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Abstract
Methods for carefully selecting or generating a
small set of training data to learn from, i.e., data
pruning, coreset selection, and data distillation,
have been shown to be effective in reducing the
ever-increasing cost of training neural networks.
Behind this success are rigorously designed strate-
gies for identifying informative training examples
out of large datasets. However, these strategies
come with additional computational costs asso-
ciated with subset selection or data distillation
before training begins, and furthermore, many are
shown to under-perform random sampling in high
data compression regimes. As such, many exist-
ing methods may not reduce ‘time-to-accuracy’,
which has become a critical efficiency measure of
training deep neural networks over large datasets.
In this work, we revisit a powerful yet overlooked
random sampling strategy to address these chal-
lenges and introduce an approach called Repeated
Sampling of Random Subsets (RSRS or RS2),
where we randomly sample the subset of train-
ing data for each epoch of model training. We test
RS2 against thirty state-of-the-art data pruning
and data distillation methods across four datasets
including ImageNet. Our results demonstrate that
RS2 significantly reduces time-to-accuracy com-
pared to existing techniques. For example, when
training on ImageNet, RS2 yields accuracy im-
provements up to 29% compared to competing
pruning methods while offering a runtime reduc-
tion of 7×. Beyond the above meta-study, we pro-
vide a convergence analysis for RS2 and discuss
its generalization capability. The primary goal
of our work is to establish RS2 as a competitive
baseline for future data selection or distillation
techniques aimed at efficient training.
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1. Introduction
Deep learning is continually achieving impressive results,
from image classification (He et al., 2016; Dosovitskiy et al.,
2020) to speech recognition (Chiu et al., 2018) and natural
language processing (Brown et al., 2020; Radford et al.,
2019; OpenAI, 2023). Much of this success can be attributed
to training large neural networks over datasets with millions
or billions of examples (Russakovsky et al., 2015; Gokaslan
& Cohen, 2019; Brown et al., 2020; Radford et al., 2021).
However, these network and dataset sizes lead to model
training that requires weeks or months and yields significant
monetary and computational costs (Mindermann et al., 2022;
Brown et al., 2020). Such costs nearly prohibit further
model refinement through hyperparameter search or neural
architecture search. As a result, there has been an arms
race to minimize the required training time to reach a given
accuracy, i.e., time-to-accuracy.

To reduce time-to-accuracy, recent works focus on decreas-
ing the amount of training data used for model learning
during each epoch. More specifically, given a large, labeled
dataset, these works aim to maximize end-model accuracy
and minimize runtime when training for multiple rounds,
where training within each round is performed only on a
small set of examples equal in size to a fraction r of the
full dataset. The set of examples used for training at each
round can be either chosen once before learning begins or
periodically recomputed between rounds based on model
updates (e.g., as in Mirzasoleiman et al. (2020); Killamsetty
et al. (2021b)). Existing methods in this framework span
two main categories: 1) data pruning methods which aim to
reduce time-to-accuracy by selecting a subset of the most
informative examples for training (Welling, 2009; Bachem
et al., 2015; Bateni et al., 2014; Chen et al., 2010; Killam-
setty et al., 2021b; Paul et al., 2021; Mirzasoleiman et al.,
2020; Sorscher et al., 2022); 2) dataset distillation methods
which aim to achieve the same by generating small sets of
synthetic examples that summarize training instances from
the full dataset (Wang et al., 2018; Yu et al., 2023). We
review data pruning and distillation methods in Section 2.
Briefly, these methods have demonstrated strong competi-
tiveness in minimizing the time-to-accuracy of learning and
influenced a large number of subsequent works, including
ours. However, several challenges persist in the pursuit of
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minimizing time-to-accuracy using these methods. One ma-
jor challenge lies in the time efficiency aspect, as there is a
notable overhead associated with subset selection. For ex-
ample, many methods require pretraining an auxiliary model
on the full dataset for a few epochs in order to select the
subset, a task which we find can take roughly 250 minutes
on ImageNet (Figure 3b) while training itself with r = 1
and 10% takes only 40 and 400 minutes respectively. Even
when efforts are made to address this issue, score-based
data pruning has fallen short in achieving high accuracy,
particularly in the high compression regime (small r) (Ayed
& Hayou, 2023), a practical regime enabling ML practi-
tioners to efficiently perform tasks such as hyperparameter
selection and architecture search.

With these challenges in mind, in this work, we revisit the
random sampling baseline for subset selection and intro-
duce an intuitive and powerful extension of this method for
optimizing the time-to-accuracy of learning. Random sam-
pling is widely accepted as a competitive baseline, particu-
larly for high compression regimes (Ayed & Hayou, 2023;
Sorscher et al., 2022), whose success lies in the ability to
select representative data examples for training, thus pre-
venting overfitting. Typically, a static subset of the complete
dataset is sampled once before the learning begins (Guo
et al., 2022; Park et al., 2022). However, we believe that
a better way to utilize this baseline is by repeatedly sam-
pling data instances at each epoch, as this allows the learner
to explore more previously unseen examples throughout
training. Random exploration has already proven advan-
tageous for data pruning methods, particularly in the high
compression regime (Ayed & Hayou, 2023), allowing them
to calibrate for distribution shift (caused by discarded exam-
ples). Moreover, adversarial training has also experienced
time-to-accuracy reduction with random exploration (Kauf-
mann et al., 2022). Surprisingly, however, this method has
yet to be studied or evaluated for standard training of deep
neural networks. Motivated by this gap, we introduce Re-
peated Sampling of Random Subsets (RSRS = RS2), where
we sample a subset uniformly at random for each training
epoch. The main contribution of this paper is an in-depth
analysis of RS2. We demonstrate that RS2 surpasses state-
of-the-art data pruning and distillation methods in accuracy
and runtime across a wide range of subset sizes. In addi-
tion, we show that it outperforms all prior methods in the
high compression regime, thus, posing a strong benchmark
to beat for minimizing time-to-accuracy. In Section 3, we
provide a detailed explanation of RS2, and in Section 4 we
discuss its convergence rate and generalization error.

We extensively evaluate the time-to-accuracy of RS2 and
compare it against twenty-two proposed data pruning and
eight data distillation methods from the literature (Section 5).
We find that RS2 outperforms existing methods with respect
to runtime and accuracy across varying subset selection sizes

and datasets, including CIFAR10, CIFAR100, ImageNet30,
and ImageNet itself. For example, when training a ResNet-
18 in the high-compression regime (with r = 10%) on Im-
ageNet, RS2 yields a model with 66% accuracy, 11 points
higher than the next-best method and only 3.5 points less
than training with the entire dataset every round. Yet, RS2
reaches this accuracy 9× faster than standard full-dataset
training. With r = 1%, RS2 still reaches 47% accuracy,
while the next-best method achieves only 18%. Finally, we
present an extension beyond supervised learning by evaluat-
ing RS2 for self-supervised pretraining of GPT2 (Radford
et al., 2019), a setting for which existing works have yet
to study. We find that RS2 can reduce training time by
3-10× while yielding models within 2 and 5 points of the
full-dataset accuracy and perplexity respectively.

2. Preliminaries
We first present a unified framework for the problem of re-
ducing time-to-accuracy by training on less data each epoch
and review existing data pruning and distillation methods.

Problem Statement Given a large, labeled dataset S =
{xi, yi}Ni=1, where each training example consists of an
input feature vector xi and a given ground truth label yi,
our goal is to minimize runtime and maximize accuracy
when training for X rounds, with the training of each round
performed on a set of examples S′ with size |S′| = r · |S|
for r ∈ (0, 1].

We highlight two important points: First, it is generally
assumed that X is chosen such that training proceeds for
the same number of rounds as when training on the full
dataset, otherwise the computational benefits are reduced
(e.g., r = 50% with X = 200 is the same amount of
computation as r = 100% with X = 100). Second, note
that the subset S′ may be static or vary across rounds. In
fact, some existing methods periodically recompute S′ be-
tween rounds (Mirzasoleiman et al., 2020; Killamsetty et al.,
2021b), while others do not (Sorscher et al., 2022). Given
the primary goal of minimizing time-to-accuracy, either
choice is valid so long as the time to generate the subset S′

at each round is included in the overall runtime.

Related Work To minimize time-to-accuracy, data prun-
ing methods attempt to find a subset (also called a core-
set) of informative examples S′ ⊂ S such that a model
trained on S′ achieves similar accuracy to a model trained
on S (Guo et al., 2022; Park et al., 2022). Numerous metrics
have been proposed to quantify importance: Uncertainty
based methods such as Least Confidence, Entropy, and Mar-
gin (Sachdeva et al., 2021) assume examples with lower
confidence will have higher impact on training. Loss and
error based methods operate on a similar principle. Forget-
ting Events (Toneva et al., 2018), GraNd, EL2N (Paul et al.,
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2021), and others (Bachem et al., 2015; Munteanu et al.,
2018; Dasgupta et al., 2019; Liu et al., 2021) are examples
of these methods. Other techniques for subset selection,
such as CRAIG (Mirzasoleiman et al., 2020) and Grad-
Match (Killamsetty et al., 2021a), focus on gradient match-
ing, where the goal is to construct a subset of examples such
that a weighted sum of the model gradients on the subset
matches the overall gradient on the full dataset. A different
class of methods focuses on feature geometry for data sub-
set selection. A number of geometry-based methods have
been proposed, such as Herding (Welling, 2009; Chen et al.,
2010), K-Center Greedy (Sener & Savarese, 2018), and
prototypes (Sorscher et al., 2022). Additional data pruning
algorithms attempt to find the training examples closest to
the decision boundary (e.g., Adversarial Deepfool (Ducoffe
& Precioso, 2018) and Contrastive Active Learning (Liu
et al., 2021)), pose subset selection as a bilevel optimization
problem (e.g., Retrieve (Killamsetty et al., 2021c) and Glis-
ter (Killamsetty et al., 2021b)), or connect subset selection
to maximization of a submodular function (e.g., GraphCut,
Facility Location, and Log Determinant (Iyer et al., 2021)).
Active learning methods (which aim to minimize labeling
cost by selecting an informative subset given a large unla-
beled dataset), can also be used in the presence of a labeled
dataset when the goal is to reduce time-to-accuracy. In fact,
active learning has been shown to outperform existing meth-
ods in this setting (Park et al., 2022). We refer the reader
to recent surveys (Guo et al., 2022) for more details on the
above methods and for comparisons between them.

In contrast to data pruning which assumes S′ to be a sub-
set of S, dataset distillation methods use S to generate a
small set of synthetic examples S′ that aims to summarize S.
Dataset distillation methods can be split into three groups:
1) Performance matching methods (Wang et al., 2018; Deng
& Russakovsky, 2022) aim to optimize the synthetic ex-
amples in S′ such that models trained on S′ achieve the
lowest loss on the original data S. 2) Parameter matching
techniques (Zhao et al., 2021; Lee et al., 2022; Kim et al.,
2022; Cazenavette et al., 2022) focus instead on matching
the parameters of a network trained on S′ with those of a net-
work trained on S by training both models for a number of
steps. 3) Finally, the distribution matching approach (Zhao
& Bilen, 2023) to dataset distillation attempts to obtain
synthetic examples in S′ such that the distribution of S′

matches the distribution of S. We refer the reader to (Yu
et al., 2023) for a detailed survey on dataset distillation.

3. RS2: Repeated Random Sampling for
Minimizing Time-to-Accuracy

We introduce the RS2 algorithm and discuss how it yields
efficient training by reducing the amount of training data
used at each round of model learning.

Repeated Sampling of Random Subsets (RS2) As dis-
cussed in Section 2, we assume access to a large, labeled
dataset S and aim to minimize runtime while maximizing
accuracy by training for X rounds. We define RS2 as follows:
Rather than traininng a model on the full dataset S for X
rounds (i.e., epochs), train the same model for X rounds
with the training of each round performed on a subset S′ (of
size |S′| = r · |S|) sampled randomly from S (Algorithm 1).
Training within a round proceeds exactly the same when
using S or S′, except that S′ has fewer examples (e.g., mini
batches). We next describe RS2 in more detail and discuss
two variants of the sampling strategy and the importance of
appropriate learning rate scheduling.

Algorithm 1 RS2 General Algorithm

Require: Dataset S = {xi, yi}Ni=1, selection ratio r ∈ (0, 1],
batch size b, initial model w0, X rounds

1: T ← ⌈N/b⌉
2: t← 1
3: for round j = 1 to X do
4: S′ ← randomly_sample_subset(S, r)
5: for k = 1 to r · T do
6: batch m← S′[(k − 1) · b : k · b]
7: wt ← train_on_batch(wt−1, m)
8: t← t+ 1
9: return wt

RS2 With Replacement The simplest version of RS2
samples S′ with replacement across rounds—sampling can
be stratified. This means that examples included in the
subset of previous rounds are replaced in S and eligible to
be resampled when constructing S′ for the current round,
i.e., S′ is always constructed by sampling uniformly from
all examples in S.

RS2 Without Replacement A second variant of RS2
samples S′ without replacement across rounds. That is,
examples in S that have been included in the subset during
previous rounds are not considered when sampling S′ for
the current round. This continues until all examples from
S have been included in S′ at some round, at which point
all examples are once again eligible for subset selection
and the process repeats. Observe that sampling S′ without
replacement across X rounds is equivalent to training on
the full dataset S for r ·X rounds (i.e., equivalent to early
stopping after r ·X rounds on the full dataset assuming the
same randomn seed).

RS2 Hyperparameters For both RS2 variants, we as-
sume that training proceeds using the same hyperparameters
(e.g., batch size, optimizer, etc.) as those used when train-
ing on the full dataset with one exception: the learning
rate schedule. The reason for this is that state-of-the-art
training procedures often slowly decay the learning rate
after each SGD step. We show in Figure 1 the common
cosine annealing learning rate schedule (Loshchilov & Hut-
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ter, 2016) used to train ResNets on CIFAR10. We include
a vertical line showing the point of early stopping when
running RS2 without replacement for r = 10%. Observe
that data pruning with RS2 (or any method) leads to fewer
SGD iterations (even when training for the same X rounds).
Thus, if the data pruning method uses the same learning rate
schedule as when training on the full dataset, the learning
rate may not decay to a sufficiently small value to achieve
high end-model accuracy. We refer to this setting as naive
early stopping. Instead, we train both RS2 variants with the
same kind of learning rate schedule as when training the full
dataset (e.g., cosine annealing), but we decay the learning
rate faster with the decay rate inversely proportional to the
subset size r (e.g., green line in Figure 1). This is standard
across existing data pruning methods (Guo et al., 2022).
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Figure 1: Learning rate schedules on CIFAR10 with and
without data pruning.

Naive early stopping results in worse accuracy than RS2
with the modified learning rate schedule. For example, on
CIFAR10 with r = 10%, the former achieves 83.9% accu-
racy while RS2 with replacement reaches 89.7% and RS2
without replacement (i.e., early stopping with faster learning
rate decay) reaches 91.7%. While we generally see RS2
without replacement outperform RS2 with replacement in
terms of accuracy, we do not claim that one variant is strictly
better in this paper. We refer the reader to existing works
which study this problem (Haochen & Sra, 2019; Lu et al.,
2022; De Sa, 2020).

4. Theoretical Analysis of RS2
With time-to-accuracy in mind, we now study the conver-
gence rate and generalization error of RS2.

