual examples
tailored to their specific needs.

4. Evaluating the Generated Counterfactual
Examples

Having constructed ImageNet∗ (see Section 3.2), we now
evaluate the quality of our generated images. Specifically,
we use ImageNet∗ to synthesize images of distribution shifts
from five different categories — “at night”, “blue”, “in the
beach”,“in the snow”, and “sketch” — as well as “base” im-
ages which do not correspond to a specific shift (generated
with a prompt “a photo of a S*”). As a baseline, we consider
downloading images returned by the Bing search engine or
retrieving them with clip-retrieval, an open source
tool for scraping LAION, when queried with a natural lan-
guage prompt containing the ImageNet class name. (See
Appendix A.2 for experimental details.)

We validate the quality of these images through a user
study on the Amazon Mechanical Turk (MTurk) crowd-
sourcing platform. In this study, we show workers a
grid of images, either sampled from ImageNet∗, scraped
from the Bing engine, or retrieved from LAION-5B with
clip-retrieval, with additional images from Ima-
geNet as a control. We then ask the workers to identify
which images contain (a) the target ImageNet class (e.g.,
“golden retriever”) and (b) the desired distribution shift (e.g.,
“on the beach”). See Appendix A.4 for further details.

In Figure 5, we report the selection frequency, i.e., the frac-
tion of images selected by the workers, for each of these
two tasks. We find that the images generated by our frame-
work exhibit the desired shift and object of interest more
often than images scraped using Bing across each distribu-
tion shift. Querying LAION with clip-retrieval is

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

A photo of a 𝚂plate Acc: 90%

A photo of a plate

empty……in the grass Acc: 6%Acc: 75%

Acc: 5% Acc: 2%Acc: 2% empty……in the grass

ImageNet*

Prompting with
Class Name

Figure 6. Images of plates generated by our dataset interface ImageNet∗ (top) and by prompting Stable Diffusion with the class name
“plate” (bottom). While generating ImageNet∗ examples “in the grass” causes only a slight drop in accuracy, prompting Stable Diffusion
with “a plate in the grass” degrades the model’s accuracy to 2% due to the additional confounding factor of emptiness.

competitive with ImageNet∗ in retrieving images with the
desired shift, but struggles with keeping the desired object.
We also observe that filtering the generated images with our
metrics improves the selection frequency for both tasks.

5. Fine-Grained Model Debugging
Capturing certain class-specific model failures may require
executing fine-grained adjustments in particular scenarios
(such as adding a harness on a dog or putting a fish in a
tank). Our dataset interface provides exactly this kind of
debugging capability while avoiding the unintended effect
of secondary “confounding” shifts. To illustrate this, let
us return to our example task of deploying an ImageNet-
trained model. Suppose that we would like to examine the
model’s performance on images of plates in the grass. When
prompting Stable Diffusion with a query that uses the class
name (“a photo of a plate in the grass”), we find that our
classifier achieves an accuracy of only 2% on the resulting
images! Is the grassy background really such a catastrophic
failure mode for our model?

If, instead, we use ImageNet∗ to generate counterfactual
examples of “plates on the grass”, we find that our classi-
fier’s accuracy only slightly drops from 90% to 75% (see
Figure 6). What causes this discrepancy? It turns out that
the “failure case” identified when prompting Stable Diffu-
sion with natural language is actually an extreme example
of a confounding shift. Indeed, recall that ImageNet plates
usually have food on them (c.f., Figure 1). However, the
plates generated by Stable Diffusion are almost exclusively
empty, even when using a prompt that in principle does not
introduce any shift (i.e., “a photo of a plate”).

To assess to what degree this confounding shift of “empti-
ness” is detrimental for our ImageNet classifier, we use
ImageNet∗ to generate counterfactual examples of empty
plates. We then find that the classifier’s accuracy decreases

to only 6% (so, similar to the 2% we observed before). To
further confirm that the failure mode is indeed caused by
emptiness and not the presence of grass, we took real photos
of a plate in each of these contexts and evaluated our model
on them (see Figure 14).

