
Towards Declarative Systems for Data-Centric Machine Learning

Stefan Grafberger 1 Bojan Karlaš 2 Paul Groth 1 Sebastian Schelter 1

Abstract
We argue for a declarative approach to simplify
the application of data-centric ML in real-world
scenarios, and present our prototypical system
MLWHATIF, which takes a first step in this direc-
tion.

1. Introduction
The process of developing machine learning (ML) applica-
tions has recently been going through a fundamental shift.
An emerging set of data-centric operations is becoming
indispensable for making ML models perform better and
for understanding the causes of their failure (Liang et al.,
2022). Examples of such operations (along with some
prominent methods for conducting them) include: data de-
bugging (Jia et al., 2019; Northcutt et al., 2021), slice dis-
covery (Chung et al., 2019) and data pruning (Sorscher et al.,
2022). Given the large number of promising methods de-
veloped by the community along with recent benchmarking
efforts (Mazumder et al., 2022), the field is well-positioned
to impact real-world ML development. However, there are
two key challenges.

Real-world challenges. First, in real-world ML settings,
input data is typically spread across different data sources
(e.g., data lakes, data warehouses, REST APIs, ...), is reg-
ularly updated, and must be integrated and converted to
features in order to be consumable by ML systems (Scul-
ley et al., 2015; Polyzotis et al., 2018; Schelter et al., 2018).
However, most existing data-centric methods do not account
for this situation, but instead expect a single, often static,
already prepared input dataset. Because of this discrepancy,
current data-centric methods are either not directly applica-
ble to real-world settings, or integrating them forces data
scientists and ML engineers to implement custom one-off
solutions for each use case.

1AIRLab, University of Amsterdam, Amsterdam, The Nether-
lands 2Department of Biomedical Informatics, Harvard Uni-
versity, Boston, US. Correspondence to: Stefan Grafberger
<s.grafberger@uva.nl>.

Proceedings of the Data-Centric Machine Learning Research work-
shop (DMLR) at ICML, 2023.

Managing this increased complexity only adds to the high
operational overhead in the job of data scientists, who al-
ready spend more than 60% of their time on data preparation
tasks (Anaconda.com, 2020).

Second, for each data-centric operation, there is a growing
number of applicable methods. However, given that the
success of these methods often varies on a case-by-case
basis, it is unclear beforehand which one to choose for a
given scenario. Consequently, developers need to repeatedly
and manually re-write their experimental code (e.g., via
messy Jupyter notebooks) to try out different methods (and
orchestrate the repeated data access and model inference or
retraining), which is time-consuming and error-prone.

Towards automation and declarativity. We argue that we
need to increase the level of automation of data-centric ML
development to improve this situation. We should enable
end users to declaratively state which data-centric oper-
ation they want to apply, while shielding them from the
complexity of interacting with different methods and their
implementations.

Furthermore, there should be an underlying system that can
automate the process of selecting a well-performing method.
Declarativity and automation are at the core of many suc-
cessful computing approaches from the last decades: for
example, deep learning engines like Pytorch and Tensorflow
let users declaratively define the computational graph of
their model and automate the subsequent model training on
accelerator hardware. Analogously, users should be able to
apply data-centric ML (e.g., cleaning label errors) with a
simple declarative configuration and a few lines of code.

Contribution. The purpose of this abstract is to make
the community aware of this challenge (Section 2) and to
present our prototypical system MLWHATIF (Grafberger
et al., 2023) available open source at https://github.
com/stefan-grafberger/mlwhatif. Based on a
declarative configuration, MLWHATIF can automatically
rewrite ML code (written with libraries such as pandas,
sklearn or keras) to execute multiple data-centric methods,
and returns interpretable reports which allow data scientists
to identify a well-performing method for a given case (Sec-
tion 3).

1

https://github.com/stefan-grafberger/mlwhatif
https://github.com/stefan-grafberger/mlwhatif

Towards Declarative Systems for Data-Centric Machine Learning

Features Labels

Prepared
Training Data

Model

Shapley
Value

Model Quality
Metric

Normalise

Embed

Impute

Feature
Union

Filter
Join

Source
Training Data

Log Files

DatabaseImages

Filter

Shapley
Value

???
???
???
???
???