RS2 Convergence Rate We show that RS2 without re-
placement, under the assumptions described in Appendix E,
converges at the same rate with respect to SGD iterations
as standard training on the full dataset. For the conver-
gence rate analysis, we assume train_on_batch(wt−1, m)
in Algorithm 1 uses Nesterov’s accelerated gradient de-
scent (Nesterov, 1983) as shown in Algorithm 2. Following
the analysis of recent works on the performance of acceler-
ated mini-batch SGD (Ghadimi & Lan, 2016), we have:

Corollary 4.1. Suppose the loss l(w) is nonconvex, has
β-Lipschitz continuous gradients, and is bounded be-
low. Let g(w, ξt) at step t represent the gradient esti-

mate used when updating the model as in Algorithm 2
in the Appendix. Assume the gradient estimate satisfies
E
[
||g(w, ξt)−∇l(w)||2

]
≤ σ2, and E[g(w, ξt)] = ∇l(w),

where ξt are random vectors whose distributions are sup-
ported on Ξt ∈ Rd. With the previous assumptions, using
a selection ratio r ∈ (0, 1] and mini batch of size b, RS2
produces an iterate w after X rounds, with rT batches per
round, such that:

E
[
||∇l(w)||2

]
≤ O

(
β(l(w0) − l(w∗))

r · T · X
+

σ
√

β(l(w0) − l(w∗))
√
b · r · T · X

)
.

(1)

We discuss the assumptions and prove Corollary 4.1 in Ap-
pendix E. We find that the convergence rate of RS2 com-
pared to the full dataset convergence rate (Ghadimi & Lan,
2016) has a scaling factor r in front of the total number of
iterates, while the bound remains consistent with respect
to all the other parameters; With r = 1 we recover the re-
sults from previous work (Ghadimi & Lan, 2016). When
r < 1 the gradient bound after X rounds increases com-
pared to training with the full dataset for X rounds, but this
is intuitive as each round contains fewer mini batches (rT
with r < 1 instead of T ). If RS2 with r < 1 is instead
allowed to train for more rounds, specifically Xnew = X

r ,
then both training RS2 for Xnew rounds and training on the
full dataset for X rounds result in the same number of mini-
batch iterations (TX). In this case, the gradient is bounded
by the same value, implying that RS2 and training on the
full dataset converge with respect to mini-batch iterations at
the same rate. Overall, Corollary 4.1 ties the convergence
behavior of RS2 directly to the amount of pruning r and to
training on the full dataset.

RS2 Generalization Error We now provide an upper
bound on the generalization error of RS2. Here, we relax
the update rule from Algorithm 1 to a standard gradient
update without momentum. Recall that as r decreases, RS2
results in a smaller total number of gradient steps after X
rounds compared to r = 1. While this may lead to an
increase in optimization error, the generalization error is
expected to be smaller than that of the full dataset sched-
ule (shorter training time gives a smaller generalization
error). This phenomenon has been characterized rigorously
in prior works (Hardt et al., 2016) for vanilla SGD with
batch size b = 1, however it does not directly apply to larger
mini batch sizes and general selection rules. As such, we
show an extension of known generalization error bounds
that also holds for RS2 with mini batch size b. Before we
proceed, we first introduce some notation for brevity. We
define the training dataset S ≜ (z1, z2, . . . , zN ), for which
zi ≜ (xi, yi) for i ∈ {1, . . . , n} and the (empirical) loss
l(w) ≜ 1

N

∑N
i=1 f(w, zi), where f : Rd × Z → R+. Let

z1, z2, . . . , zN , z be i.i.d random variables with respect to an
unknown distribution D. Then for any stochastic algorithm
A with input S, and output A(S), the generalization error
ϵgen is defined as the difference between the empirical and
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population loss (Hardt et al., 2016):

ϵgen(f,D, A) ≜ ES,A,z

[
f(A(S), z)

]
− ES,A

[ 1

N

N∑
i=1

f(A(S), zi)
]
.

(2)

We now proceed with an upper bound on the generaliza-
tion error of RS2. The next result follows from recent
work (Nikolakakis et al., 2023), and applies to RS2 with no
momentum and any batch size b.

Theorem 4.2 (Generalization error RS2, (Nikolakakis et al.,
2023) Theorem 8). Let the function f be nonconvex, Lf -
Lipschitz and βf -smooth. Then the generalization error
of the standard gradient RS2 algorithm with a decreasing
step-size ηt ≤ C/t (for C < 1/βf ), is bounded as:

|ϵgen(f,D,RS2)| ≤
1

N
· 2Ce

Cβf L
2
f (r · T · X)

Cβf ·

min
{
1 +

1

Cβf

, log(e · r · T · X)
}
. (3)

The proof of Theorem 4.2 follows from recent work (Niko-
lakakis et al., 2023) (Appendix F). Observe that, as above
for the convergence rate, when comparing the generaliza-
tion error of RS2 to that of the full dataset (Nikolakakis
et al., 2023), the dependence on all parameters remains the
same except that the number of iterates for RS2 is scaled
by r. The generalization error of RS2 relies on the fact that
the batch at each iteration is selected non-adaptively and in
a data-independent fashion. However, most data pruning
methods adopt data-dependent strategies, and deriving the
relationship between the generalization error of RS2 and that
of any arbitrary data-dependent method can be challenging.
A recent finding on the generalization of data-dependent
pruning, particularly for small r, shows data-dependency
may worsen the generalization (Ayed & Hayou, 2023) due
to the distribution shift caused by discarding a large number
of data examples during training, thus leading to inferior
performance compared to random sampling.

5. Evaluation
We evaluate RS2 on four common benchmarks for super-
vised learning and compare against existing data pruning
and distillation methods. We show that:

1. Across a wide range of pruning ratios, RS2 reaches
higher accuracy than all existing methods.

2. For a given pruning ratio, RS2 also trains the fastest, and
thus has the fastest time-to-accuracy.

3. In the presence of noisy labels, RS2 is the most robust
data pruning method; It achieves the highest end-model
accuracy and lowest relative drop in performance vs.
training on the clean dataset.

We also show that RS2 can extend beyond conventional su-
pervised learning and reduce the self-supervised pretraining
cost of GPT models with little model quality loss.

5.1. Experimental Setup

We first discuss the setup used in the experiments. More
details can be found in Appendix B.

Datasets, Models, and Metrics We benchmark RS2
against baseline methods using CIFAR10 (Krizhevsky
et al., 2009), CIFAR100 (Krizhevsky et al., 2009), Im-
ageNet30 (Hendrycks et al., 2019), and ImageNet (Rus-
sakovsky et al., 2015). We train ResNet models (He et al.,
2016) representative of modern state-of-the-art convolu-
tional neural networks. Beyond the standard supervised
setting, we also evaluate RS2 when training GPT2 (Radford
et al., 2019) on the OpenWebText dataset (Gokaslan & Co-
hen, 2019). In this setting, we measure zero-shot final word
accuracy on the LAMBADA dataset (Paperno et al., 2016)
and perplexity on LAMBADA and WikiText103 (Merity
et al., 2016). For all experiments we measure subset selec-
tion overhead, overall training time (including the total time
for subset selection across all rounds and the total training
time on selected subsets), and end-model accuracy.

Baselines We compare RS2 against 22 data pruning meth-
ods and eight data distillation methods from the literature. A
full list and their abbreviations can be found in Appendix B.
We include data pruning methods from different classes,
including uncertainty-based, loss-based, gradient matching,
and geometry-based methods. All baselines are used for the
smallest dataset (i.e., CIFAR10), but some methods do not
scale to larger datasets (e.g., ImageNet). We utilize existing
open source implementations and results of these methods
where applicable (Park et al., 2022; Guo et al., 2022) and
implement RS2 within the same code for equal compari-
son. We compare to existing methods which sample a static
subset once before learning begins, and to methods which
repeatedly sample the subset each epoch.

Training Details We use standard hyperparameters for
each dataset from prior works known to achieve high ac-
curacy. We use the same hyperparameters for all methods
where applicable (e.g., batch size, training rounds, etc.). Hy-
perparameters individual to each baseline are set based on
the best known values from prior works (Guo et al., 2022).
Full hyperparameter and experiment hardware details are
provided in Appendix B.

5.2. End-to-End Data Pruning Experiments

We discuss end-to-end comparisons of RS2 with data prun-
ing baselines on supervised learning benchmarks. Results
are shown in Figures 2-3 and Table 1.

Accuracy In Figure 2 we show the end-model accuracy
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Figure 2: Accuracy achieved by data pruning methods when training ResNet-18 on CIFAR10 and ImageNet. Repeated
Sampling of Random Subsets (RS2) outperforms existing methods.

of RS2 compared to existing methods on CIFAR10 and Im-
ageNet for varying selection ratios. We use the combined
baseline methods from recent studies (Guo et al., 2022; Park
et al., 2022) together with newer prototype-based data prun-
ing methods (Sorscher et al., 2022). We include the exact
accuracies for these Figures in Tables 5 and 6 in Appendix C.
Here, we follow the setting proposed by these works: for
all baselines we sample a static subset once before training
starts. The repeated sampling of RS2 leads to accuracy im-
provements of at least 7% in the high compression regime
(r ≤ 10%). For example, on CIFAR10 with 5% of the train-
ing data each epoch, RS2 achieves 87.1% accuracy while
the next closest baseline reaches just 65.7%. Similar results
hold on CIFAR100 and ImageNet30 (Appendix Table 7).
Figure 2b shows that RS2 also outperforms existing meth-
ods for the much larger ImageNet dataset. For example,
RS2 end-model accuracy with r = 1% is 46.96% while
the next closest baseline trains to only 18.1%. Moreover,
the end-model accuracy of RS2 is actually on par with the
training on the full dataset for non-trivial selection ratios
(e.g., r = 10%), offering a potential practical solution to
reduce the cost of training in some applications (e.g., neural
architecture search) (see also runtime reductions below).

Next, we extend baselines to also perform repeated sam-
pling. Our goal is to examine if the prior observations are
attributed only to the fact that RS2 performs repeated sam-
pling while the above baselines do not. To do so, we take all
baselines and where applicable modify them as follows: For
a given method M 1) if M computes a numerical example
importance for each training instance, we view these values
as a probability distribution over the examples and resample
subsets according to this distribution after each round (called
M -RS) and 2) if M computes example importance based
on model outputs or gradients, we recompute example im-
portance after each round using the current model and then
choose the most important examples as the subset for the
next round (called M -RC). Note that the latter set of meth-
ods (RC) are unlikely to be able to reduce training times, as
they require computing the model forward pass for every
example between each round, but we include their accuracy
for completeness. Results on CIFAR10 (for computational
considerations we do not run these methods on ImageNet)
are shown in Table 1. While updating the subset for exist-

Table 1: Accuracy achieved by data pruning methods with
per-round sampling when training ResNet-18 on CIFAR10.
The training subset is update for all methods after each
round, either by resampling from a static example impor-
tance distribution (RS, left) or by recomputing example
importance based on model updates (RC, right). Repeated
Sampling of Random Subsets (RS2) outperforms repeated
sampling based on example importance. Best method
bolded; Next best underlined.

Selection Ratio (r) 5% 10% 30%

Least Confidence-RS 67.6±5.1 83.4±4.9 93.7±0.4
Entropy-RS 85.2±0.9 89.8±0.4 94.4±0.3
Margin-RS 84.3±2.7 90.4±1.0 94.4±0.2
Forgetting-RS 81.9±3.1 88.3±2.4 94.0±0.1
GraNd-RS 86.2±2.1 90.1±0.9 94.5±0.1
CAL-RS 81.1±3.0 86.6±0.7 93.3±0.1
Craig-RS 86.7±0.8 89.8±0.2 94.3±0.1
SP-Easy-RS 84.0±4.3 88.4±0.1 93.6±0.3

CD-RC 75.2±2.2 83.1±0.7 87.5±0.2
Herding-RC 30.1±2.6 40.6±8.4 81.0±0.9
k-Center Greedy-RC 78.1±1.5 82.3±0.5 86.3±0.4
Least Confidence-RC 44.8±11.7 76.7±3.9 88.3±0.3
Entropy-RC 41.4±6.9 78.4±2.9 86.9±0.1
Margin-RC 79.7±1.4 82.8±1.4 86.8±0.2
Forgetting-RC 28.7±0.8 40.7±6.5 78.8±4.3
GraNd-RC 15.5±1.8 24.1±6.0 75.2±5.0
CAL-RC 66.7±1.7 74.5±0.8 84.8±0.4
Craig-RC 70.3±13.1 80.3±0.8 85.5±0.3
Glister-RC 72.5±0.6 81.4±0.7 86.6±0.5

RS2 w/o repl 87.1±0.8 91.7±0.5 94.3±0.2

ing methods each round improves their accuracy, RS2 still
reaches the highest end-model accuracy for r ≤ 10%. This
experiment highlights the importance of random sampling,
while the results above highlight the importance of repeated
sampling (e.g., Random vs RS2 in Figure 2).

Training Time We now study the training time of RS2
and existing methods on CIFAR10 and ImageNet. In par-
ticular, we focus on time-to-accuracy to quantify efficient
training. As runtime measurements have generally not been
reported in the literature, we train all methods from scratch
on NVIDIA 3090 GPUs for these experiments. We use all
baseline methods from Figure 2a and Figure 2b for each
dataset, respectively, which do not give GPU out-of-memory.
We show the time-to-accuracy on CIFAR10 in Figure 3a and
on ImageNet in Figure 3b using r = 10% for both datasets.
We report the total time for subset selection on CIFAR10 for
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all methods in Appendix Table 8 and for baselines which
utilize per-round sampling in Appendix Table 9. We also
include the time-to-accuracy measurements on CIFAR10
and ImageNet for different pruning ratios in Appendix C.

Figures 3a and 3b show that RS2 provides the fastest time-to-
accuracy when compared to previous data pruning methods.
Note that the repeated subset selection in RS2 leads to neg-
ligible overhead compared to training on a static random
subset (Figure 3) and to the total training time: For example,
the total subset selection time for RS2 on CIFAR10 with
r = 10% is less than one second, yet the total runtime is
750 seconds. Existing methods, however, are primarily lim-
ited by the fact that they require pretraining an auxiliary
model on the full dataset for a few epochs in order to rank
example importance. For example, on ImageNet the fastest
baseline begins training after 250 minutes, yet training itself
only requires 400 minutes. With r = 1%, the training time
drops to just 40 minutes; in this case the 250 minute over-
head implies the fastest baseline is over 7× slower than RS2
(250+40=290 vs 40). Even if the pretraining overhead is
amortized by fixing the subset for the remaining rounds, or
by resampling from the importance distribution after each
round, as in our ‘RS’ baseline methods in Table 1, the ini-
tial overhead of these methods is still orders of magnitude
higher than the total overhead of RS2 across all rounds (e.g.,
Table 8-9). Moreover, Figures 3a and 3b highlight the prac-
tical potential of RS2 to reduce the computational cost of
training high-accuracy models: For CIFAR10, RS2 reaches
91.7% accuracy 4.3× faster than standard training on the
full dataset, while for ImageNet, RS2 reaches 66% accuracy
9× faster than standard full dataset training.

Takeaway The above results show that RS2 outperforms
existing data pruning methods with respect to end-model
accuracy by up to 29%. RS2 also has the lowest subset
selection overhead resulting in the best time-to-accuracy
across small (CIFAR10) and large (ImageNet) datasets.

5.3. Comparison to Dataset Distillation

We also compare RS2 to dataset distillation methods which
generate subsets of synthetic examples. We show the accu-
racy of RS2 with respect to these baselines on CIFAR10,
CIFAR100, and Tiny ImageNet (rather than ImageNet30 or
ImageNet for computational reasons) in Table 2. For these
experiments, given the small selection ratios, we use no
data augmentation when training with RS2. We also use a
ConvNet rather than a ResNet to be consistent with existing
dataset distillation evaluations and because such methods
can be to computationally expensive to run on complex ar-
chitectures. While dataset distillation methods generally
outperform data pruning methods (e.g., in Table 2 a static
random subset on CIFAR10 with r = 1% reaches 43.4%
accuracy while data distillation methods reach up to 71.6%),

they have several drawbacks. First, subsets generated by
these methods are model specific, i.e., the subset must be
regenerated for every model one wishes to train. The most
prominent issue, however, is the computation required to
generate each subset. In fact, most methods are already
too expensive to run on Tiny ImageNet, even when gener-
ating only a few examples per class. The best performing
method, Trajectory Matching (TM), requires 133, 317, and
433 minutes to generate the subset with 50 images per class
on CIFAR10, CIFAR100, and Tiny ImageNet, respectively.
In comparison, RS2 requires just seven, 33, and 187 minutes
for end-to-end training in these settings. Yet RS2 outper-
forms TM with respect to end-model accuracy for eight
of the nine selection ratio/dataset combinations in Table 2.
In the extreme compression regime (r = 0.2%) on Tiny
ImageNet, RS2 outperforms TM by 14.7%.