So, as we have seen, dataset interfaces enable us to test
distribution shifts in isolation, i.e., without introducing con-
founding shifts that can produce misleading results. In
Appendix B, we discuss additional examples of using our
interface for precise model debugging.

6. Evaluating Distribution Shift Robustness
Our framework’s scalability enables us to rapidly assess
a model’s performance on a wide variety of distribution
shifts. As a result, we can take a shift-centric perspective on
robustness by evaluating models on many types of shifts at
once and categorizing variations in these models’ behavior.

A benchmark for distribution shift robustness. Using
ImageNet∗, we generate images for 23 shifts, including
changes in background, weather, lighting, style, attributes,
and co-occurrence (see Figure 7 for examples, and Appendix
A.5 for a full list). We then evaluate a variety of image
classification models varying architectures, training regimes,
pre-training schemes, and input resolutions.

We can now categorize the behavior of each shift according
to two criteria. The first criteria, the shift’s absolute impact,
encapsulates the shift’s overall severity, and can be measured
as the average difference between the models’ performance
on the base generated images and the corresponding coun-
terfactual examples. The second criteria, the ID/OOD slope
captures the degree to which improving model accuracy on
in-distribution images also boosts its performance under the
distribution shift. We measure this quantity by plotting the
accuracy of each model on the base generated images versus
on the counterfactual examples (as in (Taori et al., 2020;

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation
Go

ld
fin

ch

In the beach In the grass In the forest In the snow In the rain In the fog In bright sunlight At night Studio lighting Oil Painting Sketch With a flower

Gi
an

t P
an

da

Ve
sp

a

St
re

et
 S

ig
n

Figure 7. Examples of images generated with ImageNet∗ for a variety of distribution shifts. These images are a subset of the benchmark
described in Section 6. See Appendix B for further examples.

84% 86% 88% 90%
Base Accuracy

65%

70%

75%

80%

85%

90%

"In
 th

e
W

at
er

" A
cc

ur
ac

y

In the Water. Avg Drop: 8.35%

x=y
Linear Fit (Slope: 2.29)

84% 86% 88% 90%
Base Accuracy

65%

70%

75%

80%

85%

90%

"S
tu

di
o

Lig
ht

in
g"

 A
cc

ur
ac

y

Studio Lighting. Avg Drop: 8.36%

x=y
Linear Fit (Slope: 1.53)

84% 86% 88% 90%
Base Accuracy

65%

70%

75%

80%

85%

90%

"S
tu

di
o

Lig
ht

in
g"

 A
cc

ur
ac

y

Studio Lighting. Avg Drop: 8.36%

x=y
Linear Fit (Slope: 1.53)

84% 86% 88% 90%
Base Accuracy

65%

70%

75%

80%

85%

90%

"S
tu

di
o

Lig
ht

in
g"

 A
cc

ur
ac

y

Studio Lighting. Avg Drop: 8.36%

x=y
Linear Fit (Slope: 1.53)

Figure 8. Accuracy on images generated with a distribution shift
vs. on images generated with the base prompt (i.e., “a photo of
S∗”) for two distribution shifts over a sweep of ImageNet models.

Miller et al., 2021)), and then calculating the slope of the
best-fit-line (see Figure 8 for two examples).

In Figure 9, we plot the absolute impact and the ID/OOD
slope for each one of the considered distribution shifts. We
find that different types of shifts result in different scal-
ing behaviors across these two criteria. For example, even
though “in the water” and “studio lighting” have similar
absolute impacts, “in the water” has a higher ID/OOD slope.
Therefore, while boosting the in-distribution accuracy for
ImageNet can help improve the model’s performance on
images “in the water”, the model’s performance on “studio
lighting” is much more static. More broadly, we find that
shifts based on lighting (e.g., “studio lighting”) have lower
ID/OOD slope than shifts based on background (e.g., “in
the grass”), with attributes (e.g., “red”) in between.

