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Abstract
A major problem with Active Learning (AL) is
high training costs since models are typically
retrained from scratch after every query round.
We start by demonstrating that standard AL on
neural networks with warm starting fails, both
to accelerate training and to avoid catastrophic
forgetting when using fine-tuning over AL query
rounds. We then develop a new class of tech-
niques, circumventing this problem, by biasing
further training towards previously labeled sets,
thereby complementing existing work on AL
acceleration. We accomplish this by employing
existing, and developing novel, replay-based Con-
tinual Learning (CL) algorithms that are effective
at quickly learning the new without forgetting the
old, especially when data comes from an evolving
distribution. We call this paradigm "Continual
Active Learning" (CAL). We show CAL achieves
significant speedups using a plethora of replay
schemes that use model distillation and that select
diverse/uncertain points from the history. We
conduct experiments across many diverse data
domains, including natural language, vision, med-
ical imaging, and computational biology, each
with very different neural architectures (transform-
ers/CNNs/MLPs) and dataset sizes. CAL consis-
tently provides a ∼3x reduction in training time,
while retaining performance and out of distribu-
tion robustness, showing its wide applicability.

1. Introduction
While neural networks have been immensely successful
in a variety of different supervised settings, most such
approaches are labeled-data hungry and require significant
computation. From a large pool of unlabeled data, active
learning (AL) selects subsets of points to label by imparting
the learner with the ability to query a human annotator.
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Such methods incrementally add points to the labeled pool
by repeatedly: (1) training a model from scratch on the
current labeled pool and (2) using some measure of model
uncertainty and/or diversity to select a set of points to query
the annotator (Settles, 2009; 2011; Wei et al., 2015; Ash
et al., 2020; Killamsetty et al., 2021a). AL has been shown
to reduce the amount of training data required but can be
computationally expensive since it requires retraining a
model, typically from scratch, after each query round.

A simple solution is to warm start the model parameters be-
tween query rounds. However, the observed speedups tend
to still be limited since the model must make several passes
through an ever-increasing pool of data. Moreover, warm
starting alone in some cases can hurt generalization, as
discussed in (Ash & Adams, 2020) and (Beck et al., 2021).
Another extension to this is to solely train on the newly la-
beled batch of examples to avoid re-initialization. However,
as we show in Section 4, naive fine-tuning fails to retain
accuracy on previously seen examples since the distribution
of the query pool may drastically change with each round.

This problem of catastrophic forgetting while incrementally
learning from a series of new tasks with shifting distribu-
tions is a central question in another paradigm called Con-
tinual Learning (CL) (French, 1999; McCloskey & Cohen,
1989; McClelland et al., 1995; Kirkpatrick et al., 2017c). CL
has recently gained popularity, and many algorithms have
been introduced to allow models to quickly adapt to new
tasks without forgetting (Riemer et al., 2018; Lopez-Paz &
Ranzato, 2017; Chaudhry et al., 2019; Aljundi et al., 2019b;
Chaudhry et al., 2020; Kirkpatrick et al., 2017b).

In this work, we propose Continual Active Learning (CAL)1,
which applies Continual Learning strategies to accelerate
batch Active Learning. In CAL, we apply CL to enable
the model to learn the newly labeled points without forget-
ting previously labeled points while using past samples ef-
ficiently using replay-based methods. As such, we observe
that CAL attains significant training time speedups over stan-
dard AL. This is beneficial for the following reasons: (1):
As neural networks swell (Shoeybi et al., 2019), so do the
environmental and financial model training costs (Bender