5.4. Beyond Standard Supervised Learning Benchmarks

We now consider two extensions of RS2 beyond standard
supervised benchmarks: We examine 1) the robustness of
data pruning methods and RS2 against noisy labels and 2)
explore the benefits that RS2 can have on improving time-to-
accuracy when training generative pretrained transformers.

Robustness of RS2 We evaluate the robustness of data
pruning methods when the operate on a training dataset
with noisy labels. To do so, we randomly flip some percent-
age p of the labels in CIFAR10 and then run data pruning
methods with these labels. We evaluate on the regular test
set. Accuracy for RS2 and baseline methods when using
a selection ratio of r = 10% and varying noise ratios p
is shown in Appendix Table 4. For each method we re-
port end-model accuracy/raw accuracy drop compared to
p = 0/relative accuracy drop compared to p = 0 (as a per-
centage of the p = 0 accuracy). Just as for the results above
on the noiseless datasets, Table 4 shows that RS2 achieves
higher end-model accuracy in the presence of noisy labels
compared to existing data pruning methods. For example,
with 30% of the training examples mislabeled, RS2 without
replacement achieves 74.4% accuracy while the next closest
baseline—our modified per-round prototype-based method
(SP-Easy-RS)—achieves just 63.4%. Moreover, RS2 is gen-
erally the most robust method in that it suffers the lowest
relative drop in performance when presented with noisy la-
bels. We discuss these results in more detail in Appendix C.

RS2 for Language Model Pretraining One benefit of
RS2 is that it can be easily generalized to settings beyond
supervised learning. In this section, we use RS2 to reduce
the cost of pretraining a large GPT2 language model. We
extend RS2 to this setting as follows: we repeatedly sample
random subsets of text from the dataset and use this data for
next token prediction (the standard GPT2 pretraining task).
We train RS2 for r · 600k iterations for r = [0.1, 0.3] and
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Figure 3: Time-to-accuracy for RS2 vs. existing data pruning methods, a static random subset, and standard training on the
full dataset. We use a selection ratio of r = 10%. RS2 is both the fastest and highest accuracy data pruning method.

Table 2: Accuracy achieved by dataset distillation methods, RS2, and Random data pruning when training a ConvNet model.
We select the specified number of images per class (Img/Cls) corresponding to the given selection ratio on the full dataset.
Best method bolded. Next best underlined.

Img/Cls Ratio % Random Dataset Distillation Methods RS2 w/ repl Full DatasetDD LD DC DSA DM CAFE CAFE+DSA TM

CIFAR10
1 0.02 14.4±2.0 - 25.7±0.7 28.3±0.5 28.8±0.7 26.0±0.8 30.3±1.1 31.6±0.8 46.3±0.8 54.7±0.5

84.8±0.110 0.2 36.8±1.2 36.8±1.2 38.3±0.4 44.9±0.5 52.1±0.5 48.9±0.6 46.3±0.6 50.9±0.5 65.3±0.7 72.7±0.1
50 1 43.4±1.0 - 42.5±0.4 53.9±0.5 60.6±0.5 63.0±0.4 55.5±0.6 62.3±0.4 71.6±0.2 76.5±0.3

CIFAR100
1 0.2 4.2±0.3 - 11.5±0.4 12.8±0.3 13.9±0.3 11.4±0.3 12.9±0.3 14.0±0.3 24.3±0.3 37.4±0.4

56.2±0.310 2 14.6±0.5 - - 25.2±0.3 32.3±0.3 29.7±0.3 27.8±0.3 31.5±0.2 40.1±0.4 43.9±0.4
50 10 30.0±0.4 - - - 42.8±0.4 43.6±0.4 37.9±0.3 42.9±0.2 47.7±0.2 44.6±0.3

Tiny ImageNet
1 0.2 1.4±0.1 - - - - 3.9±0.2 - - 8.8±0.3 23.5±0.2

37.6±0.410 2 5.0±0.2 - - - - 12.9±0.4 - - 23.2±0.2 27.4±0.1
50 10 15.0±0.4 - - - - 24.1±0.3 - - 28.0±0.3 28.6±0.4

compare to training with the full dataset for 600k iterations
(recall the connection between RS2 and early stopping). We
also compare RS2 to random data pruning, i.e., training for
r · 600k iterations on a static fraction r of the full dataset
selected once before learning begins. We are not aware of
existing data pruning methods being evaluated in this setting
and present these results as an initial baseline.

Results of pretraining GPT2 on OpenWebText according to
different strategies are shown Table 3 in the Appendix. We
report accuracy (higher is better) and perplexity (lower is
better) on the LAMBADA (Paperno et al., 2016) benchmark
as well as perplexity on WikiText103 (Merity et al., 2016).
Observe that RS2 leads to better model quality but not cost
compared to a static random sample. Moreover, we see
that RS2 leads to near matching accuracy and perplexity
compared to training using the full dataset for r = 30%.
This result again highlights the practical potential of RS2
to enable faster and cheaper training, hyperparameter tun-
ing, or neural arcitecture search for large language model
pretraining, currently one of the most expensive and time
consuming training paradigms in machine learning.

6. Discussion and Conclusion
We end by discussing the limitations of RS2 before conclud-
ing and presenting future directions.

RS2 Limitations In this work, we focused on minimizing
time-to-accuracy when training over a large, labeled dataset.
When the full dataset is not labeled, or when the primary
metric of interest is not time-to-accuracy, RS2 may not

outperform existing methods. In particular, RS2 is likely
to be a weaker baseline when the goal is to minimize the
cost of labeling examples for training by selecting a subset
from a large, unlabeled dataset. We refer the reader to
active learning based methods (Park et al., 2022; Ren et al.,
2021) for this regime. The assumption of labels for the full
dataset is not unique to our work, however, as most recent
methods for reducing time-to-accuracy utilize the labels of
the full dataset S to create the subset S′ (Toneva et al., 2018;
Mirzasoleiman et al., 2020; Sachdeva et al., 2021; Paul et al.,
2021; Killamsetty et al., 2021a) for training.

Conclusion and Future Work Through extensive ex-
periments, we have shown that training on random sub-
sets repeatedly sampled (RS2) from a large dataset results
in reduced runtime and higher end-model accuracy when
compared to existing data pruning and distillation methods.
While the impressive performance of RS2 may provide a
practical solution for reducing time-to-accuracy, e.g., for
hyperparameter tuning or neural architecture search, we also
hope that our findings serve as a baseline for future research
to minimize time-to-accuracy through data subset selection.
Specifically, we are excited for future work focused on the
following question: How can we further close the gap be-
tween RS2 and training on the full dataset? Interesting sub
directions to answering this question include: 1) further
study of importance sampling-based methods for reducing
time-to-accuracy and 2) improving the subset training proce-
dure (independent of the method) to benefit the end-model
accuracy. The key issue with the latter is that training on
a subset results in fewer total SGD iterations when com-
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pared to training on the full dataset for the same number of
rounds. Can we overcome this limitation of data pruning
when training with SGD without eliminating the runtime
benefits? We encourage new research into these questions
to enable further reductions in time-to-accuracy.
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Appendix

A. A Motivating Experiment
We have shown in the main body of the paper that Repeated Sampling of Random Subsets (RS2) allows for faster training
and more accurate models when compared to existing data pruning and dataset distillation techniques. In this section, we
discuss a simple experiment that helped motivate our work.

Existing data pruning methods are primarily based on the intuition that a small subset S′ of ‘difficult’ (Toneva et al., 2018;
Paul et al., 2021) (or sometimes ‘easy’ (Sorscher et al., 2022)) examples contained in the full dataset S are close to (far
from) the decision boundary and thus likely to be the most informative for learning. During our initial investigation into
data pruning methods, we empirically studied this intuition. Calculating the distance between a training example and the
decision boundary, however, can be challenging because the decision boundary is not known until training completes, and
because the location of the decision boundary in high dimensional space can be computationally intensive to compute. Thus,
we consider the following proxy measurement: To decide whether a training example x is close to the decision boundary,
we find the nearest neighbor (e.g., L2 distance) from the full dataset and check whether it has the same label as x. If not,
then the decision boundary in the input feature space must be between the two points (i.e., they are ‘close’ to the boundary).

We evaluated the above proxy measurement for all examples in the CIFAR10 dataset to decide whether each one was close
to the decision boundary. Surprisingly, we found that the nearest neighbor for 65% of the training examples had a different
label than the example itself. In other words, in the raw feature space, this experiment provides some evidence that a majority
of examples may be needed for learning the final decision boundary. This observation motivates RS2 as a strong data pruning
baseline because it satisfies two desired properties: 1) it maximizes overall data coverage by periodically resampling the
subset and 2) it provides representative examples from the dataset without overfitting. We remark that a majority of points
are unlikely to be on the decision boundary if we first encode the input examples x into a more semantically meaningful
feature space. Learning such an encoding, however, requires first learning a decision boundary over the raw features and
must be done during the model training itself. We leave a detailed study of this experiment, and the implications of this
observation on selecting hard/easy examples for importance-sampling based data pruning to future work.

B. Additional Experimental Setup
We expand on the experimental setup described in Section 5.1 of the main body of the paper.

B.1. Data Pruning Baselines

We consider the following 22 data pruning baselines. We refer the reader to existing studies for more detailed descriptions
of these methods (Guo et al., 2022).

1. Random: standard baseline; sample a static random subset of the dataset once before training

2. Contextual Diversity (CD) (Agarwal et al., 2020)

3. Herding (Welling, 2009; Chen et al., 2010)

4. K-Center Greedy (Sener & Savarese, 2018)

5. Least Confidence (Sachdeva et al., 2021)

6. Entropy (Sachdeva et al., 2021)

7. Margin (Sachdeva et al., 2021)

8. Forgetting (Toneva et al., 2018)

9. GraNd (Paul et al., 2021)

10. Contrastive Active Learning (CAL) (Liu et al., 2021)

11. Craig (Mirzasoleiman et al., 2020)

12. GradMatch (Killamsetty et al., 2021a)

13. Glister (Killamsetty et al., 2021b)

14. Facility Location (FL) (Iyer et al., 2021)
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15. GraphCut (Iyer et al., 2021)

16. Active Learning with confidence-based example informativeness (AL (Conf)) (Park et al., 2022)

17. Active Learning with loss-based example informativeness (AL (LL)) (Park et al., 2022)

18. Active Learning with margin-based example informativeness (AL (Margin)) (Park et al., 2022)

19. Self-supervised prototypes with easy examples (SSP-Easy) (Sorscher et al., 2022)

20. Self-supervised prototypes with hard examples (SSP-Hard) (Sorscher et al., 2022)

21. Supervised prototypes with easy examples (SP-Easy) (Sorscher et al., 2022)

22. Supervised prototypes with hard examples (SP-Hard) (Sorscher et al., 2022)

B.2. Dataset Distillation Baselines

We compare against the following eight dataset distillation methods.

1. Dataset Distillation (DD) (Wang et al., 2018)

2. Flexible Dataset Distillation (LD) (Bohdal et al., 2020)

3. Dataset Condensation (DC) (Zhao et al., 2021)

4. Differentiable Siamese Augmentation (DSA) (Zhao & Bilen, 2021)

5. Distribution Matching (DM) (Zhao & Bilen, 2023)

6. Aligning Features (CAFE) (Wang et al., 2022)

7. Aligning Features + Differentiable Siamese Augmentation (CAFE+DSA) (Wang et al., 2022)

8. Trajectory Matching (TM) (Cazenavette et al., 2022)

B.3. Additional Training Details

For all experiments (except GPT2 due to cost considerations) we conduct three runs using different random seeds and report
the average accuracy and runtime. We include additional details on the hyperparameters and hardware used below.

Hyperparameters We use the following hyperparameters for our experiments: For CIFAR10 and CIFAR100 experiments,
we use SGD as the optimizer with batch size 128, initial learning rate 0.1, a cosine decay learning rate schedule, momentum
0.9, weight decay 0.0005, and 200 training epochs. For data augmentation, we apply random cropping and horizontal flipping
with four-pixel padding on the 32×32 training images. For ImageNet30 and ImageNet, we use the same hyerparameters
as above except for a larger batch size on ImageNet (256). We also use different data augmentation: training images are
randomly resized and cropped to 224×224 with random horizontal flipping. Further details can be found in the source code.

Hardware Setup We run image classification experiments on a university cluster with job isolation and NVIDIA RTX
3090 GPUs. We run GPT2 experiments using AWS P3 GPU instances with eight NVIDIA V100 GPUs (as GPT2 experiments
require more compute power). Utilizing the former allows us to reduce the cost of our experiments (e.g., compared to training
entirely using AWS), but introduces the potential for increased variance compared to training with completely dedicated
hardware—Even though all experiments run with exclusive access to one GPU and a set of CPU cores, cluster load can
influence runtime measurements. We observe small variance across multiple runs of the same experiment on small datasets
(e.g., on CIFAR10 the three run standard deviation is generally less than one percent of the total runtime), but larger variance
on ImageNet, likely do to an increased load on the shared file system and longer experiment runtimes. As such, we calculate
the runtime of each method on ImageNet as follows: We calculate the minimum time per mini-batch using all runs across all
methods, and then use this value to compute individual method runtimes by multiplying by the total number of batches during
training and adding any necessary overheads for subset selection. More specifically, we have: the total runtime of any method
Ttotal = Ttotal_subset_selection + Ttotal_training_time with Ttotal_training_time = Tglobal_minimum_batch_runtime × total_number_of_batches.
Note that this means runtimes differ only due to subset selection overhead as expected (once a subset has been selected, all
methods train on the same number of examples per round using the same hardware, and thus should have the same per round
training time). Furthermore, we calculate Ttotal_subset_selection as the minimum subset selection time observed across three runs
of each method. The above runtime calculation allows us to minimize the affect of cluster noise on our experiments and
ensure a fair comparison for the ImageNet time-to-accuracy reported in the paper.
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Table 3: Zero-shot results of GPT2 pretrained using RS2, a static random subset, and the full dataset. We report accuracy
(ACC; higher is better) and perplexity (PPL; lower is better).

Method Selection Ratio (r) 2023 AWS Task
Training Cost LAMBADA (ACC ↑) LAMBADA (PPL ↓) WikiText103 (PPL ↓)

Random 10% $520 43.37 45.02 53.36
Random 30% $1,560 44.63 41.99 46.44

RS2 w/ repl 10% $520 44.42 41.67 45.72
RS2 w/ repl 30% $1,560 45.29 40.51 42.58

Full Dataset - $5,200 46.61 40.30 40.55

Table 4: Accuracy achieved by different data pruning methods when training ResNet-18 on the CIFAR10 dataset with p
percent of the train set labels randomly flipped (noise ratio). Data pruning methods use a selection ratio of 10%. We test on
the normal test set. We report raw end-model accuracy/accuracy drop compared to p = 0/relative accuracy drop compared
to p = 0 (as a percentage of the p = 0 accuracy). Best method (highest accuracy) bolded; Next best underlined. Most robust
method (lowest relative accuracy drop) starred.