7. Related Work
Benchmarks for distribution shift robustness Many ro-
bustness benchmarks evaluate model performance under

specific distribution shifts by collecting real images. These
include shifts in style (Hendrycks et al., 2020; Wang et al.,
2019), object pose (Barbu et al., 2019), background (Beery
et al., 2018), time/location (Christie et al., 2018; Hendrycks
et al., 2020), and data pipelines (Recht et al., 2019). Other
works create synthetic distribution shift benchmarks, often
by preprocessing the images of an “in-distribution” dataset
to induce a shift. One common strategy here is to syn-
thetically create shifts in background by pasting the fore-
ground of the target image onto an alternate background
image (Xiao et al., 2020; Sagawa et al., 2020; Kattakinda
et al., 2022). In particular, ImageNet-C (Hendrycks & Diet-
terich, 2019) applies a set of transformations such as blur
and synthetic fog on top of images to simulate real-world
corruptions. Finally, TILO (Lynch et al., 2022) uses Stable
Diffusion to generate images of vehicles with variations in
backgrounds and lighting.

Identification of failure modes through counterfactual
examples There are a number of works that aim to diag-
nose model failures by evaluating them on counterfactual
examples. One line of such work leverages 3D rendering
software to synthesize objects with varying geometry and
pose (Hamdi et al., 2018; Alcorn et al., 2019; Hamdi &
Ghanem, 2019; Shu et al., 2020; Jain et al., 2020; Leclerc
et al., 2021). Of these, 3DB (Leclerc et al., 2021) is the clos-
est to our work, as in addition to pose, they allow control
over aspects such as lighting, background, texture, and ob-
ject co-occurrence. However, their framework still requires
users to first acquire a 3D model of the object of interest.

On the other hand, ADAVISION (Gao et al., 2022) intro-
duces an interactive process for identifying model failures
by repeatedly querying for real images from LAION-5B
and optimizing the query to more closely match the model’s
misclassifications. However, ADAVISION requires user

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

2% 4% 6% 8% 10% 12%
Absolute Impact (Average Accuracy Drop)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

ID
/O

OD
 S

lo
pe

in the grass

in the beach

in the forest

in the water

on the road
on the rocks

in the snow

in the rain

in the fog

in bright sunlight

at dusk

at night

studio lighting
blue

green red

yellow
orange

person and a

and a floweroil painting

Background
Weather
Lighting
Attribute
Co-occurance
Style

10% 20% 30% 40%
Absolute Impact (Avg. Acc. Drop)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ID
/O

OD
 S

lo
pe

pencil sketch

embroidery

Figure 9. For each of the shifts in the benchmark, we plot the ID/OOD slope (degree to which in-distribution accuracy improves accuracy
under the shift) versus absolute impact (average drop in accuracy due to the shift). The “’pencil sketch” and “embroidery” shifts are
shown separately on the right, as their absolute impact and ID/OOD slope fall far from all other shifts (points for the other shifts are
shown as reference). Note that changes in lighting (e.g., “at dusk”) and attribute (e.g., “red”) have low ID/OOD slope, indicating that the
models’ performance on these images remains static regardless of in-distribution accuracy.

intervention at each step to verify model failures. Wiles
et al. (2022), in turn, propose a framework for automatically
surfacing model failures by generating images with a text-to-
image generative model, clustering misclassified inputs, and
then using a image-to-text model to caption these clusters.
Finally, Jain et al. (2022) synthesize prototypical examples
of challenging subpopulations by automatically captioning
model failure modes and then generating the images via
Stable Diffusion.

Personalized text-to-image generation While our
dataset interface utilizes textual inversion to learn per-
sonalized concepts, there have been many recent works
in the context of personalized text-to-image generation.
These approaches aim to incorporate user-provided visual
concepts (e.g., an object or style) into text-to-image
generation. One family of techniques uses a guiding image
to further condition generation (Jeanneret et al., 2022; Yuan
et al., 2022; Kattakinda et al., 2022). Specifically, D3S
(Kattakinda et al., 2022) first pastes the foreground of a
given object onto a background and then uses the resulting
image to guide Stable Diffusion. Yuan et al. (2022) generate
images in a desired target domain by conditioning on an
image from the source dataset and a prompt that describes
the target domain.