1There have been papers published with titles containing the
“Continual Active Learning” phrase, but these do not merge Con-
tinual Learning with Active Learning as we do, hence our name.
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et al., 2021; Dhar, 2020; Schwartz et al., 2020). Reducing
the number of gradient updates required for AL will help
mitigate such costs, especially with large-scale models. (2):
Reducing AL computational requirements makes AL more
accessible for edge computing, IoT, and low-resource device
deployment (Senzaki & Hamelain, 2021) such as with feder-
ated learning (Li et al., 2020). (3): Developing new AL algo-
rithms/acquisition functions, or searching for architectures
as done with NAS/AutoML that are well-suited specifically
for AL, can require hundreds or even thousands of runs.
Since CAL’s speedups are agnostic to the AL algorithm
and the neural architecture, such experiments can be signifi-
cantly sped up. Overall, the importance of speeding machine
learning training processes is well recognized, as evidenced
by the plethora of efforts in the computing systems commu-
nity (Jia et al., 2022; Zhang et al., 2017; Zheng et al., 2022).
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Figure 1. Summary of our results: Benchmarking average rela-
tive accuracy vs. speedup for the proposed methods (solid mark-
ers) against the baseline. Each point is averaged over different
datasets and across different labeling budgets; top-right region is
desiderata. This shows that proposed CAL methods (particularly
CAL-DER/SD/SDS2) have equivalent performance relative to the
baseline (if not better) on multiple datasets and across different
budgets, all while providing significant speedups.

In addition, CAL demonstrates a practical application for
CL methods. Many of the settings used to benchmark CL
methods in recent work are somewhat contrived and unreal-
istic. Most CL work considers the class/domain incremental
setting, where only the samples that belong to a subset of the
set of classes/domains of the original dataset are available
to the model at any given time. This setting need not be
the only benchmark upon which CL methods are evaluated.
We suggest that the evaluation of future new CL algorithms
should be determined not only on traditional CL evaluation
schemes and benchmarks but also on their performance in
the CAL setting.

In the present work, we are not using CL to improve or
change AL querying strategies. We view this as both a
strength of the present work and an opportunity for future
work. Firstly, it is a strength of our present work since any
AL query strategy, both old and new, can in principle be
applied in the CAL setting, both for speeding up the AL
strategy and offering, as argued above, a test bed for CL.
Indeed, a major AL research challenge includes combining

AL with other techniques, as we believe we have done
herein. Secondly, it is an opportunity since there is nothing
inherent in the definition of CL that precludes the CL tasks
from being dependent on the model. There may be a way for
CL to open doors to intrinsically new AL querying policies
of attaining new batches of unlabeled data. This we leave
to the future — our core present goal is to accelerate batch
AL training via CL techniques while preserving accuracy.

To the best of our knowledge, this application of CL al-
gorithms to accelerate batch AL has never been explored.
Our contributions can be summarized as follows: (1) We
first demonstrate that batch active learning techniques can
benefit from continual learning techniques, and their merger
creates a new class of techniques that we propose to call the
“CAL framework.” (2) We benchmark several existing CL
methods (CAL-ER, CAL-DER, CAL-MIR) as well as novel
methods (CAL-SD, CAL-SDS2) and evaluate them on di-
verse datasets based on the accuracy/speedup they can attain
over standard AL. (3) We study speedup/performance trade-
offs on datasets that vary in modality (natural language, vi-
sion, medical imaging, and computational biology), neural
architecture with varying degrees of computation (Trans-
formers/CNNs/MLPs), data scale (including some larger
datasets, one having 2M samples), and class-balance. And
(4), lastly, we demonstrate that models trained with CAL and
standard AL models behave similarly, in that both classes of
models attain similar uncertainty scores on held-out datasets
and achieve similar robustness performance on out-of-
distribution data. Figure 1 summarizes our results, detailed
later in the paper and greatly detailed in the appendices.

2. Related Work
Active learning has demonstrated label efficiency (Cohn
et al., 1994; Wei et al., 2015; Killamsetty et al., 2021a; Ash
et al., 2020) over passive learning. In addition, there has
been extensive work on theoretical aspects of AL (Hanneke,
2009; 2007; Balcan et al., 2010) where (Hanneke, 2012)
shows sample complexity advantages over passive learning
in noise-free classifier learning for VC classes. Recently
there has been an interest in speeding up active learning
since most deep learning is computationally demanding.