Noise Ratio 10% 30% 50%

Random 50.7±1.0/27.7/35.4 40.9±2.3/37.5/47.8 37.2±1.1/41.2/52.6
CD 31.2±3.9/27.6/47.0 30.3±0.6/28.5/48.4 29.7±2.9/29.1/49.5

Herding 15.9±2.2/47.6/74.9 17.1±1.1/46.4/73.1 16.1±1.8/47.4/74.7
K-Center Greedy 41.6±1.7/33.6/44.6 33.1±0.7/42.1/56.0 31.1±0.4/44.1/58.6
Least Confidence 27.4±0.7/30.2/52.4 25.2±2.1/32.4/56.2 24.5±2.6/33.1/57.5

Entropy 26.9±4.2/30.7/53.2 24.9±3.7/32.7/56.8 23.3±2.0/34.3/59.5
Margin 29.2±2.2/44.0/60.1 27.4±2.2/45.8/62.6 28.5±3.3/44.7/61.0

Forgetting 47.5±1.6/31.5/39.9 48.3±1.7/30.7/38.9 49.0±1.6/30.0/37.9
GraNd 34.5±3.2/40.9/54.3 49.4±5.6/26.0/34.5 60.0±1.3/15.4/20.4∗

CAL 45.4±2.5/26.4/36.8 39.9±1.2/31.9/44.4 35.5±0.4/36.3/50.5
Craig 50.3±0.7/9.9/16.5 39.5±0.8/20.7/34.4 37.3±1.5/22.9/38.0
Glister 49.8±2.5/25.9/34.2 40.1±1.5/35.6/47.1 37.9±1.5/37.8/50.0

GraphCut 50.6±1.4/23.4/31.7 42.0±0.7/32.0/43.2 37.7±1.1/36.3/49.0
FL 50.4±2.1/24.3/32.5 41.6±0.8/33.1/44.3 36.8±0.7/37.9/50.7

AL (Conf) 53.5±3.1/30.1/36.0 47.1±0.9/36.5/43.7 37.2±1.4/46.4/55.5
AL (LL) 57.1±0.4/27.9/32.8 45.1±1.8/39.9/46.9 38.2±0.6/46.8/55.1

AL (Margin) 57.6±0.5/26.9/31.8 46.1±1.2/38.4/45.4 36.9±1.0/47.6/56.3
SSP-Easy 51.1±1.5/20.9/29.0 40.7±1.9/31.3/43.4 36.7±1.0/35.3/49.1
SSP-Hard 50.4±0.3/23.9/32.2 40.9±1.5/33.4/44.9 36.3±1.9/38.0/51.2
SP-Easy 48.4±2.4/23.9/33.0 40.0±0.4/32.3/44.6 37.7±1.0/34.6/47.8
SP-Hard 47.5±2.4/26.6/35.9 39.7±1.3/34.4/46.4 34.3±2.0/39.8/53.7

SP-Easy-RS 74.2±0.6/14.2/16.0 63.4±1.0/25.0/28.3 57.8±0.7/30.6/34.7

RS2 w/ repl 77.5±1.0/12.2/13.6∗ 69.9±0.4/19.8/22.1 64.6±1.5/25.1/28.0
RS2 w/ repl (stratified) 76.1±0.5/13.7/15.3 68.7±0.6/21.1/23.5 65.0±1.4/24.8/27.7

RS2 w/o repl 78.7±0.8/13.0/14.1 74.4±0.6/17.3/18.9∗ 69.0±0.9/22.7/24.8

C. Additional Experimental Results
Here we include additional evaluation result comparing Repeated Sampling of Random Subsets (RS2) to existing data
pruning and dataset distillation methods. These results extend those presented in Section 5 of the main paper. We briefly
discuss each result (table) in turn and how it connects to the arguments made in Section 5.

First, in Table 3 we show the results of pretraining GPT2 on OpenWebText according to different data pruning strategies.
Observe that RS2 leads to better model quality but not cost compared to training with a static random sample of the full
dataset. Moreover, training with RS2 also leads to end-model quality comparable to training on the full dataset when using a
selection ratio r = 30%. See Section 5.4 for more details and discussion.

In Table 4 we show the robustness of RS2 and existing data pruning methods against noisy labels. We include existing
methods which sample static subsets, as well as our modified version of the recent prototype-based data pruning method
which utilizes repeated subset selection between each round (SP-Easy-RS) (see Section 5.2). As discussed in Section 5.4 in
the main paper, we evaluate the robustness of data pruning methods as follows: We randomly flip some percentage p of the
labels in CIFAR10 and then run data pruning methods with these labels. We use a subset selection ratio r = 10% for all
methods and evaluate on the regular test set. For each method we report end-model accuracy/raw accuracy drop compared to
p = 0/relative accuracy drop compared to p = 0 (as a percentage of the p = 0 accuracy). Table 4 shows that RS2 achieves
higher end-model accuracy than existing data pruning methods in the presence of noisy labels. RS2 is also the most robust
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Table 5: Accuracy achieved by different data pruning methods when training ResNet-18 on CIFAR10 for different subset
selection sizes. Best method bolded; Next best underlined.

Selection Ratio (r) 1% 5% 10% 20% 30% 40% 50% 100%

Random 36.7±1.7 64.5±1.1 78.4±0.9 88.1±0.5 91.0±0.3 91.9±0.2 93.2±0.3 95.5±0.2
CD 23.6±1.9 38.1±2.2 58.8±2.0 81.3±2.5 90.8±0.5 93.3±0.4 94.3±0.2 95.5±0.2

Herding 34.8±3.3 51.0±3.1 63.5±3.4 74.1±2.5 80.1±2.2 85.2±0.9 88.0±1.1 95.5±0.2
K-Center Greedy 31.1±1.2 51.4±2.1 75.2±1.7 87.3±1.0 91.2±0.6 92.2±0.5 93.8±0.5 95.5±0.2
Least Confidence 19.8±2.2 36.2±1.9 57.6±3.1 81.9±2.2 90.3±0.4 93.1±0.5 94.5±0.1 95.5±0.2

Entropy 21.1±1.3 35.3±3.0 57.6±2.8 81.9±0.4 89.8±1.6 93.2±0.2 94.4±0.3 95.5±0.2
Margin 28.2±1.0 43.4±3.3 73.2±1.3 85.5±0.9 91.3±0.5 93.6±0.3 94.5±0.2 95.5±0.2

Forgetting 35.2±1.6 52.1±2.2 79.0±1.0 89.8±0.9 92.3±0.4 93.6±0.4 93.8±0.3 95.5±0.2
GraNd 26.7±1.3 39.8±2.3 75.4±1.2 88.6±0.6 92.4±0.4 93.3±0.5 94.2±0.4 95.5±0.2
CAL 37.8±2.0 60.0±1.4 71.8±1.0 80.9±1.1 86.0±1.9 87.5±0.8 89.4±0.6 95.5±0.2
Craig 31.7±1.1 45.2±2.9 60.2±4.4 79.6±3.1 88.4±0.5 90.8±1.4 93.3±0.6 95.5±0.2

GradMatch 30.8±1.0 47.2±0.7 61.5±2.4 79.9±2.6 87.4±2.0 90.4±1.5 92.9±0.6 95.5±0.2
Glister 32.9±2.4 50.7±1.5 75.7±1.0 86.3±0.9 90.1±0.7 91.5±0.5 93.3±0.6 95.5±0.2

FL 38.9±1.4 60.8±2.5 74.7±1.3 85.6±1.9 91.4±0.4 93.2±0.3 93.9±0.2 95.5±0.2
GraphCut 42.8±1.3 65.7±1.2 74.0±1.5 86.3±0.9 90.2±0.5 91.5±0.4 93.8±0.5 95.5±0.2
AL (Conf) 35.2±1.5 60.6±3.1 83.6±0.7 90.5±0.4 93.8±0.4 94.8±0.3 95.1±0.3 95.5±0.2
AL (LL) 37.5±4.3 63.1±2.0 85.0±0.9 91.2±0.7 93.8±0.6 94.4±0.5 95.0±0.4 95.5±0.2

AL (Margin) 36.7±0.8 62.2±1.1 84.5±0.7 91.0±0.5 93.9±0.4 94.5±0.3 95.3±0.2 95.5±0.2
SSP-Easy 35.6±1.7 62.1±1.2 72.0±0.8 85.9±0.4 90.0±0.2 91.5±0.4 92.7±0.0 95.5±0.2
SSP-Hard 34.2±1.1 58.0±2.4 74.3±1.7 86.1±1.3 90.3±0.4 91.9±0.3 93.3±0.2 95.5±0.2
SP-Easy 37.1±1.4 59.8±0.5 72.3±2.9 85.1±1.0 89.6±0.2 91.6±0.2 92.7±0.2 95.5±0.2
SP-Hard 35.0±0.7 60.9±1.8 74.1±1.1 86.3±0.3 89.8±0.6 91.5±0.3 93.0±0.3 95.5±0.2

RS2 w/ repl 51.1±3.5 86.7±0.8 89.7±0.2 93.5±0.3 94.2±0.1 94.6±0.2 95.1±0.2 95.5±0.2
RS2 w/ repl (stratified) 51.1±4.5 86.6±0.5 89.8±0.4 93.4±0.1 94.5±0.1 94.8±0.1 95.1±0.3 95.5±0.2

RS2 w/o repl 51.8±2.0 87.1±0.8 91.7±0.5 94.0±0.5 94.3±0.2 94.7±0.1 95.2±0.1 95.5±0.2

method (lowest relative accuracy drop) when the noise ratio is 10% and 30%. Interestingly, the GraNd baseline actually gets
better as the noise ratio increases. While surprising, the overall end-model quality of GraNd is still limited, however, as the
GraNd accuracy begins to decrease again as the noise increases beyond 50% and all noise ratios result in lower accuracy
than training on clean data. We leave a detailed study of these observations and robust data pruning methods for future work.

In Tables 5-6 we show the end-model accuracy of RS2 and existing data pruning methods for varying selection ratios on
CIFAR10 and ImageNet respectively. The numbers in these tables were used to create Figure 2 in the main body of the paper.
Recall from the discussion of Figure 2 in Section 5.2 that we use the combined baseline methods from recent studies (Park
et al., 2022; Guo et al., 2022) together with newer prototype-based data pruning methods (Sorscher et al., 2022). Recall
also that for these tables, we use the setting proposed by these works: for all baselines, we sample a static subset once
before training starts. We use all baseline methods for CIFAR10, but some methods do not scale to the larger ImageNet
dataset. We show in Table 8 that active learning already takes more than eight hours for subset selection in some settings on
CIFAR10 and we are not aware of a scalable implementation of prototype-based methods that would allow for training on
ImageNet. As in Figure 2, Tables 5-6 show that the repeated sampling of RS2 leads to accuracy improvements compared
to existing data pruning methods which sample a static subset (see discussion in Section 5.2). Interestingly, while RS2
generally outperforms existing methods in the high compression regime (r ≤ 10%), for extreme compression ratios, like
r = 0.1% on ImageNet, we find RS2 to be inferior to existing methods. We hypothesize that this occurs because in these
extreme regimes, only a few examples are shown to the model for each class and these examples likely have large variance
when using repeated random sampling coupled with data augmentation. In this setting, it may be best to select a static subset
of only the easiest examples as highlighted in recent work (Sorscher et al., 2022), however the significance of this regime is
debatable given the low end-model accuracy of all methods. Improving the performance in these regimes is of interest for
future work.

In Table 7, we include additional end-model accuracy results for RS2 and existing data pruning methods on two datasets,
CIFAR100 and ImageNet30, not included in the main paper due to space considerations. For these experiments, we include
a representative set of baseline methods which sample static subsets, together with our modified version of the recent
prototype-based data pruning method which utilizes repeated subset selection between each round (SP-Easy-RS) (see
Section 5.2). Thus, Table 7 extends the end-model accuracy results presented previously for CIFAR10 and ImageNet in
Figure 2 and Tables 1, 5, and 6. Observe that RS2 also outperforms existing methods on these datasets. For example, in
the high compression regime (r = 10%), RS2 without replacement reaches 73% accuracy on CIFAR100, while the best
baseline method, our per-round prototype-based data pruning method reaches only 66%. Existing methods which sample
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Table 6: Accuracy achieved by different data pruning methods when training ResNet-18 on ImageNet for different subset
selection sizes. Repeatedly Sampling Random Subsets (RS2) considerably outperforms existing methods for realistic
selection ratios. Best method bolded; Next best underlined.

Select Ratio (r) 0.1% 0.5% 1% 5% 10% 30% 100%

Random 0.76±0.01 3.78±0.14 8.85±0.46 40.09±0.21 52.1±0.22 64.11±0.05 69.52±0.45
CD 0.76±0.01 1.18±0.06 2.16±0.18 25.82±2.02 43.84±0.12 62.13±0.45 69.52±0.45

Herding 0.34±0.01 1.7±0.13 4.17±0.26 17.41±0.34 28.06±0.05 48.58±0.49 69.52±0.45
K-Center Greedy 0.76±0.01 1.57±0.09 2.96±0.24 27.36±0.08 44.84±1.03 62.12±0.46 69.52±0.45
Least Confidence 0.29±0.04 1.03±0.25 2.05±0.38 27.05±3.25 44.47±1.42 61.8±0.33 69.52±0.45

Entropy 0.31±0.02 1.01±0.17 2.26±0.3 28.21±2.83 44.68±1.54 61.82±0.31 69.52±0.45
Margin 0.47±0.02 1.99±0.29 4.73±0.64 35.99±1.67 50.29±0.92 63.62±0.15 69.52±0.45

Forgetting 0.76±0.01 4.69±0.17 14.02±0.13 47.64±0.03 55.12±0.13 62.49±0.11 69.52±0.45
GraNd 1.04±0.04 7.02±0.05 18.1±0.22 43.53±0.19 49.92±0.21 57.98±0.17 69.52±0.45
CAL 1.29±0.09 7.5±0.26 15.94±1.3 38.32±0.78 46.49±0.29 58.31±0.32 69.52±0.45
Craig 1.13±0.08 5.44±0.52 9.4±1.69 32.3±1.24 38.77±0.56 44.89±3.72 69.52±0.45

GradMatch 0.93±0.04 5.2±0.22 12.28±0.49 40.16±2.28 45.91±1.73 52.69±2.16 69.52±0.45
Glister 0.98±0.06 5.91±0.42 14.87±0.14 44.95±0.28 52.04±1.18 60.26±0.28 69.52±0.45

FL 1.23±0.03 5.78±0.08 12.72±0.21 40.85±1.25 51.05±0.59 63.14±0.03 69.52±0.45
GraphCut 1.21±0.09 7.66±0.43 16.43±0.53 42.23±0.6 50.53±0.42 63.22±0.26 69.52±0.45

RS2 w/ repl 0.17±0.03 16.35±0.56 44.45±0.07 45.4±7.18 64.87±0.10 68.23±0.07 69.52±0.45
RS2 w/ repl (stratified) 0.18±0.02 33.66±0.13 46.96±0.13 62.32±0.08 64.92±0.10 68.24±0.08 69.52±0.45

RS2 w/o repl 0.19±0.02 18.2±0.35 44.42±0.04 63.2±0.07 66.0±0.18 68.19±0.06 69.52±0.45

static subsets only once before training begins reach just 36% in this setting.

We now focus on additional results to accompany the runtime and time-to-accuracy results presented in the main body of the
paper. Specifically, in Table 8, we show the total time needed for subset selection on CIFAR10 across all rounds for RS2 and
compare to the total time needed for subset selection for existing data pruning methods which sample a static subset once
before learning begins. In Table 9 we show the same measurement for our baseline methods which utilize repeated sampling
between each round. Note that the differences presented in these tables are the dominant factor leading to differences in
end-to-end runtime between methods: Once a subset has been selected for training at each round, all methods train on the
same number of examples, and thus have the same per-round training time (assuming there is no noise). Thus the method
with the lowest subset selection overhead will also be the fastest method for end-to-end training.