Another approach to personalized generalization, taken by
methods such as Textual Inversion (Gal et al., 2022) and
DreamBooth (Ruiz et al., 2022), allows users to directly
encode a desired concept within the text space of the text-to-
image model. While Textual Inversion learns a new token
within a frozen text-to-image model, DreamBooth fine-tunes

the full model. By allowing the original diffusion model
weights to change, DreamBooth offers greater capability
for personalization at the potential cost of degrading the
generation of concepts already known to the model.

8. Conclusion
In this work, we introduce the notion of a dataset interface:
a framework that, given an input dataset and user-specified
shift, returns instances from that input distribution that ex-
hibit the desired shift. While there are a number of existing
implementations of such an interface, they often introduce
confounding shifts due to a mismatch between the interface
and the input dataset. To mitigate this issue, we propose an
implementation of a dataset interface that leverages Textual
Inversion to tailor counterfactual generation more closely
to the input dataset. In addition to enabling fine-grained
model debugging, our dataset interface allows users to si-
multaneously evaluate a diverse array of distribution shifts,
making it possible to take a more “shift-centric” perspective
on model robustness.

There are several avenues for further investigation. While
our dataset interface implementation leverages natural lan-
guage descriptions to represent distribution shifts, one could
instead attempt to automatically learn a representation of a
shift using user-provided example images. Another poten-
tial direction to explore is to use counterfactual examples
generated by such an interface to improve a model’s robust-
ness (e.g., by incorporating the generated images into the
training pipeline).

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

References
Alcorn, M. A., Li, Q., Gong, Z., Wang, C., Mai, L., Ku, W.-

S., and Nguyen, A. Strike (with) a pose: Neural networks
are easily fooled by strange poses of familiar objects. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gut-
freund, D., Tenenbaum, J., and Katz, B. Objectnet: A
large-scale bias-controlled dataset for pushing the lim-
its of object recognition models. In Neural Information
Processing Systems (NeurIPS), 2019.

Beaumont, R. Clip retrieval: Easily compute
clip embeddings and build a clip retrieval system
with them. https://github.com/rom1504/
clip-retrieval, 2022.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In European Conference on Computer Vision
(ECCV), 2018.

Christie, G., Fendley, N., Wilson, J., and Mukherjee, R.
Functional map of the world. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 6 2018.

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and Madry,
A. Exploring the landscape of spatial robustness. In
International Conference on Machine Learning (ICML),
2019.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Stein-
hardt, J., and Madry, A. Identifying statistical bias in
dataset replication. In International Conference on Ma-
chine Learning (ICML), 2020.

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano,
A. H., Chechik, G., and Cohen-Or, D. An image is worth
one word: Personalizing text-to-image generation using
textual inversion. arXiv preprint arXiv:2208.01618, 2022.

Gao, I., Ilharco, G., Lundberg, S., and Ribeiro, M. T. Adap-
tive testing of computer vision models. arXiv preprint
arXiv:2212.02774, 2022.

Hamdi, A. and Ghanem, B. Towards analyzing seman-
tic robustness of deep neural networks. arXiv preprint
arXiv:1904.04621, 2019.

Hamdi, A., Muller, M., and Ghanem, B. Sada: Semantic ad-
versarial diagnostic attacks for autonomous applications.
arXiv preprint arXiv:1812.02132, 2018.

Hendrycks, D. and Dietterich, T. G. Benchmarking neural
network robustness to common corruptions and surface
variations. In International Conference on Learning Rep-
resentations (ICLR), 2019.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
Song, D., Steinhardt, J., and Gilmer, J. The many faces
of robustness: A critical analysis of out-of-distribution
generalization, 2020.