(Kirsch et al., 2019; Pinsler et al., 2019; Sener & Savarese,
2018) aim to reduce the number of query iterations by hav-
ing large query batch sizes. However, they do not exploit
the learned models from previous rounds for the subsequent
ones and are therefore complementary to CAL. Work such
as (Coleman et al., 2020a; Ertekin et al., 2007; Mayer &
Timofte, 2020; Zhu & Bento, 2017) speeds up the selection
of the new query set by appropriately restricting the search
space or by using generative methods. This work can be
easily integrated into our framework because CAL works on
the training side of active learning, not on the query selec-
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tion. On the other hand, (Lewis & Catlett, 1994; Coleman
et al., 2020b; Yoo & Kweon, 2019) use a smaller proxy
model to reduce computation overhead, however, they still
follow the standard active learning protocol, and therefore
can be accelerated when integrated with CAL.

There exists work that explores continual/transfer learning
and active learning in the same context. (Perkonigg et al.,
2021) propose an approach that allows active learning to be
applied to data streams of medical images by introducing
a module that detects domain shifts. This is quite distinct
from our work: our work uses CL algorithms to prevent
catastrophic forgetting and to accelerate learning. (Zhou
et al., 2021) study when standard active learning is used to
fine-tune a pre-trained model, and employs transfer learn-
ing — this does not consider continual learning and active
learning together, however, and is therefore not related to
our work. Finally, (Ayub & Fendley, 2022) studies where a
robot observes unlabeled data sampled from a shifting dis-
tribution, but does not explore active learning acceleration.

For preventing catastrophic forgetting, we mostly focus on
replay-based algorithms that are state-of-the-art methods
in CL. However, as demonstrated in Section 4 on how ac-
tive learning rounds can be viewed in a continual learning
context, one can apply other methods such as EWC (Kirk-
patrick et al., 2017a), Bayesian divergence priors (Li &
Bilmes, 2007), structural regularization (Li et al., 2021) or
functional regularization (Titsias et al., 2020) as well.

The effect of warm-started model training on generalization
and convergence speed has been explored by (Ash & Adams,
2020) which empirically demonstrates that a model that
has been pretrained on a source dataset converges faster
but exhibits worse generalization on a target dataset when
compared to a randomly initialized model. However, that
work only considers the setting where the source and target
datasets are unbiased estimates of the same distribution.
This is distinct from our work since the distributions we
consider are all dependent on the model at each AL round.
Furthermore, our work employs CL methods in addition to
warm-starting, also not considered in (Ash & Adams, 2020).

3. Background
3.1. Batch Active Learning

Define [n] = {1, ..., n}, and let X and Y denote the input
and output domains respectively. AL typically starts with
an unlabeled dataset U = {xi}i∈[n], where each xi ∈ X .
The AL setting allows the model f , with parameters θ, to
query a user for labels for any x ∈ U , but the total number
of labels is limited to a budget b, where b ≤ n. Throughout
the work, we consider classification tasks so the output of
f(x; θ) is a probability distribution over classes. The goal
of AL is to ensure that f can attain low error when trained

only on the set of b labeled points.

Algorithm 1 Batch Active Learning
1: procedure ACTIVELEARNING(f , U , b1:T , T )
2: t← 1, L← ∅ ▷ Initialize
3: Ut ∼ U ▷ Draw b1 samples from U
4: Dt ← {(xi, yi)|xi ∈ Ut} ▷ Provide labels
5: U ← U \ Ut ▷ Remove from unlabeled set
6: L← L ∪ Dt ▷ Add to labeled set
7: while t ≤ T do
8: Randomly initialize θinit

9: θt ← Train(f, θinit,L)
10: Ut+1 ← Select(f, θt,U , bt) ▷ Select bt points based on θt

11: Dt+1 ← {(xi, yi)|xi ∈ Ut}
12: U ← U \ Ut+1; L← L ∪ Dt+1; t← t+ 1

13: return L

Algorithm 1 details the general AL procedure. Lines 3-6
construct the seed set D1 by randomly sampling a subset
of points from U and labeling them. Lines 7-14 iteratively
expand the labeled set for T rounds by training the model
from a random initialization on Dt until convergence and
selecting bt points (where

∑
t∈[T ] bt = b) from U based on

some selection criteria that is dependent on θt. The selection
criteria generally select samples based on model uncertainty
and/or diversity (Lewis & Gale, 1994; Dagan & Engelson,
1995; Settles; Killamsetty et al., 2021a; Wei et al., 2015;
Ash et al., 2020; Sener & Savarese, 2017). In this work,
we primarily consider uncertainty sampling (Lewis & Gale,
1994; Dagan & Engelson, 1995; Settles), though we also
test other selection criteria in Section C in the Appendix.