Table 8 shows that sampling a static random subset once before training leads to the lowest total subset selection time,
but that repeated random sampling (RS2) also has low subset selection overhead, i.e., generally less than one second on
CIFAR10. The subset selection overhead of RS2 is orders-of-magnitude less than existing methods, even though they sample
the subset only once at the beginning of training. For example, most existing methods require over 200 seconds for subset
selection because they require pretraining an auxiliary model on the full dataset for a few epochs in order to rank example
importance. Some methods, however, require even more time for subset selection; Active Learning based methods can
require more than 32,000 seconds to select a subset with r = 50%. Once example importance has been calculated, Table 9
shows that this information can be used to resample the subset for training between each round (our -RS baseline methods,
see Section 5.2) with little additional overhead. All such methods, however, still require orders of magnitude more time
for subset selection compared to RS2 due to the initial pretraining1. On the other hand, recomputing the most important
examples between each round (our -RC methods), leads to increased subset selection overhead. The reason for this is that
reranking example importance requires computing the model forward pass for all training examples between each round.
Thus, such methods generally are unable to significantly reduce the end-to-end runtime compared to simply training on the
full dataset each round; Even with a selection ratio of 5%, the fastest -RC method requires more than 3500 seconds for
subset selection, yet end-to-end training, each round on the full dataset, requires only 4500 seconds.

Finally, as our primary focus is on reducing time-to-accuracy, we include in Tables 10-14 the time for select baseline
methods and RS2 to reach a set of accuracy targets when training with varying pruning ratios on CIFAR10 and ImageNet.
For the active learning time-to-accuracy results in these tables, we report the runtime of the smallest selection ratio that
reached the given accuracy. This prevents active learning time-to-accuracies from being dominated by large subset selection
overheads as the selection ratio increases (e.g., Table 8), when these selection ratios are not strictly needed to reach the

1We note that the pretraining overhead of GraNd in Table 8 uses the default hyperparameters from (Guo et al., 2022) in which the
results from 10 pretrained auxiliary models are averaged, but for GraNd-RS in Table 9 we use only one model for consistency across all
-RS methods.
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Table 7: Accuracy achieved by select data pruning methods when training ResNet-18 on CIFAR100 and ImageNet30. Best
method bolded; Next best underlined.

Dataset Select Ratio (r) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CIFAR100

Random 32.0±0.9 53.6±0.6 63.6±0.5 67.2±0.5 71.0±0.3 73.1±0.4 75.2±0.2 76.1±0.3 77.5±0.2 78.7±0.2
K-Center Greedy 33.9±1.5 56.2±0.9 64.5±0.6 69.8±0.4 72.1±0.5 74.3±0.4 75.8±0.3 77.2±0.2 77.8±0.2 78.7±0.2

Margin 18.7±2.1 38.2±1.6 58.1±0.8 65.1±0.6 70.1±0.5 73.3±0.3 75.4±0.3 76.9±0.4 78.5±0.2 78.7±0.2
Forgetting 35.4±1.0 54.7±0.9 64.6±0.7 68.6±0.8 71.5±0.4 73.7±0.5 75.5±0.3 76.1±0.3 76.9±0.3 78.7±0.2

GraNd 30.8±1.9 49.4±1.0 62.8±0.9 68.1±0.6 70.5±0.3 72.5±0.4 74.5±0.3 76.4±0.2 77.8±0.2 78.7±0.2
Glister 36.4±1.0 55.5±1.0 63.9±0.8 69.1±0.7 71.2±0.6 73.5±0.4 75.0±0.3 76.9±0.2 77.6±0.2 78.7±0.2

GraphCut 36.3±1.1 56.0±0.8 65.5±0.6 69.5±0.4 71.1±0.4 73.8±0.4 75.4±0.2 76.4±0.2 78.0±0.2 78.7±0.2
AL (Conf) 36.1±1.6 55.7±1.0 65.8±0.7 70.6±0.5 73.7±0.4 76.1±0.5 77.1±0.3 78.0±0.2 78.4±0.2 78.7±0.2
AL (LL) 33.1±1.9 55.3±1.3 64.9±0.8 70.3±0.7 73.1±0.5 75.9±0.5 77.0±0.3 78.2±0.3 78.5±0.2 78.7±0.2

AL (Margin) 36.0±1.0 57.3±0.5 66.0±0.6 70.4±0.5 73.6±0.5 76.1±0.4 77.2±0.3 78.2±0.3 78.5±0.2 78.7±0.2
SSP-Easy 32.8±2.0 50.0±1.5 62.5±1.5 67.9±0.3 70.2±0.2 73.4±0.3 75.0±0.7 76.3±0.6 77.4±0.1 78.7±0.2
SSP-Hard 29.7±1.5 53.3±0.6 63.2±0.5 67.8±0.2 71.3±0.2 72.9±0.2 74.8±0.1 75.9±0.8 77.1±0.2 78.7±0.2
SP-Easy 33.6±0.9 53.0±2.0 63.0±1.0 67.4±1.0 70.5±0.3 73.3±0.2 74.9±0.2 76.3±0.6 76.9±0.3 78.7±0.2
SP-Hard 31.2±2.7 53.6±0.4 63.0±0.6 68.0±0.8 71.1±0.3 73.0±0.4 74.6±0.8 75.8±0.9 77.4±0.4 78.7±0.2

SP-Easy-RS 66.1±1.8 72.7±0.6 74.6±0.5 75.5±0.2 76.3±0.3 76.9±0.4 77.6±0.1 78.0±0.1 78.3±0.3 78.7±0.2

RS2 w/ repl 68.8±1.5 74.4±0.1 76.1±0.3 76.8±0.1 77.6±0.2 77.7±0.0 78.3±0.3 78.4±0.2 78.7±0.1 78.7±0.2
RS2 w/ repl (stratified) 68.6±2.1 74.6±0.7 75.9±0.2 76.7±0.2 77.5±0.1 77.7±0.1 78.1±0.3 78.2±0.2 78.3±0.3 78.7±0.2

RS2 w/o repl 73.0±0.3 74.9±0.7 76.1±0.5 77.1±0.1 77.5±0.4 78.0±0.1 78.3±0.2 78.3±0.2 78.4±0.3 78.7±0.2

ImageNet30

Random 69.3±0.7 83.7±0.5 86.9±0.4 90.3±0.3 92.2±0.3 93.0±0.2 94.6±0.3 95.2±0.2 95.4±0.2 96.1±0.1
K-Center Greedy 69.7±0.9 84.1±0.5 88.9±0.4 91.6±0.3 93.4±0.2 94.4±0.3 95.1±0.2 95.3±0.2 95.6±0.2 96.1±0.1

Margin 56.9±1.1 77.3±0.7 83.7±0.5 90.5±0.4 92.9±0.2 94.4±0.3 95.1±0.2 95.8±0.2 96.0±0.1 96.1±0.1
Forgetting 64.1±0.9 85.4±0.7 87.3±0.5 90.9±0.3 93.6±0.4 94.8±0.2 94.9±0.2 95.1±0.2 95.3±0.2 96.1±0.1

GraNd 69.3±0.9 85.7±0.5 90.0±0.5 92.4±0.4 93.6±0.3 94.7±0.4 95.1±0.2 95.5±0.2 95.7±0.1 96.1±0.1
Glister 72.4±0.7 82.9±0.5 87.0±0.4 91.2±0.3 92.7±0.3 93.3±0.3 94.2±0.2 95.0±0.2 95.8±0.2 96.1±0.1

GraphCut 71.9±0.6 83.0±0.3 88.5±0.3 91.2±0.3 92.9±0.2 93.7±0.3 94.4±0.2 95.3±0.2 95.6±0.2 96.1±0.1
AL (Conf) 70.7±1.1 87.0±0.5 90.3±0.5 93.1±0.4 94.3±0.3 95.1±0.2 95.5±0.4 95.7±0.2 96.0±0.1 96.1±0.1
AL (LL) 68.4±1.5 85.5±0.7 89.3±0.6 93.1±0.5 94.7±0.2 95.3±0.2 95.6±0.3 95.8±0.2 96.0±0.2 96.1±0.1

AL (Margin) 71.9±0.9 86.7±0.5 90.1±0.4 93.3±0.4 94.5±0.3 95.1±0.2 95.6±0.3 95.8±0.2 96.0±0.2 96.1±0.1
SSP-Easy 71.3±0.5 81.5±2.0 87.4±0.7 90.2±0.3 92.0±0.5 93.1±0.4 94.2±0.2 94.9±0.1 95.3±0.2 96.1±0.1
SSP-Hard 70.4±1.7 83.0±0.7 87.4±0.3 91.1±0.2 92.9±0.2 93.2±0.7 94.5±0.2 94.9±0.4 95.2±0.2 96.1±0.1
SP-Easy 70.0±1.5 82.4±0.3 87.1±1.3 89.9±0.6 92.0±0.4 93.4±0.2 94.3±0.3 94.6±0.2 95.4±0.0 96.1±0.1
SP-Hard 68.0±1.2 81.6±0.3 87.6±0.7 90.8±0.8 92.7±0.6 93.7±0.3 94.3±0.2 94.8±0.4 95.3±0.2 96.1±0.1

SP-Easy-RS 89.1±0.9 92.3±0.1 93.2±0.5 93.8±0.4 94.5±0.3 95.0±0.3 94.9±0.2 95.4±0.3 95.7±0.2 96.1±0.1

RS2 w/ repl 91.7±0.6 93.7±0.2 94.2±0.6 94.9±0.2 95.3±0.2 95.0±0.1 95.4±0.4 95.6±0.2 95.9±0.1 96.1±0.1
RS2 w/ repl (stratified) 91.7±0.6 93.6±0.3 94.8±0.4 94.9±0.3 95.2±0.1 95.4±0.3 95.5±0.0 95.6±0.3 95.9±0.2 96.1±0.1

RS2 w/o repl 92.0±0.4 94.0±0.4 94.6±0.2 94.5±0.3 95.2±0.3 95.3±0.2 95.7±0.1 95.8±0.3 95.8±0.1 96.1±0.1

desired accuracy. As shown in the main body of the paper, RS2 provides the fastest time-to-accuracy compared to existing
methods. Dashes indicate that the given method and pruning ratio failed to reach the target accuracy. We leave a detailed
study of these results for future work. In particular, an interesting question is how to decide what pruning ratio r one should
use in order to minimize runtime to reach a desired accuracy.
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Table 8: Comparison of the total time needed for subset selection for different data pruning methods when training on
CIFAR10. Time reported in seconds. The overhead of repeated random sampling is considerably less than existing data
pruning methods. For reference, training on the full dataset for 200 epochs takes roughly 4500 seconds. Best method bolded;
Next best underlined.

Select Ratio (r) 1% 5% 10% 20% 30% 40% 50%

Random 0.001±0.0 0.001±0.0 0.001±0.0 0.001±0.0 0.001±0.0 0.001±0.0 0.001±0.0
CD 237.78±3.08 243.73±6.06 247.01±13.72 244.39±3.58 243.42±2.18 254.46±9.87 254.72±2.28

Herding 238.29±3.84 241.31±2.37 253.0±5.84 258.49±12.35 255.08±0.8 268.91±8.13 263.16±2.84
K-Center Greedy 238.42±2.75 243.16±0.16 243.12±5.1 246.71±5.54 252.07±3.21 260.44±5.2 259.34±1.68
Least Confidence 238.61±2.6 238.08±2.59 241.96±5.89 239.92±3.72 237.07±1.64 239.47±6.53 240.01±5.08

Entropy 239.44±0.91 242.48±1.41 239.57±5.57 242.79±7.49 235.59±1.44 240.67±2.19 239.68±2.0
Margin 241.71±2.58 245.28±5.89 246.17±4.65 240.83±1.5 243.12±1.24 241.4±4.05 243.45±1.32

Forgetting 235.34±1.82 238.09±6.87 237.93±5.57 235.44±1.96 234.9±4.17 235.97±7.32 234.78±1.57
GraNd 2372.95±22.89 2406.41±79.95 2384.34±13.3 2377.09±16.19 2396.31±27.83 2375.14±17.84 2389.62±34.32
CAL 559.68±1.43 562.32±22.51 558.97±1.96 557.83±10.9 568.95±10.64 559.37±5.04 553.13±9.83
Craig 296.27±2.94 322.16±3.83 362.8±10.12 438.21±13.49 506.38±10.17 572.06±2.95 642.26±12.05

Glister 244.66±3.99 242.02±4.24 247.44±3.41 248.03±8.07 254.79±1.62 259.26±5.81 259.58±5.36
FL 330.79±20.94 587.43±16.07 764.18±86.51 1261.9±165.55 1863.98±241.04 2151.46±435.54 2722.44±145.36

GraphCut 325.66±9.37 551.81±46.75 728.66±45.93 1251.72±187.75 1601.92±202.89 2335.62±495.53 2672.69±643.3
AL (Conf) 408.3±8.4 908.1±9.8 2152.8±23.7 6694.8±80.6 13358.8±184.5 22120.2±329.5 32940.6±418.7
AL (LL) 398.5±5.4 879.1±9.8 2087.2±21.0 6592.5±43.9 13206.8±172.9 21933.8±362.6 32763.1±596.6

AL (Margin) 396.3±19.9 875.3±36.2 2107.2±73.6 6634.9±149.1 13298.5±241.1 22062.8±275.7 32871.6±425.9
SSP-Easy 265.67±5.87 269.89±8.48 268.44±8.51 263.84±6.49 264.85±5.58 268.21±5.82 269.39±4.78
SSP-Hard 285.91±9.25 288.47±8.07 290.3±26.43 284.52±27.16 293.41±21.92 287.28±25.74 271.59±6.09
SP-Easy 229.04±2.46 231.09±3.94 231.47±4.36 233.61±6.34 233.86±3.38 231.58±5.65 233.6±4.32
SP-Hard 227.68±1.65 234.39±1.2 230.85±3.65 227.67±2.23 231.66±2.64 230.97±3.1 233.12±5.94

RS2 w/ repl 0.16±0.01 0.16±0.01 0.16±0.01 0.16±0.01 0.16±0.01 0.16±0.01 0.16±0.01
RS2 w/ repl (stratified) 0.68±0.02 0.72±0.03 0.75±0.01 0.84±0.03 0.93±0.05 1.0±0.03 1.09±0.03

RS2 w/o repl 0.09±0.01 0.1±0.01 0.11±0.01 0.12±0.01 0.14±0.01 0.15±0.01 0.19±0.01

Table 9: Comparison of the total time (in seconds) needed for subset selection for our dynamic data pruning methods when
training on CIFAR10. The training subset is update for all methods after each round, either by resampling from a static
example importance distribution (RS, left) or by recomputing example importance based on model updates (RC, right). For
reference, training on the full dataset for 200 epochs takes roughly 4500 seconds. Best method bolded; Next best underlined.