Jain, L., Chandrasekaran, V., Jang, U., Wu, W., Lee, A.,
Yan, A., Chen, S., Jha, S., and Seshia, S. A. Analyzing
and improving neural networks by generating semantic
counterexamples through differentiable rendering. arXiv
preprint arXiv:1910.00727, 2020.

Jain, S., Lawrence, H., Moitra, A., and Madry, A. Distilling
model failures as directions in latent space. arXiv preprint
arXiv:2206.14754, 2022.

Jeanneret, G., Simon, L., and Jurie, F. Diffusion models for
counterfactual explanations. In Proceedings of the Asian
Conference on Computer Vision, pp. 858–876, 2022.

Kattakinda, P., Levine, A., and Feizi, S. Invariant learning
via diffusion dreamed distribution shifts. arXiv preprint
arXiv:2211.10370, 2022.

Leclerc, G., Salman, H., Ilyas, A., Vemprala, S., Engstrom,
L., Vineet, V., Xiao, K., Zhang, P., Santurkar, S., Yang, G.,
et al. 3db: A framework for debugging computer vision
models. In arXiv preprint arXiv:2106.03805, 2021.

Lynch, A., Kaddour, J., and Silva, R. Evaluating the impact
of geometric and statistical skews on out-of-distribution
generalization performance. In NeurIPS 2022 Workshop
on Distribution Shifts: Connecting Methods and Applica-
tions, 2022.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151, 2013.

Miller, J. P., Taori, R., Raghunathan, A., Sagawa, S., Koh,
P. W., Shankar, V., Liang, P., Carmon, Y., and Schmidt, L.
Accuracy on the line: on the strong correlation between
out-of-distribution and in-distribution generalization. In
International Conference on Machine Learning, pp. 7721–
7735. PMLR, 2021.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C.
Cats and dogs. In 2012 IEEE conference on computer
vision and pattern recognition, pp. 3498–3505. IEEE,
2012.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., et al. Learning transferable visual models
from natural language supervision. In arXiv preprint
arXiv:2103.00020, 2021.

https://github.com/rom1504/clip-retrieval
https://github.com/rom1504/clip-retrieval

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do ima-
genet classifiers generalize to imagenet? In International
Conference on Machine Learning (ICML), 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M.,
and Aberman, K. Dreambooth: Fine tuning text-to-image
diffusion models for subject-driven generation. arXiv
preprint arXiv:2208.12242, 2022.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. In International Journal
of Computer Vision (IJCV), 2015.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gen-
eralization. In International Conference on Learning
Representations, 2020.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S.,
Lopes, R. G., et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. In
arXiv preprint arXiv:2210.08402, 2022.

Shu, M., Liu, C., Qiu, W., and Yuille, A. Identifying model
weakness with adversarial examiner. In AAAI Conference
on Artificial Intelligence (AAAI), 2020.

Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., and
Schmidt, L. Measuring robustness to natural distribu-
tion shifts in image classification. In Neural Information
Processing Systems (NeurIPS), 2020.

Wang, H., Ge, S., Xing, E. P., and Lipton, Z. C. Learn-
ing robust global representations by penalizing local pre-
dictive power. Neural Information Processing Systems
(NeurIPS), 2019.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Wiles, O., Albuquerque, I., and Gowal, S. Discovering bugs
in vision models using off-the-shelf image generation and
captioning. arXiv preprint arXiv:2208.08831, 2022.

Xiao, K., Engstrom, L., Ilyas, A., and Madry, A. Noise or
signal: The role of image backgrounds in object recogni-
tion. arXiv preprint arXiv:2006.09994, 2020.

Yuan, J., Pinto, F., Davies, A., Gupta, A., and Torr, P. Not
just pretty pictures: Text-to-image generators enable in-
terpretable interventions for robust representations. 2022.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

A. Setup Details
A.1. Textual Inversion

To learn each token, we run textual inversion with 3, 000 optimization steps. We use an adam optimizer wth a constant
learning rate schedule, a learning rate of 5e − 4, β1 = 0.9, β1 = 0.999, and weight decay 1e − 2. Our hyperparameters
follow the HuggingFace textual inversion script at:

https://github.com/huggingface/diffusers/tree/main/examples/textual inversion.

