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Abstract
Machine Learning models have shown suscepti-
bility to various privacy attacks such as model
inversion. Current defense techniques are mostly
model-centric, which are computationally expen-
sive and often result in a significant privacy-
utility tradeoff. This paper proposes a novel
data-centric approach to mitigate model inver-
sion attacks which offers the unique advantage
of enabling each individual user to control their
data’s privacy risk. We introduce several privacy-
focused data augmentations which make it chal-
lenging for attackers to generate private target
samples. We provide theoretical analysis and eval-
uate our approach against state-of-the-art model
inversion attacks. Specifically, in standard face
recognition benchmarks, we reduce face recon-
struction success rates to ≤ 1%, while maintain-
ing high utility with only a 2% classification accu-
racy drop, significantly surpassing state-of-the-art
model-centric defenses. This is the first study
to propose a data-centric approach for mitigat-
ing model inversion attacks, showing promising
potential for decentralized privacy protection.

1. Introduction

Figure 1. Data-Centric Defense vs Model-Centric Defense.

Applications of Machine Learning (ML) have undergone
significant growth in recent years, showing promise across

1Virginia Tech, Blacksburg, VA. Correspondence to: Si Chen
<chensi@vt.edu>, Ruoxi Jia <ruoxijia@vt.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

diverse fields. However, ML models trained on sensitive
data risk leaking private information (Fredrikson et al., 2014;
Shokri et al., 2017). While some data contributors may
disregard data privacy, others, known as “privacy actives,”
place high importance on it, taking active measures includ-
ing changing service providers (Cisco, 2019). Legislation
such as the GDPR (Magdziarczyk, 2019) and the Califor-
nia Consumer Privacy Act (Pardau, 2018) also advocate for
individual data control.

Existing defenses (Abadi et al., 2016; Jia et al., 2019; Wang
et al., 2021; Yang et al., 2020) primarily adopt a model-
centric approach, altering model training (Abadi et al., 2016)
or inference procedures (Jia et al., 2019). These defenses,
however, necessitate users to trust the model trainer (such as
the companies that harvest their data) to implement privacy
safeguards, limiting users’ control over their privacy risk.
Moreover, these modifications often lead to performance
degradation and increased computation time.

This work develops the first data-centric defense for MI at-
tacks, outlining our technical contributions: 1) We propose
privacy-focused data augmentations that can be injected
by individual data contributors to mitigate their MI
risks. Our approach, DCD, protect against MI attacks by
shaping the loss landscape to mislead attacks and recover ir-
relevant samples; and requires no access to the victim model
or training data from other contributors. 2) We provide
theoretical justification for DCD. 3) We evaluate DCD
against various state-of-the-art MI attacks and demonstrate
the robustness of DCD across different datasets, model
architectures, and attack strategies. Remarkably, DCD
achieves a near-zero privacy-utility tradeoff.

2. Our Privacy-Focused Data Augmentations
Our approach introduces surrogate classes into the training
set, designing augmentations to misdirect MI attacks toward
recovering surrogate-class samples instead of target-class
samples. We explain this process using a specific target
class (ytgt) that has m training samples for protection. When
multiple target classes need protection, one can easily apply
the following process to each target class.

Surrogate Injection. We start by selecting an ”irrelevant”
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Figure 2. Illustration of curvature-controlled augmentations and
the resulting loss landscape.
surrogate class ysrg that doesn’t reveal sensitive information.
We gather m samples from this surrogate class and relabel
them as the target class. The model trained on this mixture
classifies both surrogate and target samples as the target
class, making MI attacks generate a mix of both.

Loss-Controlled Modification. We now design the curva-
ture to further induce MI attacks to preferentially generate
samples from the surrogate class over the target class. MI
attacks essentially resolve optimization problems, seeking
samples that result in the lowest loss when predicted as the
target class. To counteract this, our first strategy modifies
training data to slightly elevate the classification loss on the
target compared to the surrogate, increasing the likelihood
of detecting surrogate samples during MI optimization while
reducing the chance for target samples. We accomplish this
by randomly mislabeling a small fraction of target samples,
while leaving the surrogate samples’ labels unaltered.

Curvature-Controlled Injection. Leveraging the insight
from non-convex optimization theory (Bertsekas, 1997),
our second strategy manipulates the loss landscape’s curva-
ture, promoting a flatter curvature around surrogate samples
and a steeper one near target samples (illustrated by Fig-
ure 2). This approach biases the MI optimization towards
reconstructing surrogate samples. For surrogate samples,
we employ Gaussian augmentations in their neighborhood,
maintaining the same label. For target samples, we apply
Gaussian augmentations but mislabel a portion of the aug-
mented samples. We refer to the complete injection process
as DCD. We provide theoretical analysis in the full paper.

Table 1. Defense performance comparison against various MI at-
tacks, results given in %. ↑ and ↓ respectively symbolize that
higher and lower scores give better defense performance.

GMI PPA
TSRD→GTSRB FFHQ→CelebA

ACC↑ Att. ACC↓ ACC↑ Att. ACC↓
No Protection 98.34 76.13 88.42 90.40

DP 54.30 12.80 39.61 14.33
MID 67.70 54.53 69.54 52.33

DCD (Ours) 95.89 0.00 88.05 1.00

MIRROR-W MIRROR-B
FFHQ→VGGFace2 FFHQ→VGGFace2

ACC ↑ Att. ACC↓ ACC Att. ACC↓
No Protection 99.99 100.0 99.99 100.0

DP 56.25 54.69 56.25 50.00
MID 41.34 100.00 41.34 12.50

DCD (Ours) 96.88 0.00 96.88 0.00

3. Experimental Results
We assess the effectiveness of DCD against three white-box
MI attacks: GMI (Zhang et al., 2020), PPA (Struppek et al.,
2022), and MIRROR-W (An et al., 2022), and one most
recent black-box attack, MIRROR-B. We comapre DCD
with DP-SGD (Abadi et al., 2016) and MID (Wang et al.,
2021). For consistency, we randomly select multiple target
classes and average the results. As shown in Table 1, DCD
outperforms the baselines in both utility (classification accu-
racy ACC) and privacy (attack accuracy Att.ACC) metrics.
The unprotected models exhibit alarmingly high attack ac-
curacy, with GMI at 76%, PPA at 90%, and MIRROR at
100%. In contrast, DCD significantly reduces the attack
accuracy to 0% for both GMI and MIRROR attacks, and to
1% for PPA. Figure 3 shows that DCD successfully fools
MI into generating samples resembling the surrogate ones.
More visual results are provided in the full paper. A notable
advantage of DCD is its ability to balance privacy and util-
ity well. Unlike DP and MID, which exhibit a substantial
drop in classification accuracy, our method ensures high
classification accuracy, with a decrease of less than 3% on
the face datasets CelebA and VGGFace2. More evaluation
are provided in the full paper.

Figure 3. Visual comparison of MI recovered face samples with
different defenses. Each row shows reconstructions of the same
identity under different defenses, with true images on the left and
our surrogate injection on the right.

4. Conclusion
Our paper introduces the first user-empowered, data-centric
defense mechanism, DCD, for mitigating data privacy risks.
Supported by theoretical analysis and extensive evaluations,
DCD effectively counters model inversion attacks and sur-
passes model-centric baselines in utility and privacy. It
does, however, increase the number of samples in the tar-
get classes by a factor of 4, potentially alerting malicious
model trainers. Future work aims to obscure these injected
samples, thereby addressing this limitation.
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