Data Preparation Pipeline

Scope of existing approachesReal-world use cases require debugging heterogeneous source data,
transformed by data preparation pipelines

Figure 1. Development challenges of train set debugging real-world scenarios.

2. Example – Training Set Debugging
We discuss unsolved challenges of developing data-centric
ML applications for real-world scenarios on the task of
training set debugging (Mazumder et al., 2022), where the
goal is to identify mislabeled samples that negatively impact
the performance of a model.

Implementation overheads. First of all, there are various
methods to identify label errors (Jia et al., 2019; Northcutt
et al., 2021) and to fix them (e.g., by removing mislabeled
samples, auto-repairing them or asking humans to relabel
them). It is not obvious which method works best in a real
use case, therefore data scientists have to integrate several
of these methods into their ML code to make a decision.

Identifying mislabeled source data. Secondly, as depicted
in Figure 1, the data to debug in a real-world setup is typ-
ically not a single static dataset, but originates from many
different heterogenous data sources and may be multi-modal
(e.g., contain images, text and relational data). While ex-
isting methods are designed to debug featurized, already
prepared training data, we are ultimately interested in de-
bugging a particular source dataset, which is combined with
other source data and transformed into featurized training
data by a data preparation pipeline. The featurized training
data is usually not understandable for human experts when
relabeling records. Furthermore, label errors need to be
fixed in the original source data, not the derived prepared
training data. This requires mapping training data matrix
entries to their corresponding entries in the original data
sources, and, importantly, also requires propagating updates
to the original data sources through preprocessing code.

3. Overview of MLWHATIF

We give an overview of our system MLWHATIF (Grafberger
et al., 2023), which tackles the implementation overhead
challenge.

Data preparation pipelines as a first-class citizen. ML-
WHATIF reasons about the data preparation operations in ML
code by modeling a data preparation pipeline as a dataflow

computation (Grafberger et al., 2023), inspired by the rela-
tional algebra from data management. We treat a classifi-
cation task as a dataflow computation from several source
datasets as input to a set of ML-specific matrices as out-
put, e.g., for features, labels, and predictions. Furthermore,
we model all pipeline operations with operators from the
positive relational algebra (Abiteboul et al., 1995). ML-
WHATIF can extract such a dataflow plan from declaratively
written ML code with common Python libraries via code
instrumentation (Grafberger et al., 2022).

Automatic application of data-centric analyses to exist-
ing ML code. Given this dataflow plan, MLWHATIF can
identify different pipeline operations (such as accessing
data sources, relational preprocessing, feature extraction,
model training, and label encoding) and re-execute them
on changed inputs. It leverages so-called “pipeline patches”
as a formal framework to re-write ML pipelines. These
patches describe changes to the dataflow plan and are the ba-
sis for applying existing data-centric methods automatically
to existing code without the need for manual integration.

Example. We provide an example notebook with
training set debugging applied to a simple computer
vision pipeline, which resembles the example in Fig-
ure 1, and consumes images, relational data and logfiles.
The notebook is available at https://github.
com/stefan-grafberger/mlwhatif/blob/
1877736feb3fb71acd38a61a37cb0216f7595523/
demo/dc_demo/dc-demo.ipynb and shows how to
declaratively and automatically run label error detection
and repair with kNN-Shapley (Jia et al., 2019; Karlaš et al.,
2022) and cleanlab (Northcutt et al., 2021) on the code:

debugging = TrainsetDebugging([KNN_SHAPLEY, CLEANLAB])
report = mlwhatif
.on_pipeline("cv-pipeline.py") \
.run(debugging)

print(report)

MLWHATIF automatically rewrites the ML code to execute
different label error detection and cleaning methods. It
outputs a report, which details how these methods impact
the model performance, based on which the data scientist
can decide which data-centric ML method to finally choose.