A.2. Scraping images from Bing and LAION

For the Bing engine baseline, we query Bing with natural language prompts. We leverage the scraping library bing-image-
downloader, and scrape the top 50 images per class.

For the LAION baseline, we query LAION with the clip retrieval tool (Beaumont, 2022) (see
https://rom1504.github.io/clip-retrieval/ for a Web UI). We scrape the top 50 images per class using CLIP VIT-H/14.

A.3. Setting CLIP Thresholds

Here we describe our procedure for setting thresholds our CLIP similarity metric when filtering.

To set the similarity threshold for the presence of the object in a generated image, we evaluate the similarity between the
embedding of cclass and every image of that class in the ImageNet validation set. We set then the threshold at the 20th

percentile of the CLIP similarities.

To set the similarity threshold for the presence of the distribution shift in a generated image, we first evaluate the CLIP
similarity between the embedding of cshift and every generated image in that distribution shift. For each of a fixed set of
percentile values, we visually inspect a small number of images with similarities around that percentile, and select as our
threshold the lowest percentile at which all inspected images exhibit the desired distribution shift.

A.4. User Study

We verify that our generated counterfactual examples for the ImageNet dataset contain the desired distribution shift and
the object of interest through a user study on the Amazon Mechanical Turn (MTurk) crowd-sourcing platform. Below we
describe the procedure of our study.

Procedure We send grids of 48 images to Amazon Mechanical Turk workers to label (pictured in Figure 10 and Figure 11).
Each grid contains a single label, and the workers are asked to label all the instances of this label. This label depends on the
task; for the ”label verification” task this label is an ImageNet label, and for the ”shift verification” this label is a distribution
shift. We send each grid to 5 workers to label. We then measure the selection frequency for every image in the grid: the
frequency at which workers selected the image as corresponding to the given label in the grid. We employ the selection
frequency as a proxy score for how likely it is for the label to truly correspond to a given image.

https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion
https://pypi.org/project/bing-image-downloader/
https://pypi.org/project/bing-image-downloader/
https://rom1504.github.io/clip-retrieval/

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

Figure 10. User study: label task. In this task we ask crowd-workers to verify that the generated images correspond to the desired label.

Figure 11. User study: distribution shift task. In this task we ask crowd-workers to verify that the generated images correspond to the
desired distribution shift.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

A.5. Evaluating Distribution Shift Robustness

We generate 50000 images in 23 different shifts, listed in Table 1 along with the threshold we use to filter each shift. We
evaluate the images on a sweep of image classification models obtained from the timm model repository (Wightman, 2019).
We list all models in the file models.txt provided with the code.

Applying our CLIP metrics to filter the images results in an uneven number of images per class. In fact, for some of our
more difficult shifts a class might have no images that pass the filter threshold. When calculating the accuracy of a model for
images in a given shift, we only consider classes with at least five images remaining after filtering. Among these classes we
measure the average per-class accuracy, and correspondingly measure the average per-class accuracy of the same classes
among the base generated images. The difference between these two numbers is the accuracy drop we record for that model.

In Table 1 we list each of the distribution shifts we include in our benchmark along with the base prompt that we use to
represent in-distribution samples. For each shift we list the full prompt that is input to Stable Diffusion, the CLIP threshold
we set for filtering the generated images of that shift, and the % yield for images remaining after filtering with both metrics
(for both presence of the desired distribution shift and object of interest).