Uncertainty Sampling is a widely-used practical AL
method that selects Ut = {x1, . . . , xbt} ⊆ U by choosing
the samples that maximize a notion of model uncertainty.
We consider entropy (Dagan & Engelson, 1995) as the uncer-
tainty metric, so if hθ(x) ≜ −

∑
i∈[k] f(x; θ)i log f(x; θ)i,

then Ut+1 ∈ argmaxA⊂U :|A|=bt

∑
x∈A hθ(x).

3.2. Continual Learning

We define D1:n =
⋃

i∈[n] Di. In CL, the dataset consists of
T tasks {D1, ...,DT } that are presented to the model sequen-
tially, where Dt = {(xi, yi)}i∈Nt

, Nt are the task-t sample
indices, and nt = |Nt|. At time t ∈ [T ], the data/label
pairs are sampled from the current task (x, y) ∼ Dt, and the
model has only limited access to the history D1:t−1. The
CL objective is to efficiently adapt the model to Dt while
ensuring performance on the history does not appreciably
degrade. We focus on replay-based CL techniques that
attempt to approximately solve CL optimization by using
samples from D1:t−1 to regularize the model while adapt-
ing to Dt. Please refer to appendix B for more details on
CL. We focus on replay-based CL techniques that attempt
to approximately solve CL optimization by using samples
from D1:t−1 to regularize the model while adapting to Dt.

Algorithm 2 outlines general replay-based CL, where the
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objective is to adapt f parameterized by θ0 to D while using
samples from the history H. Bcurrent consists of m points ran-
domly sampled from D, and Breplay consists of m(h) points
chosen based on a criterion that selects from H. In line 6,
θτ is computed based on an update rule that utilizes both
Breplay and Bcurrent. Many CL techniques consider the prob-
lem of selecting which samples should be retained from H,
quite important when D1:T is too large to store in memory
or when T is unknown (Aljundi et al., 2019b). However,
this constraint does not apply to the CAL setting, so in the
subsequent sections, we consider H = D1:t−1.

Algorithm 2 Continual Learning
1: procedure CONTINUALTRAIN(f , θ0, D,H, m, m(h))
2: τ ← 0 ▷ τ is a local iteration index.

3: while not converged do
4: τ ← τ + 1
5: Bcurrent ← {(xi, yi)}mi=1 ∼ D ▷ Sample from new task

6: Breplay ← Select(f, θτ−1,H,m(h)) ▷ Sample from history

7: θτ ← Update(f, θτ−1,Bcurrent,Breplay)

8: return θτ

4. Blending Continual and Active Learning
A clear AL inefficiency is that the model f is retrained
from scratch on the entire labeled pool after every query
round. One potential solution idea is to simply continue
training the model only on the newly AL-queried samples
and, via the process of warm starting, hope that history
will not fade. Unfortunately for this approach, Figure 2
shows that when the model is warm-start trained only on
the task t (samples labeled at AL round t using entropy
sampling), historical sample performance deteriorates
precipitously while performance on the validation set
flatlines. That is, at AL round t (x-axis), we continue
to train the model until convergence on task t and track
accuracy (y-axis) on each previous task and also on the
validation set. The performance of task 1, after the initial
drop, tracks that of the validation set, since task 1 is a
model agnostic initial unbiased random subset query of the
training data. The performance of task i, for i > 1, however,
each of which is the result of model-conditioned AL query,
shows perilous historical forgetting. In the end, the model
performs considerably worse on all of the historical tasks
(aside from task 1) than the validation set, even though it
has been trained on those tasks and not the validation set.
This experiment suggests that: (1) the distribution of each
AL-queried task t > 1 is different than the data distribution;
(2) fine-tuning to task t can result in catastrophic forgetting;
and (3) techniques to combat catastrophic forgetting are
necessary to effectively incorporate new information
between successive AL rounds; this motivates our work.
The CAL approach, shown in Algorithm 3, uses CL tech-
niques to ameliorate catastrophic forgetting. The key dif-
ference between CAL and Algorithm 1 is line 9. Instead of