Selection Ratio (r) 5% 10% 30%

CD-RS - - -
Herding-RS - - -
K-Center Greedy-RS - - -
Least Confidence-RS 238.9±2.66 244.12±3.5 243.75±9.7
Entropy-RS 241.26±2.63 240.41±1.33 247.27±3.19
Margin-RS 243.46±3.29 239.53±4.26 239.27±3.36
Forgetting-RS 236.3±5.61 239.38±2.36 236.24±4.24
GraNd-RS 397.92±0.56 409.93±9.32 406.89±4.74
CAL-RS 555.75±20.87 549.93±10.61 547.82±3.33
Craig-RS 1025.14±70.46 987.05±16.13 1021.92±13.77
Glister-RS - - -
SP-Easy-RS 326.76 ± 63.77 371.23 ± 63.71 497.39 ± 8.69

RS2 w/ repl (stratified) 0.72 ± 0.03 0.75 ± 0.01 0.93 ± 0.05
RS2 w/o repl 0.1±0.01 0.11±0.01 0.14±0.01

Selection Ratio (r) 5% 10% 30%

CD-RC 3581.05±61.15 3860.4±31.36 4860.18±55.95
Herding-RC 3851.82±37.15 4332.73±31.25 6578.17±9.45
K-Center Greedy-RC 3854.89±39.84 4384.02±38.72 6282.79±35.03
Least Confidence-RC 3698.25±47.31 3674.73±37.97 3630.66±30.48
Entropy-RC 3651.39±15.2 3677.18±32.94 3690.08±27.57
Margin-RC 3715.31±75.59 3686.48±24.21 3760.33±91.99
Forgetting-RC 3756.12±25.54 3732.81±33.9 3723.22±39.52
GraNd-RC 38035.57±1212.62 37390.35±939.82 29134.04±16123.62
CAL-RC 69994.0±200.65 66947.73±2645.88 67086.71±1213.57
Craig-RC 20517.31±955.04 27497.62±359.82 55305.63±988.66
Glister-RC 4358.65±56.65 4966.57±20.48 6393.25±33.59
SP-Easy-RC - - -

RS2 w/ repl (stratified) 0.72 ± 0.03 0.75 ± 0.01 0.93 ± 0.05
RS2 w/o repl 0.1±0.01 0.11±0.01 0.14±0.01

18



Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning

Table 10: The total time required for RS2 and baseline data pruning methods to reach a target accuracy (time-to-accuracy)
when training with varying pruning ratios on CIFAR10. Time is reported in seconds. Part 1/3. The best method(s) is bolded.

Target Select Ratio (r) 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

30% acc

Random 73 16 28 23 15 20 13 14 16 18 20
CD - 332 372 289 297 284 290 283 286 294 283

Herding - 295 296 275 283 279 273 278 281 285 291
K-Center Greedy 353 284 304 273 267 280 283 281 283 290 296
Least Confidence - - 393 330 299 278 275 265 259 262 264

Entropy - 484 398 346 289 270 274 267 256 259 262
Margin - 324 381 297 297 271 279 264 272 259 263

Forgetting 302 263 299 264 258 264 258 249 257 252 253
GraNd - 2485 2461 2422 2428 2404 2425 2397 2376 2471 2387
CAL - 596 597 574 385 579 565 605 605 591 595
Craig 365 342 395 461 521 583 668 740 816 909 952

Glister - 280 274 264 270 278 283 278 280 291 293
FL 377 605 803 1279 1878 2179 2734 3239 3671 4696 4513

GraphCut 371 567 771 1268 1617 2355 2684 3462 3771 4427 4458
AL (Conf) 395 395 395 395 395 395 395 395 395 395 395
AL (LL) 386 386 386 386 386 386 386 386 386 386 386

AL (Margin) 383 383 383 383 383 383 383 383 383 383 383
SSP-Easy 320 295 300 280 288 287 281 282 282 287 289
SSP-Hard 403 325 330 307 309 308 283 283 286 293 289
SP-Easy 295 246 258 249 246 254 240 243 249 243 253
SP-Hard 315 260 262 250 247 250 257 250 251 248 252

SP-Easy-RS 284 249 256 262 249 250 257 249 250 249 252

RS2 w/ repl 67 19 36 21 15 19 12 14 16 18 20
RS2 w/ repl (stratified) 59 20 43 27 15 19 12 14 15 18 20

RS2 w/o repl 83 17 14 11 15 19 11 14 16 18 20

50% acc

Random - 78 109 65 55 69 49 56 48 54 61
CD - - 617 354 366 384 361 325 318 349 304

Herding - - 564 399 345 319 322 320 314 323 311
K-Center Greedy - 390 397 322 314 309 318 323 331 327 317
Least Confidence - - - 438 383 357 347 321 325 335 306

Entropy - - - 513 412 339 345 324 321 314 303
Margin - - 755 439 407 359 351 305 305 314 304

Forgetting - - 455 366 350 333 306 305 306 306 295
GraNd - - 2811 2550 2531 2484 2498 2453 2408 2509 2428
CAL - 881 764 652 633 630 612 648 638 628 635
Craig - 458 523 537 568 633 704 782 885 946 993

Glister - 393 372 313 308 319 307 334 312 328 313
FL - 695 909 1341 1917 2219 2771 3267 3704 4733 4535

GraphCut - 623 876 1321 1664 2395 2720 3506 3805 4463 4478
AL (Conf) - 895 895 895 895 895 895 895 895 895 895
AL (LL) - 867 867 867 867 867 867 867 867 867 867

AL (Margin) - 862 862 862 862 862 862 862 862 862 862
SSP-Easy - 375 394 336 333 336 316 323 314 324 329
SSP-Hard - 432 433 365 357 358 332 326 335 330 329
SP-Easy - 340 362 306 301 284 287 271 282 261 293
SP-Hard - 277 354 312 301 290 306 294 284 285 291

SP-Easy-RS - 308 355 335 289 298 304 290 282 267 273

RS2 w/ repl 279 77 137 66 61 48 47 56 48 55 61
RS2 w/ repl (stratified) 250 87 123 83 69 60 72 57 64 54 40

RS2 w/o repl - 64 44 46 46 58 35 41 32 53 60
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Table 11: The total time required for RS2 and baseline data pruning methods to reach a target accuracy (time-to-accuracy)
when training with varying pruning ratios on CIFAR10. Time is reported in seconds. Part 2/3. The best method(s) is bolded.

Target Select Ratio (r) 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

70% acc

Random - - 364 216 184 139 136 139 130 126 143
CD - - - 584 504 473 456 396 382 421 406

Herding - - - 926 760 456 406 418 395 415 393
K-Center Greedy - - 552 420 384 397 414 380 412 493 379
Least Confidence - - - 911 514 455 453 420 374 372 369

Entropy - - - 954 565 457 464 423 371 387 385
Margin - - - 705 564 479 473 387 402 387 366

Forgetting - - - 549 473 430 366 376 374 360 356
GraNd - - - 2727 2689 2573 2583 2523 2489 2584 2489
CAL - - - 1025 801 763 720 748 719 720 695
Craig - - 775 664 693 724 803 854 966 1020 1075

Glister - - 601 429 409 418 390 406 393 383 396
FL - - 1144 1467 2009 2299 2855 3326 3785 4807 4597

GraphCut - - 1136 1465 1734 2484 2804 3578 3889 4536 4538
AL (Conf) - - 2884 2884 2884 2884 2884 2884 2884 2884 2884
AL (LL) - - 2804 2804 2804 2804 2804 2804 2804 2804 2804

AL (Margin) - - 2833 2833 2833 2833 2833 2833 2833 2833 2833
SSP-Easy - - 716 445 440 404 412 407 410 399 390
SSP-Hard - - 689 532 461 438 392 411 416 404 411
SP-Easy - - 705 431 409 403 370 355 363 332 373
SP-Hard - - 586 428 379 398 402 380 365 357 372

SP-Easy-RS - 440 508 415 383 374 377 358 378 339 354

RS2 w/ repl - 218 271 205 162 147 130 154 112 128 142
RS2 w/ repl (stratified) - 213 260 179 155 151 144 126 145 126 121

RS2 w/o repl - 201 168 128 116 127 105 125 112 107 122

80% acc

Random - - - 553 470 395 303 266 277 199 306
CD - - - 917 713 654 601 494 495 567 508

Herding - - - - - 1522 1222 909 686 598 536
K-Center Greedy - - - 692 695 635 606 535 557 511 563
Least Confidence - - - - 738 622 621 587 537 518 534

Entropy - - - - 912 675 584 521 516 498 529
Margin - - - - 975 678 606 538 548 496 509

Forgetting - - - 719 641 616 511 518 541 451 538
GraNd - - - 2984 2831 2671 2681 2636 2585 2716 2650
CAL - - - - 1378 1132 995 978 968 921 816
Craig - - - 1057 1063 1075 986 1111 1116 1242 1218

Glister - - - 788 650 687 614 604 586 494 559
FL - - - 1765 2331 2525 3122 3528 3997 4936 4742

GraphCut - - - 1779 2068 2681 3049 3782 4106 4735 4697
AL (Conf) - - 2884 2884 2884 2884 2884 2884 2884 2884 2884
AL (LL) - - 2804 2804 2804 2804 2804 2804 2804 2804 2804

AL (Margin) - - 2833 2833 2833 2833 2833 2833 2833 2833 2833
SSP-Easy - - - 814 712 639 638 629 553 583 592
SSP-Hard - - - 840 786 739 584 625 626 570 573
SP-Easy - - - 839 702 699 617 466 461 493 595
SP-Hard - - - 766 673 605 558 578 496 503 514

SP-Easy-RS - 564 634 637 585 501 590 567 490 538 516

RS2 w/ repl - 331 383 334 308 343 274 293 337 312 324
RS2 w/ repl (stratified) - 331 339 320 317 341 289 295 275 272 303

RS2 w/o repl - 333 278 257 278 264 212 264 241 270 264
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Table 12: The total time required for RS2 and baseline data pruning methods to reach a target accuracy (time-to-accuracy)
when training with varying pruning ratios on CIFAR10. Time is reported in seconds. Part 3/3. The best method(s) is bolded.

Target Select Ratio (r) 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

90% acc

Random - - - - 1473 1462 1722 1906 2037 2149 2403
CD - - - - 1327 1615 1806 1917 2002 2181 2461

Herding - - - - - - 2736 2801 2810 2885 2839
K-Center Greedy - - - - 1412 1662 1913 2093 2310 2433 2433
Least Confidence - - - - 1446 1546 1746 1940 2080 2268 2423

Entropy - - - - - 1542 1783 1892 2024 2255 2468
Margin - - - - - 1554 1749 1877 2020 2151 2498

Forgetting - - - - 1359 1569 1699 1969 2228 2334 2562
GraNd - - - - 3530 3645 3845 3889 4042 4465 4531
CAL - - - - - 2201 2292 2459 2658 2692 3042
Craig - - - - 1798 2024 2381 2613 2982 3134 3030

Glister - - - - 1718 1734 1885 2222 2368 2485 2639
FL - - - - 3203 3591 4454 5229 5715 6903 6707

GraphCut - - - - 2846 3782 4428 5387 5860 6459 6782
AL (Conf) - - - 7845 7845 7845 7845 7845 7845 7845 7845
AL (LL) - - - 7740 7740 7740 7740 7740 7740 7740 7740

AL (Margin) - - - 7787 7787 7787 7787 7787 7787 7787 7787
SSP-Easy - - - - 1534 1719 1932 2152 2329 2582 2546
SSP-Hard - - - - 1740 1760 1961 2155 2273 2452 2499
SP-Easy - - - - - 1699 1936 2126 2324 2323 2647
SP-Hard - - - - - 1712 1906 2157 2206 2407 2650

SP-Easy-RS - - - 1080 1284 1505 1721 1962 2173 2365 2619

RS2 w/ repl - - - 777 1028 1220 1435 1645 1893 1979 2378
RS2 w/repl (stratified) - - - 785 995 1267 1483 1577 1786 2099 2127

RS2 w/o repl - - 566 723 953 1211 1291 1637 1866 2106 2357

95% acc

Random - - - - - - - - - - 3582
CD - - - - - - - - 3124 3416 3784

Herding - - - - - - - - - - 3815
K-Center Greedy - - - - - - - - - - 3952
Least Confidence - - - - - - - - 3084 3432 3838

Entropy - - - - - - - 2900 3171 3464 3822
Margin - - - - - - - - 3057 3522 3797

Forgetting - - - - - - - - - - 3835
GraNd - - - - - - - - 5133 5721 5956
CAL - - - - - - - - - - 4153
Craig - - - - - - - - - - -

Glister - - - - - - - - - - 4012
FL - - - - - - - - - - 8221

GraphCut - - - - - - - - - - 8028
AL (Conf) - - - - - - - 48708 48708 48708 48708
AL (LL) - - - - - - - 48549 48549 48549 48549

AL (Margin) - - - - - - - 48326 48326 48326 48326
SSP-Easy - - - - - - - - - - -
SSP-Hard - - - - - - - - - - 3908
SP-Easy - - - - - - - - - - 4214
SP-Hard - - - - - - - - - - 3922

SP-Easy-RS - - - - - - - - 3180 3505 3810

RS2 w/ repl - - - - - - 2296 2498 2856 3245 3696
RS2 w/repl (stratified) - - - - - - - 2585 3003 3300 3501

RS2 w/o repl - - - - - - 2153 2633 2943 3147 3569
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Table 13: The total time required for RS2 and select baseline data pruning methods to reach a target accuracy (time-to-
accuracy) when training with varying pruning ratios on ImageNet. Time is reported in seconds. Part 1/2. The best method(s)
is bolded.

Target Select Ratio (r) 1% 5% 10%

5% acc

Random 919 289 231
Herding 22222 27794 24243

Least Confidence - 15292 19362
Entropy - 19535 19285
Margin 19494 14121 15785

Forgetting 19081 18394 15978
GraNd 146059 143640 147931

FL 67907 67789 220647
GraphCut 66336 224755 303318

RS2 w/ repl 542 347 231
RS2 w/ repl (stratified) 403 291 350

RS2 w/o repl 530 347 347

10% acc

Random 2003 462 579
Herding - 29468 24822

Least Confidence - 16043 20056
Entropy - 20517 19864
Margin - 14698 16364

Forgetting 19799 18625 16094
GraNd 14743 143755 148047

FL 69144 220878 308052
GraphCut 66831 224928 303434

RS2 w/ repl 931 635 463
RS2 w/ repl (stratified) 686 638 581

RS2 w/o repl 907 635 463

20% acc

Random - 1906 1157
Herding - - 36974

Least Confidence - 22684 23065
Entropy - 27158 22757
Margin - 19029 17984

Forgetting - 20877 16557
GraNd - 146123 148741

FL - 221802 308630
GraphCut - 225794 304012

RS2 w/ repl 1355 1502 1273
RS2 w/ repl (stratified) 1145 1388 1160

RS2 w/o repl 1308 1386 1157

30% acc

Random - 7219 4282
Herding - - -

Least Confidence - - 32555
Entropy - - 32131
Margin - 43750 25159

Forgetting - 25959 18293
GraNd - 151840 158347

FL - 227519 313954
GraphCut - 307600 307600

RS2 w/ repl 1626 3927 4514
RS2 w/ repl (stratified) 1546 3583 3937

RS2 w/o repl 1673 4100 3166
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Table 14: The total time required for RS2 and select baseline data pruning methods to reach a target accuracy (time-to-
accuracy) when training with varying pruning ratios on ImageNet. Time is reported in seconds. Part 2/2. The best method(s)
is bolded.

Target Select Ratio (r) 1% 5% 10%

40% acc

Random - - 14814
Herding - - -

Least Confidence - - -
Entropy - - -
Margin - - 32682

Forgetting - - 28824
GraNd - - 166680

FL - - 322518
GraphCut - 234399 317553

RS2 w/ repl 2015 6815 11689
RS2 w/ repl (stratified) 1864 6586 11923

RS2 w/o repl 2015 6699 12152

50% acc

Random - - -
Herding - - -

Least Confidence - - -
Entropy - - -
Margin - - -

Forgetting - - 35305
GraNd - - -

FL - - -
GraphCut - - -

RS2 w/ repl - 8605 16550
RS2 w/ repl (stratified) - 8492 16552

RS2 w/o repl - 8605 16434

60% acc

Random - - -
Herding - - -

Least Confidence - - -
Entropy - - -
Margin - - -

Forgetting - - -
GraNd - - -

FL - - -
GraphCut - - -

RS2 w/ repl - 10337 20021
RS2 w/ repl (stratified) - 10282 20024

RS2 w/o repl - 10280 19790

65% acc

Random - - -
Herding - - -

Least Confidence - - -
Entropy - - -
Margin - - -

Forgetting - - -
GraNd - - -

FL - - -
GraphCut - - -

RS2 w/ repl - - 22105
RS2 w/ repl (stratified) - - 22107

RS2 w/o repl - - 21873
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D. Additional RS2 Pseudocode
In this section, we include additional RS2 pseudocode algorithms to accompany Algorithm 1 presented in the main body of
the paper and to present additional details useful for the RS2 theoretical analysis.