Shift Name Prompt CLIP Threshold % Yield

base A photo of a <class> − 92.6%
“in the grass” A photo of a <class>in the grass 0.127 80.3%
“in the beach” A photo of a <class>in the beach 0.175 62.9%
“in the forest” A photo of a <class>in the forest 0.153 67.3%
“in the water” A photo of a <class>in the water 0.163 60.1%
“on the road” A photo of a <class>in the road 0.154 64.5%
“on the rocks” A photo of a <class>in the rocks 0.124 76.6%
“in the snow” A photo of a <class>in the snow 0.160 73.2%
“in the rain” A photo of a <class>in the rain 0.173 48.3%
“in the fog” A photo of a <class>in the fog 0.152 59.3%
“in bright sunlight” A photo of a <class>in bright sunlight 0.124 89.9%
“at dusk” A photo of a <class>at dusk 0.158 61.9%
“at night” A photo of a <class>at night 0.147 61.1%
“studio lighting” A photo of a <class>in studio lighting 0.140 66.6%
“blue” A photo of a blue <class> 0.163 59.1%
“green” A photo of a green <class> 0.190 51.3%
“red” A photo of a red <class> 0.167 59.6%
“yellow” A photo of a yellow <class> 0.212 43.3%
“orange” A photo of a orange <class> 0.216 41.0%
“person and a” A photo of a person and a <class> 0.181 29.9%
“and a flower” A photo of a <class>and a flower 0.148 61.9%
“oil painting” An oil panting of a <class> 0.214 67.2%
“pencil sketch” A black and white pencil sketch of a <class> 0.223 61.8%
“embroidery” An embroidery of a <class> 0.259 33.0%

Table 1. Full prompt, CLIP threshold for filtering, and % yield for each of the distribution shifts in our benchmark.

A.6. Public Release of the ImageNet* Benchmark

We publicly release the set of 1,000 learned tokens for ImageNet at ¡redacted¿, and we publicly release the our benchmark
consisting of 23 different distribution shifts at ¡redacted¿.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

B. Additional Results and Visualizations
Here we visualize additional experiments and examples extending upon the figures in the main paper. In Figure 12, we show
visualize further examples of classes for which there is a visual mismatch between images generated by Stable Diffusion
using the natural language prompts and images in ImageNet, as in Figure 12. In Figure 13, we show additional examples
of using our dataset interface for model debugging, and as in Figure 6 we compare our counterfactual examples to those
generated by prompting Stable Diffusion with natural language. In Figure 14, we take real images of plates with and without
food and either in the grass or indoors to confirm the debugging results from Section 5. In Figure 15, we extend upon the
visualizations in 7 and display additional samples of images from our distribution shift benchmark.

Im
ag

eN
et

Im
ag

eN
et

*
Cl

as
s

N
am

e

Radiator Grille PlateBeaker Coral Fungus

Figure 12. Additional examples of mismatch between prompting of Stable Diffusion using the class name and the ImageNet dataset. We
visualize real images from ImageNet (top), images generated using the class name in prompts (middle) and ImageNet∗ (bottom).

A photo of a 𝚂stage Acc: 94%
empty … with
no audience Acc: 34%A photo of a 𝚂plate Acc: 90% With blueberries… Acc: 24%

A photo of a stage Acc: 2% Acc: 2%
empty … with
no audienceA photo of a plate Acc: 5% Acc: 4%With blueberries…

ImageNet*

Prompting with
Class Name

Figure 13. Additional images generated by our dataset interface ImageNet∗ (top) and the corresponding images generated by prompting
Stable Diffusion with the class name (bottom), as well as the top predicted classes of an ImageNet-trained ResNet50. Using ImageNet∗,
we find that “plate with blueberries” and “empty stage with no audience” both lead to a large degradation in the classifier’s accuracy
compared to base generated images. On the other hand, the images generated by Stable Diffusion when prompted with the class name all
lead to low model performance regardless of the specified shift.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

tray

tray tray

tray

bucket bucket

plate

plate plate

plate

plate plate

Figure 14. Real images of plates, with and without food and either on a table or in the grass. Below each image is the predicted class by
an ImageNet-trained ResNet50.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation
Ba

ld
 E

ag
le

In the beach In the grass In the forest In the snow In the rain In the fog In bright sunlight At night Studio lighting Oil Painting Sketch With a flower