2

https://github.com/stefan-grafberger/mlwhatif/blob/1877736feb3fb71acd38a61a37cb0216f7595523/demo/dc_demo/dc-demo.ipynb
https://github.com/stefan-grafberger/mlwhatif/blob/1877736feb3fb71acd38a61a37cb0216f7595523/demo/dc_demo/dc-demo.ipynb
https://github.com/stefan-grafberger/mlwhatif/blob/1877736feb3fb71acd38a61a37cb0216f7595523/demo/dc_demo/dc-demo.ipynb
https://github.com/stefan-grafberger/mlwhatif/blob/1877736feb3fb71acd38a61a37cb0216f7595523/demo/dc_demo/dc-demo.ipynb

Towards Declarative Systems for Data-Centric Machine Learning

+-------------+-----------+----------+
| method | cleaning | accuracy |
+-------------+-----------+----------+
None	None	0.964
knn-shapley	remove	0.951
knn-shapley	repair	0.982
cleanlab	remove	0.960
cleanlab	repair	0.965
+-------------+-----------+----------+

Future work. We will extend the number of data-
centric methods supported by MLWHATIF and integrate
it with frameworks for data preparation such as mlflow
recipes (Databricks, 2023). Furthermore, we will also tackle
the challenge of mapping the analysis results back to source
data items, by building on our work on fine-grained data
provenance over data preparation pipelines (Schelter et al.,
2022).

Acknowledgements. This work was supported by Ahold Delhaize.
All content represents the opinion of the authors, which is not nec-
essarily shared or endorsed by their respective employers and/or
sponsors.

References
Abiteboul, S., Hull, R., and Vianu, V. Foundations of

Databases. Addison-Wesley, 1995. ISBN 0-201-53771-0.

Anaconda.com. The State of Data Sci-
ence. https://www.anaconda.com/
state-of-data-science-2020, 2020.

Chung, Y., Kraska, T., Polyzotis, N., Tae, K. H., and Whang,
S. E. Slice finder: Automated data slicing for model vali-
dation. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pp. 1550–1553. IEEE, 2019.

Databricks. Mlflow Recipes. https://mlflow.org/
docs/latest/recipes.html, 2023.

Grafberger, S., Groth, P., Stoyanovich, J., and Schelter,
S. Data distribution debugging in machine learning
pipelines. VLDBJ, 2022.

Grafberger, S., Groth, P., and Schelter, S. Automating and
optimizing data-centric what-if analyses on native ma-
chine learning pipelines. SIGMOD, 2023.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Gurel, N. M., Li,
B., Zhang, C., Spanos, C. J., and Song, D. Efficient task-
specific data valuation for nearest neighbor algorithms.
VLDB, 2019.

Karlaš, B., Dao, D., Interlandi, M., Li, B., Schelter, S.,
Wu, W., and Zhang, C. Data debugging with shapley
importance over end-to-end machine learning pipelines.
arXiv preprint arXiv:2204.11131, 2022.

Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia,
M., Zhang, C., and Zou, J. Advances, challenges and
opportunities in creating data for trustworthy ai. Nature
Machine Intelligence, 4(8):669–677, 2022.

Mazumder, M., Banbury, C., Yao, X., Karlaš, B., Rojas,
W. G., Diamos, S., Diamos, G., He, L., Kiela, D., Ju-
rado, D., et al. Dataperf: Benchmarks for data-centric ai
development. arXiv preprint arXiv:2207.10062, 2022.

Northcutt, C., Jiang, L., and Chuang, I. Confident learning:
Estimating uncertainty in dataset labels. JAIR, 70, 2021.

Polyzotis, N., Roy, S., Whang, S. E., and Zinkevich, M.
Data lifecycle challenges in production machine learning:
a survey. SIGMOD Record, 47(2), 2018.

Schelter, S., Biessmann, F., Januschowski, T., Salinas, D.,
Seufert, S., and Szarvas, G. On challenges in machine
learning model management. IEEE Data Engineering
Bulletin, 2018.

Schelter, S., Grafberger, S., Guha, S., Sprangers, O., Karlaš,
B., and Zhang, C. Screening native ml pipelines with
“arguseyes”. 2022.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T.,
Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., and
Dennison, D. Hidden technical debt in machine learn-
ing systems. Advances in neural information processing
systems, 28, 2015.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and Mor-
cos, A. Beyond neural scaling laws: beating power law
scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

3

https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020
https://mlflow.org/docs/latest/recipes.html
https://mlflow.org/docs/latest/recipes.html