Algorithm 3 The general CAL approach.
1: procedure CAL(f , U , b1:T , T , m, m(h))
2: t← 1, L← ∅ ▷ Initialize
3: Ut ∼ U ▷ Draw b1 samples from U
4: Dt ← {(xi, yi)|xi ∈ Ut} ▷ Provide labels
5: U ← U \ Ut
6: L← L ∪ Dt

7: Randomly initialize θ0
8: while t ≤ T do
9: θt← ContinualTrain(f , θt−1, Dt, D1:t−1, m, m(h))

10: Ut+1 ← Select(f, θt,U , bt) ▷ Select bt points from U
11: Dt+1 ← {(xi, yi)|xi ∈ Ut+1}
12: U ← U \ Ut+1; L← L ∪ Dt+1; t← t+ 1

13: return L

standard training, replay-based CL is used to adapt f to Dt

while retaining performance on D1:t−1. The speedup comes
from two sources: (1) we are computing gradient updates
only on a useful subset of the history D1:t−1 rather than
all of it for reasonable choices of m(h); and (2) the model
converges faster since it starts warm. In the rest of the sec-
tion, define Lc(θ) ≜ E(x,y)∼Bcurrent [ℓ(y, f (x; θ))]. We next
define and compare several CAL methods and assess their
performance based on their performance on the test set and
the speedup they attain compared to standard AL.

Experience Replay (CAL-ER) is the simplest and oldest
replay-based method (Ratcliff, 1990; Robins, 1995). In
this approach, Bcurrent and Breplay are interleaved to create a
minibatch B of size m+m(h) and Breplay is chosen uniformly
at random from D1:t−1. The parameters θ of model f are
updated based on the gradient computed on B.

Maximally Interfered Retrieval (CAL-MIR) chooses
a size-m(h) subset of points from D1:t−1 most likely to be
forgotten (Aljundi et al., 2019a). Given a batch of m labeled
samples Bcurrent sampled from Dt and model parameters
θ, θv is computed by taking a “virtual” gradient step i.e.,
θv = θ − η∇Lc(θ) where η is the learning rate. Then for
every example x in the history, sMIR(x) = ℓ(f(x; θ), y)−
ℓ(f(x; θv), y) (i.e., the change in loss after taking a single
gradient step) is computed. The m(h) samples with the high-
est sMIR score are selected for Breplay, and the remainder is
similar to experience replay. Bcurrent and Breplay are concate-
nated to form the minibatch (as in CAL-ER), upon which the
gradient update is computed. In practice, selection is done
on a random subset of D1:t−1 for speed, since computing
sMIR for every historical sample is prohibitively expensive.

Dark Experience Replay (CAL-DER) uses a distilla-
tion approach to regularize updates (Buzzega et al., 2020).
Let g(x; θ) denote the pre-softmax logits of classifier
f(x; θ), i.e., f(x; θ) = softmax(g(x; θ)). In DER, ev-
ery x′ ∈ D1:t−1 has an associated z′ which corresponds
to the model’s logits at the end of the task when x was
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Figure 2. A ResNet-18’s performance on CIFAR-10 on the validation set (blue X) and task i for i ∈ {1, 2, . . . , 9} (other colors) after
training the warm-started model and training just on the new task data. Specifically, at each round a new 5% of the full dataset is added to
the labeled pool and the previously trained model is further trained just on the new points (the isolated upper-right cyan point shows task
9’s performance after round 9). After each round, the accuracy on the corresponding task does well, but all previous tasks’ accuracies drop
precipitously, demonstrating a form of catastrophic forgetting. Also, the validation set performance has flatlined despite continued training
on new data. This demonstrates that AL with warm starting (i.e., naively fine-tuning a model to newly labeled points) can work poorly.