In Algorithm 2 we describe RS2 without replacement when training with accelerated mini batch SGD (Ghadimi & Lan,
2016; Nesterov, 1983). Nesterov’s accelerated gradient introduces three different sets of parameters that are updated at
each iteration t. We denote them as wt, wt

ag, and wt
md. Furthermore, the algorithm introduces learning rate parameters

αt, βt, and λt. In later sections, we specialize the learning rate parameters for obtaining a convergence rate bound. Finally,
g(w, ξt;m) at step t represents the gradient estimate on a batch of data m that is used for updating the model. ξt are random
vectors whose distributions are supported on Ξt ∈ Rd.

Algorithm 2 RS2 w/o Replacement With Accelerated Mini batch SGD

Require: Dataset S = {xi, yi}Ni=1, selection ratio r ∈ (0, 1], batch size b, initial model w0, X rounds, learning rate
parameters {αt} s.t. α1 = 1, αt ∈ (0, 1),∀t ≥ 2, {βt > 0}, {λt > 0}, gradient estimate function for batch m and
parameters w with noise ξ: g(w, ξ;m)

1: T ← ⌈N/b⌉
2: t← 1
3: w0

ag = w0

4: for round j = 1 to X do
5: if t%T == 0 then
6: shuffle(S) {Shuffle after full dataset has been seen}
7: S′ ← S[(j − 1) · rN : j · rN ] {Select the subset across rounds without replacement}
8: for k = 1 to r · T do
9: batch m← S′[(k − 1) · b : k · b]

10: wt
md ← (1− αt)w

t−1
ag + αtw

t−1

11: wt ← wt−1 − λtg(w
t
md, ξt;m)

 {train_on_batch for Nesterov mini batch SGD}
12: wt

ag ← wt
md − βtg(w

t
md, ξt;m)

13: t← t+ 1
14: return wt

md

In Algorithm 3, we also show RS2 without replacement, but using standard mini batch SGD. We also write this algorithm
using a different perspective: instead of iterating over rounds, selecting the training subset for each round, and then iterating
over batches in the selected subset, RS2 without replacement can be equivalently implemented by iterating directly over
batches from the full dataset, as long as these batches are correctly selected and the full dataset is shuffled as necessary. This
perspective can be more useful for understanding the generalization error of RS2 without replacement as it more closely
matches the common algorithms in related works analyzing SGD (Ghadimi & Lan, 2016; Nikolakakis et al., 2023).

Algorithm 3 RS2 w/o Replacement With Mini batch SGD; Single For Loop Perspective

Require: Dataset S = {xi, yi}Ni=1, selection ratio r ∈ (0, 1], batch size b, initial model w0, X rounds, learning rate ηt
1: T ← ⌈N/b⌉
2: for iterate t = 1 to r · T ·X do
3: if t%T == 0 then
4: shuffle(S) {Shuffle after full dataset has been seen}
5: batch m← S[(t− 1)%T · b : t%T · b]
6: wt ← wt−1 − ηt

b

∑
(x,y)∈m∇f(wt−1;x, y) {train_on_batch for mini batch SGD}

7: return wt

E. RS2 Convergence Rate
Performance of accelerated mini batch SGD has been well studied for convex functions (Lan, 2012; Dekel et al., 2012;
Cotter et al., 2011). It has been shown that mini batch SGD using batch of size b, after X rounds with T batches per round
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returns a solution w satisfying

E[l(w)− l(w∗)] ≤ O
(
L||w0 − w∗||2

T 2X2
+

σ||w0 − w∗||√
bTX

)
. (4)

Furthermore, (Ghadimi & Lan, 2016) have analyzed the convergence rate of mini batch SGD for nonconvex β-smooth
functions. After TX mini batch steps of size b the algorithm guarantees a solution w such that

E||∇l(w)||2 ≤ O

(
β(l(w0)− l(w∗))

TX
+

σ
√

β(l(w0)− l(w∗))√
bTX

)
. (5)

We provide convergence analysis for accelerated mini batch SGD using RS2 without replacement as shown in Algorithm 2
following the analysis of (Ghadimi & Lan, 2016).

Corollary E.1. Suppose the loss l(w) is nonconvex, has β-Lipschitz continuous gradients, and is bounded below. Let
g(w, ξt) at step t represent the gradient estimate used when updating the model as in Algorithm 2 in the Appendix. Assume
the gradient estimate satisfies E

[
||g(w, ξt)−∇l(w)||2

]
≤ σ2, and E[g(w, ξt)] = ∇l(w), where ξt are random vectors

whose distributions are supported on Ξt ∈ Rd. With the previous assumptions, using a selection ratio r ∈ (0, 1] and mini
batch of size b, RS2 produces an iterate w after X rounds, with rT batches per round, such that:

E
[
||∇l(w)||2

]
≤ O

(
β(l(w0)− l(w∗))

r · T ·X +
σ
√

β(l(w0)− l(w∗))√
b · r · T ·X

)
. (6)

Furthermore, assuming that l(w) is convex it holds that

E[l(w)− l(w∗)] ≤ O
(
β||w0 − w∗||2

r2 · T 2 ·X2
+

σ||w0 − w∗||√
b · r · T ·X

)
. (7)

Proof. Each round we use Nesterov’s accelerated method to update the gradient:

wt
md ← (1− αt)w

t−1
ag + αtw

t−1 (8)

wt ← wt−1 − λtg(w
t
md, ξt;m) (9)

wt
ag ← wt

md − βtg(w
t
md, ξt;m) (10)

where g(wt
md, ξt) represents the gradient on a batch of data m. We assume that the following holds:

Eg(w, ξt) = ∇l(w) (11)

E||g(w, ξt)−∇l(w)||2 = σ2, (12)

where ξt are random vectors whose distributions are supported on Ξt ∈ Rd; These are the source of randomness when
estimating the full data gradient.

We repeat the procedure for X rounds. When using full data each round we have T batches, resulting in total TX gradient
updates. If we perform RS2 w/o replacement. each round we will contain rT updates per round, resulting in a total of
rTX iterations. Assume a relaxation for the learning rate parameters. For this part of the proof assume they are chosen
{αt} s.t. α1 = 1, αt ∈ (0, 1),∀t ≥ 2, {βt > 0}, {λt > 0}, such that the following holds:

Γt =

{
1 t = 1

(1− αt)Γ
t−1 t ≥ 2

(13)

Ct := 1− βλt −
β(λt − βt)

2

2αtΓtλt

(
rTX∑
τ=t

Γτ

)
> 0 (14)

pt =
λtC

t∑rTX
t=1 λtCt

, t = 1, ..., rTX. (15)
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Furthermore, let R represent an index chosen randomly in all the iterate updates from 1 to rTX , chosen such that
Prob{R = t} = pt.

First we want to show the following holds:

E||∇l(wR
md)||2 ≤

1∑rTX
t=1 λtCt

[
l(w0)− l(w∗) +

βσ2

2

rTX∑
t=1

λ2
t

(
1 +

(λt − βt)
2

αtΓtλ2
t

rTX∑
τ=t

Γτ

)]
. (16)

Let us define, for ease of writing, the following: δt := g(wt
md, ξt) −∇l(wt

md) and ∆t := ∇l(wt−1) −∇l(wt
md). Since

l(w) is bounded from below and a differentiable nonconvex β-smooth function it holds that (see (Nesterov, 2003)):

|l(y)− l(x)− ⟨∇l(x), y − x⟩| ≤ β

2
||y − x||2 ∀x, y ∈ Rn. (17)

We start from the assumption that the loss function l is β-smooth:

l(wt) ≤ l(wt−1) + ⟨∇l(wt−1), wt − wt−1⟩+ β

2
||wt − wt−1||. (18)

Then, using the update step Equation (9) and the definitions of δt,∆t:

l(wt) ≤ l(wt−1) + ⟨∆t +∇l(wt
md),−λt[∇l(wt

md) + δt]⟩+ βλ2
t

2
||∇l(wt

md) + δt||2

= l(wt−1) + ⟨∆t +∇l(wt
md),−λt∇l(wt

md)⟩ − λt⟨∇l(wt−1), δt⟩+ βλ2
t

2
||∇l(wt

md) + δt||2. (19)

Now using the inequality Equation (17) we get:

l(wt) ≤ l(wt−1)− λt

(
1− βδt

2

)
||∇l(wt

md)||2 + λt||∆t||||∇l(wt
md)||+

βλ2
t

2
||δt||2

− λt⟨∇l(wt−1)− βλt∇l(wt
md), δ

t⟩. (20)

Since l is β-smooth and by the update rule Equation (8) we have:

||∆t|| = ||∇l(wt−1)−∇l(wt
md)|| ≤ β||wt−1 − wt

md|| = β(1− αt)||wt
ag − wt−1||. (21)

Continuing from Equation (19) and inserting Equation (21):

l(wt) ≤ l(wt−1)− λt

(
1− βδt

2

)
||∇l(wt

md)||2 + λtβ(1− αt)||wt
ag − wt−1||||∇l(wt

md)||

+
βλ2

t

2
||δt||2 − λt⟨∇l(wt−1)− βλt∇l(wt

md), δ
t⟩. (22)

Using the general fact that xy ≤ (x2+y2)
2 holds, we bound the previous inequality:

l(wt) ≤ l(wt−1)− λt (1− βλt) ||∇l(wt
md)||2 +

β(1− αt)
2

2
||wt−1

ag − wt−1||2 + βλ2
t

2
||δt||2

− λt⟨∇l(wt−1)− βλt∇l(wt
md), δ

t⟩. (23)

Now we take a small digression from the main flow of the proof. We want to show that the following inequality holds:

||wt−1
ag − wt−1||2 ≤ Γt−1

t−1∑
τ=1

(λτ − βτ )
2

Γτατ
||∇l(wτ

md) + δt||2

= Γt−1
t−1∑
τ=1

(λτ − βτ )
2

Γτατ

[
||∇l(wτ

md)||2 + 2⟨∇l(wτ
md), δ

τ ⟩+ ||δτ ||2
]
. (24)
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We show that in the following way. First, let us combine the update steps Equations (8) to (10). Performing change of
variable we have:

wt
ag − wt = (1− αt)w

t−1
ag + αtw

t−1 − βt∇l(wt
md)− [wt−1 − λt∇l(wt

md)]

= (1− αt)(w
t−1
ag − wt−1) + (λt − βt)∇l(wt

md). (25)

Following from Equation (25) and using Lemma 1 stated in (Ghadimi & Lan, 2016) it is implied that:

wt
ag − wt = Γt

t∑
τ=1

λτ − βτ

Γτ
∇l(wτ

md). (26)

Furthermore, we have:

||wt
ag − wt||2 =

∥∥∥∥∥Γt
t∑

τ=1

λτ − βτ

Γτ
∇l(wτ

md)

∥∥∥∥∥
2

. (27)

From the definition in Equation (13) we have:

t∑
τ=1

ατ

Γτ
=

α1

Γ1
+

t∑
τ=2

1

Γτ

(
1− Γτ

Γτ−1

)
=

1

Γ1
+

t∑
τ=2

(
1

Γτ
− 1

Γτ−1

)
=

1

Γt
. (28)

Inserting that into Equation (27) we get:

||wt
ag − wt||2 =

∥∥∥∥∥Γt
t∑

τ=1

ατ

Γτ

λτ − βτ

ατ
∇l(wτ

md)

∥∥∥∥∥
2

. (29)

Applying Jensen’s inequality to Equation (29) we have:

||wt
ag − wt||2 ≤ Γt

t∑
τ=1

ατ

Γτ

∥∥∥∥λτ − βτ

ατ
∇l(wτ

md)

∥∥∥∥2 = Γt
t∑

τ=1

(λτ − βτ )
2

Γτατ
||∇l(wτ

md)||2. (30)

Hence, Equation (24) holds.

Coming back to the main flow of the proof. We combine the previous two inequalities Equation (23) and Equation (24).
Also, we use the fact that Γt−1(1− αt)

2 ≤ Γt :

l(wt) ≤l(wt−1)− λt (1− βλt) ||∇l(wt
md)||2 +

βλ2
t

2
||δt||2 − λt⟨∇l(wt−1)− βλt∇l(wt

md), δ
t⟩

+
βΓt

2

t∑
τ=1

(λτ − βτ )
2

Γτατ

[
||∇l(wτ

md)||2 + 2⟨∇l(wτ
md), δ

τ ⟩+ ||δτ ||2
]
. (31)

Summing up the above inequalities (Equation (31)) up to the rTX iterate, we get:

l(wrTX) ≤ l(w0)−
rTX∑
t=1

λt (1− βλt) ||∇l(wt
md)||2 −

rTX∑
t=1

λt⟨∇l(wt−1)− βλt∇l(wt
md), δ

t⟩

+

rTX∑
t=1

βλ2
t

2
||δt||2 − β

2

rTX∑
t=1

Γt
t∑

τ=1

(λτ − βτ )
2

Γτατ

[
||∇l(wτ

md)||2 + 2⟨∇l(wτ
md), δ

τ ⟩+ ||δτ ||2
]

= l(w0)−
rTX∑
t=1

λtC
t||∇l(wt

md)||2 +
β

2

rTX∑
t=1

λ2
t

(
1 +

(λt − βt)
2

αtΓtλ2
t

rTX∑
τ=t

Γτ

)
||δt||2 −

rTX∑
t=1

bt, (32)
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where bt = ⟨λt∇l(wt−1) −
[
βλ2

t +
β(λt−βt)

2

Γtαt

(∑rTX
τ=t Γτ

)]
∇l(wt

md), δ
t⟩. Due to the fact that under assumptions

Equations (11) and (12) E||δt||2 ≤ σ2 and {bt} is a martingale difference, when taking expectation on both sides we obtain:

rTX∑
t=1

λtC
tE||∇l(wt

md)||2 ≤ l(w0)− l(wrTX) +
βσ2

2

rTX∑
t=1

λ2
t

(
1 +

(λt − βt)
2

αtΓtλ2
t

rTX∑
τ=t

Γτ

)
. (33)

Using the fact that l(wt) ≥ l(w∗), E||∇l(wR
md)||2 =

∑rTX
t=1 λtC

tE||∇l(wt
md)||

2∑rTX
t=1 λtCt , and by dividing both sides by

∑rTX
t=1 λtC

t,
we obtain:

E||∇l(wR
md)||2 ≤

1∑rTX
t=1 λtCt

[
l(w0)− l(w∗) +

βσ2

2

T∑
t=1

λ2
t

(
1 +

(λt − βt)
2

αtΓtλ2
t

rTX∑
τ=t

Γτ

)]
. (34)

Hence, we have proven the wanted Equation (16) holds.

For the remainder of the proof for the nonconvex case we specialize the previously obtained result. Let us assume the
following:

αt =
2

t+ 1
(35)

λt ∈
[
βt,
(
1 +

αt

4

)
βt

]
(36)

Γt =
2

t(t+ 1)
(37)

βt = min

{
8

21β
,

D̃

σ
√
rTX

}
for some D̃ > 0. (38)

Now, we want to prove:

E||∇l(wR
md)||2 ≤

21β(l(w0)− l(w∗))

4rTX
+

2σ√
rTX

(
l(w0)− l(w∗)

D̃
+ βD̃

)
. (39)

From definition of Equation (35), Equation (36) let us make a claim about Ct. For that, from Equation (36) we observe
0 ≤ λt − βt ≤ αtβt/4. Now we have:

Ct = 1− β

[
λt +

(λt − βt)
2

2αtΓtλt

(
rTX∑
τ=t

Γτ

)]
(40)

≥ 1− β

[(
1 +

αt

4

)
βt +

α2
tβ

2
t

16

1

tαtΓtβt

]
(41)

= 1− βtβ(1 +
αt

4
+

1

16
) (42)

≥ 1− βtβ
21

16
. (43)

Multiplied by λt we have λtC
t ≥ 11βt

32 .