Sn
ai

l

Ge
rm

an
 S

he
ph

er
d

Ar
ct

ic
Fo

x

M
on

ar
ch

 B
ut

te
rfl

y

Ha
m

ps
te

r

Ba
ck

pa
ck

Br
oo

m

De
sk

Te
ap

ot

Pi
na

pp
le

Pi
zz

a

Figure 15. Additional examples of images generated with ImageNet∗ for a variety of distribution shifts. These images are a subset of the
benchmark described in Section 6.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

(a) CDF of CLIP similarity to captions cclass (left) and cshift (right)

Base Beach Blue Night Sketch Snow
0.0

0.2

0.4

0.6

0.8

Pa
ss

 R
at

e

ImageNet*
LAION
Bing

(b) Fraction of images passing the filters.

Figure 16. (a) CDFs of the CLIP similarity between the images and the captions cclass =”A photo of a <class>” and cshift =”A photo
of a <shift>”. (b) The fraction of images that pass the filters given the thresholds in Section TODO.

C. CLIP Metrics
In this section, we discuss how the filtering mechanisms discussed in Section 3.1 impact our generated dataset. Recall, that,
for a given counterfactual example that is supposed to exhibit a class with a certain shift, we measure the CLIP similarity
between the CLIP embedding of each generated image and the text embedding of the captions “a photo of a <class>”
(cclass) and “a photo <shift>” (cshift). We keep those that pass the threshold described in Appendix A.5.

In Figure 16a, we first plot the CDF of these CLIP scores for images scraped from Bing, ImageNet∗, and images retrieved
from via clip-retrieval with LAION for the shifts “at night”, “blue”, “in the beach”,“in the snow”, and “sketch” as
well as “base” images which do not correspond to a specific shift. We find that a higher proportion of ImageNet∗ and LAION
images have very high CLIP similarity to the corresponding captions than the Bing images. Note that clip-retrieval
on LAION specifically takes images via a KNN on CLIP distance, and is thus pre-disposed to perform well on this metric.

In Figure 16b, we further calculate the proportion of images from each source that pass the automatic filters with the
thresholds in Section A.5. In particular, ImageNet∗ has the highest yield rate, with the majority of images passing the filters.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

D. Experiments on Additional Datasets
In this section, we give qualitative results for applying our framework on two additional datasets, FGVC-Aircraft (Maji
et al., 2013) and Oxford-IIIT Pet (Parkhi et al., 2012). For each of these two datasets, we learn a token for each class, as for
ImageNet. Due to the fine-grained nature of the datasets and the possible confusion with specific labels (such as E-170, a
type of aircraft), we initialize the Textual Inversion process for each class with the same broader description (“pet” and

“airplane”).

In Figure 17 and 18, we visualize images generated using the learned tokens in a range of distribution shifts. Due to the
more specific nature of the datasets, we are able to exhibit shifts that would not apply meaningfully across all of classes of a
broader dataset such as ImageNet (e.g. “through the clouds” for FGVC-Aircraft, “sleeping” for Oxford-IIIT Pet).

77
7-

30
0

near the forestover the mountains in the snow on the tarmac at night over the ocean over the city through the clouds

C-
13

0

Ce
ss

na
 5

60

Ha
wk

 T
1

To
rn

ad
o

Figure 17. Examples of images generated with our learned tokens for the FGVC-Aircraft dataset in a variety of distribution shifts. These
examples are not filtered with the CLIP similarity metrics.

Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation

Ab
ys

sin
ia

n

At dusk In bright sunlight Studio lighting Wearing a bowtie Wearing a hat Blue On a bench Sleeping Standing up Running

Am
er

ica
n

Bu
lld

og

Ba
ss

et
 H

ou
nd

Ch
ih

ua
hu

a

Ne
wf

ou
nd

la
nd

Ra
gd

ol
l

Sa
m

oy
ed

Figure 18. Examples of images generated with our learned tokens for the Oxford-IIIT Pet dataset in a variety of distribution shifts. These
examples are not filtered with the CLIP similarity metrics.