Now we make the following claim about Γt. From Equation (37):

rTX∑
τ=t

Γτ =

rTX∑
τ=t

2

τ(τ + 1)
= 2

rTX∑
τ=t

(
1

τ
− 1

τ + 1

)
≤ 2

t
. (44)
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From the Equation (36), Equation (38), Equation (43), we have:

Ct ≥ 1− 21

16
ββt ≥

1

2
> 0 and λtC

t ≥ βt

2
. (45)

Furthermore, from Equation (36), Equation (37), Equation (38), and Equation (44), we obtain:

λ2
t

[
1 +

(λt − βt)
2

αtΓtλ2
t

(
rTX∑
τ=t

Γτ

)]
≤ λ2

t

[
1 +

1

αtΓtλ2
t

(
αtβt

4

)2
2

t

]
= λ2

t +
β2
t

8

≤
[(

1 +
αt

4

)2
+

1

8

]
β2
t ≤ 2β2

t . (46)

Together with Equation (34) it holds that:

E||∇l(wR
md)||2 ≤

2∑rTX
t=1 βt

(
l(w0)− l(w∗) + βσ2

rTX∑
t=1

β2
t

)

≤ 2(l(w0)− l(w∗))

rTXβ1
+ 2βσ2β1

≤ 2(l(w0)− l(w∗))

rTX

{
21β

8
+

σ
√
rTX

D̃

}
+

2βD̃σ√
rTX

, (47)

which implies:

E||∇l(wR
md)||2 ≤

21β(l(w0)− l(w∗))

4rTX
+

2σ√
rTX

(
l(w0)− l(w∗)

D̃
+ βD̃

)
. (48)

Hence, we have shown that Equation (48) holds. Continuing from that, minimizing Equation (48) with respect to D̃, the

optimal choice is D̃ =
√

l(w0
ag)−l(w∗)

β . Inserting that value for D̃, Equation (48) becomes:

E||∇l(wR
md)||2 ≤

21β(l(w0)− l(w∗))

4rTX
+

4σ
√
β(l(w0)− l(w∗)))√

rTX
. (49)

Until now we have assumed that E||g(w, ξt)−∇l(w)||2 = σ2 for the ease of the proof. However, if we assume that the
gradient is calculated on a batch of size b, the variance of the stochastic gradient reduces to σ2/b (see (Wang & Srebro,
2019)). The entire previous results follow with that assumption without loss of generality. Therefore we conclude it holds
that:

E||∇l(w)||2 ≤ O

(
β(l(w0)− l(w∗))

rTX
+

σ
√

β(l(w0)− l(w∗))√
brTX

)
. (50)

Convex case Now, let us consider the case for convex functions. First, in order to prove Equation (5), we want to show
that, assuming:

αtλt ≤ ββ2
t , βt <

1

β
, (51)

pt =
1
Γt βt(1− ββt)∑rTX

t=1
1
Γt βt(1− ββt)

, (52)

and
α1

λ1Γ1
≥ α2

λ2Γ2
≥ . . . (53)

the following holds:

E[l(wR
ag − l(w∗))] ≤

∑rTX
t=1 βt(1− ββt)

[
(2λ1)

−1||w0 − w∗||2 + βσ2
∑t

j=1

β2
j

Γj

]
∑rTX

t=1
βt

Γt (1− ββt)
. (54)
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Starting from the update rule Equation (8) and using the convexity of l(·) we have:

l(wt
md)− [(1− αt)l(w

t−1
ag ) + αtl(w)] = αt

[
l(wt

md)− l(w)
]
+ (1− αt)

[
l(wt

md − l(wt−1
ag ))

]
≤ αt⟨∇l(wt

md), w
t
md − w⟩+ (1− αt)⟨∇l(wt

md), w
t
md − wt−1

ag ⟩
= ⟨∇l(wt

md), αt(w
t
md − w) + (1− αt)(w

t
md − wt−1

ag )⟩
= αt⟨∇l(wt

md), w
t−1 − w⟩. (55)

Similar to before, we now start with the smoothness Equation (17) and use the update step Equation (10) to obtain:

l(wt
ag) ≤ l(wt

md) + ⟨∇l(wt
md), w

t
ag − wt

md⟩+
β

2
||wt

ag − wt
md||2

= l(wt
md)− βt||∇l(wt

md)||2 + βt⟨∇l(wt
md), δ

t⟩+ ββ2
t

2
||∇l(wt

md) + δt||2. (56)

Inserting Equation (55) into the previous inequality, we have:

l(wt
ag) ≤ (1− αt)l(w

t−1
ag ) + αtl(w) + αt⟨∇l(wt

md), w
t−1 − w⟩

− βt||∇l(wt
md)||2 + βt⟨∇l(wt

md), δ
t⟩+ ββ2

t

2
||∇l(wt

md) + δt||. (57)

From Equation (10) we have:

||wt−1 − w||2 − 2λt⟨∇l(wt
md) + δt, wt−1 − w⟩

+ λ2
t ||∇l(wt

md) + δt||2 = ||wt−1 − λt(∇l(wt
md) + δt)− w||2 = ||wt − w||2. (58)

From the previous equation, we have:

αt⟨∇l(wt
md) + δt, wt−1 − w⟩ = αt

2λt

[
||wt−1 − w||2 − ||wt − w||2

]
+

αtλt

2
||∇l(wt

md) + δt||2. (59)

Combining Equations (57) and (59) and the fact that ||∇l(wt
md) + δt||2 = ||∇l(wt

md)||2 + ||δt||2 + 2⟨∇l(wt
md), δ

t⟩, we
get:

l(wt
ag) ≤ (1− αt)l(w

t−1
ag ) + αtl(w) +

αt

2λt

[
||wt−1 − w||2 − ||wt − w||2

]
− βt

(
1− ββt

2
− αtλt

2βt

)
||∇l(wt

md)||2 +
(
ββ2

t + αtλt

2

)
||δt||2

+ ⟨δt, (βt + ββ2
t + αtλt)∇l(wt

md) + αt(w − wt−1)⟩. (60)

Due to the fact that α1 = Γ1 = 1 and by Equation (53) it holds that:

rTX∑
t=1

αt

λtΓt

[
||wt−1 − w||2 − ||wt − w||2

]
≤ α1||w0 − w||2

λ1Γ1
=
||w0 − w||2

λ1
. (61)

Using Lemma 1 from (Ghadimi & Lan, 2016), Equation (61) and subtracting l(w) from Equation (60), we obtain:

l(wrTX
ag )− l(w)

ΓrTX
≤ ||w

0 − w||2

2λ1
−

rTX∑
t=1

βt

2Γt

(
2− ββt −

αtλt

βt

)
||∇l(wt

md)||2

+

rTX∑
t=1

(
ββ2

t + αtλt

2Γt

)
||δt||2 +

rTX∑
t=1

b′t, (62)
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where b′t =
1
Γt ⟨δt, (βt + ββ2

t + αtλt)∇l(wt
md) + αt(w − wt−1)⟩. Together with Equation (51) the above inequality gives:

l(wrTX
ag )− l(w)

ΓrTX
≤ ||w

0 − w||2

2λ1
−

rTX∑
t=1

βt

Γt
(1− ββt)||∇l(wt

md)||2

+

rTX∑
t=1

ββ2
t

Γt
||δt||2 +

rTX∑
t=1

b′t. (63)

Since {b′t} is a martingale difference, E||δt||2 ≤ σ2 and by taking expectation with respect to ξ[rTX], we have:

1

ΓrTX
E
[
l(wrTX

ag )− l(w)
]
≤ ||w

0 − w||2

2λ1
−

rTX∑
t=1

βt

Γt
(1− ββt)E||∇l(wt

md)||2 + σ2
rTX∑
t=1

ββ2
t

Γt
. (64)

Now, assume w = w∗ and since by definition l(wrTX
ag ) ≥ l(w∗), we obtain:

rTX∑
t=1

βt

Γt
(1− ββt)E||∇l(wt

md)||2 ≤
||w0 − w∗||2

2λ1
+ σ2

rTX∑
t=1

ββ2
t

Γt
, (65)

from which, using the definition of wR
md, it follows that

E||∇l(wR
md)||2 ≤

(2λ1)
−1||w0 − w∗||2 + βσ2

∑rTX
t=1

β2
t

Γt∑rTX
t=1

βt

Γt (1− ββt)
. (66)

Also, using Equation (51) and Equation (64) in Equation (65), for rTX ≥ 1 we have:

E
[
l(wrTX

ag − l(w∗))
]
≤ ΓrTX

(
||w0 − w||2

2λ1
+ σ2

rTX∑
t=1

ββ2
t

Γt

)
,

which implies that Equation (54) holds:

E[l(wR
ag − l(w∗))] =

rTX∑
t=1

βt

Γt (1− ββt)∑rTX
t=1

βt

Γt (1− ββt)
E[l(wt

ag − l(w∗))]

≤

∑rTX
t=1 βt(1− ββt)

[
(2λ1)

−1||w0 − w||2 + βσ2
∑t

j=1

β2
j

Γj

]
∑rTX

t=1
βt

Γt (1− ββt)
. (67)

Now, assuming αt is set as in Equation (35), pt is set as in Equation (52),

βt = min

 1

2β
,

(
D̃2

β2σ2(rTX)3

)1/4
 , (68)

and

λt =
tββ2

t

2
, (69)

we want to show that the following inequality holds:

E[l(wR
ag)− l(w∗)] ≤ 48β||w0 − w∗||2

r2T 2X2
+

12σ√
rTX

(
||w0 − w∗||2

D̃
+ D̃

)
, (70)

for some D̃ > 0. Note, that Equation (68) and Equation (69) imply Equation (53) and Equation (51).
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Since, Γt = 2
t(t+1) , and by Equation (68), we obtain:

rTX∑
t=1

βt

Γt
(1− ββt) ≥

1

2

rTX∑
t=1

βt

Γt
=

β1

2

rTX∑
t=1

1

Γt
(71)

rTX∑
t=1

1

Γt
≥

rTX∑
t=1

t2

2
=

1

12
rTX(rTX + 1)(2rTX + 1) ≥ 1

6
r3T 3X3. (72)

By Γt = 2
t(t+1) , Equations (66), (68) and (69), we obtain:

E||∇l(wR
md)||2 ≤

2

β1

∑rTX
t=1

1
Γt

(
||w0 − w∗||2

ββ2
1

+ βσ2β2
1

rTX∑
t=1

1

Γt

)

=
2||w0 − w∗||2

ββ3
1

∑rTX
t=1

1
Γt

+ 2βσ2β1 ≤
12||w0 − w∗||2

βr3T 3X3β3
1

+ 2βσ2β1

≤ 96β2||w0 − w∗||2

r3T 3X3
+

β1/2σ3/2

(rTX)3/4

(
12||w0 − w∗||2

D̃3/2
+ 2D̃1/2

)
. (73)

Moreover, by Equation (68), it holds that:

1− ββt ≤ 1 and
t∑

j=1

1

Γj
=

1

2

t∑
j=1

j(j + 1) ≤
t∑

j=1

j2 ≤ t3.

It is implied by Equations (67), (68), (71) and (72) that:

E[l(wR
ag)− l(w∗)] ≤ 2∑rTX

t=1
1
Γt

[
rTX(2λ1)

−1||w0 − w∗||2 + βσ2β2
1

rTX∑
t=1

t3

]

≤ 12||w0 − w∗||2

r2T 2X2ββ2
1

+
12βσ2β2

1

r3T 3X3

rTX∑
t=1

t3

≤ 12||w0 − w∗||2

r2T 2X2ββ2
1

+ 12βσ2β2
1rTX

≤ 48β||w0 − w∗||2

r2T 2X2
+

12σ√
rTX

(
||w0 − w∗||2

D̃
+ D̃

)
. (74)

This shows that Equation (70) holds. Minimizing the previous inequality with respect to D̃, the optimal choice is
D̃ = ||w0 − w∗||. Hence, it becomes:

E[l(wR
ag)− l(w∗)] ≤ 48β||w0 − w∗||2

r2T 2X2
+

24||w0 − w∗||σ√
rTX

. (75)

As in (Wang & Srebro, 2019), the variance of the stochastic gradient reduces to σ2/b when estimating with b samples.
Therefore we conclude it holds that:

E[l(w)− l(w∗)] ≤ O
(
β||w0 − w∗||2

r2T 2X2
+

σ||w0 − w∗||√
brTX

)
. (76)

F. RS2 Generalization Error
We proceed with the generalization error bound of RS2 for nonconvex Lipschitz and smooth losses. We start by introducing
the assumptions on the function f : Rd ×Z → R+ (see Section 4) for completeness, and then we proceed with the proof of
Theorem 4.2.
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Assumption. (Smooth and Lipschitz Loss) There exist constants βf ≥ 0 and Lf ≥ 0, such that for all w, u ∈ Rd and
x ∈ X , it is true that ∥∇wf(w, z)−∇uf(u, z)∥2 ≤ βf∥w − u∥2 and ∥f(w, z)− f(u, z)∥2 ≤ Lf∥w − u∥2.

The next result follows form prior work (Nikolakakis et al., 2023) and it suffices to show that RS2 sampling is data
independent and belongs to the set of general mini batch schedules that appear in Nikolakakis et al. (2023, Definition 1).

Theorem F.1 (Generalization error of standard gradient RS2, (Nikolakakis et al., 2023) Theorem 8). Let the function f
be nonconvex, Lf -Lipschitz and βf -smooth. Then the generalization error of the standard gradient RS2 algorithm with a
decreasing step-size ηt ≤ C/t (for C < 1/βf ), is bounded as:

|ϵgen(f,D,RS2)| ≤
1

N
· 2CeCβfL2

f (r · T ·X)
Cβf min

{
1 +

1

Cβf
, log(e · r · T ·X)

}
. (77)

Proof. Let {kj1, . . . , k
j
b} ⊂ {1, 2, . . . , N}b be the set of indices for mini batch selection at each gradient step j ∈

{1, . . . , rTX}. We select the mini batch through the choice of indices {kj1, . . . , k
j
b} as follows. For sampling with

replacement in line 4 of Algorithm 1 at round j selects a subset of indices {kj1, . . . , k
j
rN}. These indices are sampled

independently from any other round i ∈ {1, . . . , X}, i.e., the same indices can be sampled in consecutive rounds, hence
with replacement. Note, that at round j sampled indices in the set are unique. The parameters are then updated using
a deterministic batch schedule iterating through the sampled subset of indices resulting in rT gradient updates. On the
contrary, RS2 without replacement can be seen as traversing the full dataset in a deterministic round-Robin fashion. That is,
the model parameters are updated by sequentially selecting indices {kj1, . . . , k

j
b}. After iterating over the full dataset, i.e.,

after T = N/b gradient updates we shuffle the full dataset array and repeat the procedure (e.g., Algorithm 3). The algorithm
early stops after rTX gradient updates. Thus the selection rule is non-adaptive and data-independent and it belongs to
the set of the general batch schedules Nikolakakis et al. (2023, Definition 1). As a consequence, Nikolakakis et al. (2023,
Lemma 2) and the growth recursion Nikolakakis et al. (2023, Lemma 3 (Growth Recursion)) holds verbatim for RS2 with
standard gradient training with batch size b. Then, we solve the recursion identically to Nikolakakis et al. (2023, Proof of
Theorem 8)) for rTX total number of gradient steps. The solution of the recursion gives (the on-average stability and thus)
the generalization error bound of RS2, as appears in the theorem, and completes the proof.
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