first observed — if x′ ∈ Dt′ , then z′ ≜ g(x′; θ∗t′)) where
t′ ∈ [t− 1] and θ∗t′ are the parameters obtained after round
t′. DER minimizes LDER(θ) defined as:

LDER(θ) ≜ Lc(θ) + E
(x′,y′,z′)∼Breplay

[
α ∥g(x′; θ)− z′∥22

+β ℓ(y′, f(x′; θ))] , (1)

where Breplay is a batch uniformly at randomly (w/o replace-
ment) sampled from D1:t−1, and α and β are tuneable hy-
perparameters. The first term ensures that samples from
the current task are classified correctly. The second term
consists of a classification loss and a mean squared error
(MSE) based distillation loss applied to historical samples.

Scaled Distillation (CAL-SD) LSD(θ) is a new objective
proposed in this work defined via:

Lreplay(θ) ≜ E
(x′,y′,z′)∼Breplay

[αDKL (softmax(z′) || f(x′; θ))

+(1− α) ℓ (y′, f(x′; θ))] , (2)

and then LSD(θ) ≜ λt Lc(θ) + (1 − λt)Lreplay(θ) where
λt ≜ |Dt|/(|Dt|+|D1:t−1|). Similar to CAL-DER, Lreplay
is a sum of two terms: a distillation loss and a classifica-
tion loss. The distillation loss expresses the KL-divergence
between the posterior probabilities produced by f and
softmax(z′), where z′ is defined in the DER section. We use
KL-divergence instead of MSE loss on the logits so that the
distillation and the classification losses have the same scale
and dynamic range. α ∈ [0, 1] is a tuneable hyperparameter.

The weight of each term is determined adaptively by a “sta-
bility/plasticity” trade-off term λt. A stability-plasticity
dilemma is commonly found in both biological and artifi-
cial neural networks (Abraham & Robins, 2005; Mermillod
et al., 2013). A network is stable if it can effectively retain

past information but cannot adapt to new tasks efficiently,
whereas a network that is plastic can quickly learn new tasks
but is prone to forgetting. The trade-off between stability
and plasticity is a well-known constraint in CL (Mermillod
et al., 2013). For CAL, we want the model to be plastic
early on, and stable later on. We apply this intuition with λt:
higher values indicate higher plasticity, since minimizing
the classification error of samples from the current task is
prioritized. Since D1:t−1 increases with t, λt decreases and
the model becomes more stable in later training rounds.

Scaled Distillation w/ Submodular Sampling (CAL-
SDS2) CAL-SDS2 is another new CL approach we intro-
duce in this work. CAL-SDS2 uses CAL-SD to regularize
the model and uses a submodular sampling procedure to
select a diverse set of history points to replay. Submodular
functions are well-known to be suited to capture notions
of diversity and representativeness (Lin & Bilmes, 2011;
Wei et al., 2015; Bilmes, 2022) and the simple greedy al-
gorithm can approximately maximize, under a cardinality
constraint, a monotone submodular function up to a 1− e−1

constant factor multiplicative guarantee (Fisher et al., 1978;
Minoux, 1978; Mirzasoleiman et al., 2015). We define our
submodular function G as:

G(S) ≜
∑
xi∈A

max
xj∈S

wij + λ log

(
1 +

∑
xi∈S

h(xi)

)
. (3)

The first term is a facility location function, where wij is a
similarity score between samples xi and xj . We use wij =
exp (−∥zi − zj∥2/2σ2) where zi is the penultimate layer of
model f for xi and σ is a hyperparameter. The second term
is a concave over modular function (Liu et al., 2013) and
h(xi) is a standard AL measure of model uncertainty, such
as entropy of the model’s output distribution. Both terms
are well known to be monotone non-decreasing submodular,
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as is their non-negatively weighted sum. The core reason
for applying a concave function over a model-uncertainty-
score-based modular function, instead of keeping it as a pure
modular function, is to better align the modular uncertainty
values with the facility location function. Otherwise, if
we do not apply the concave function, the facility location
function dominates during the early steps of the greedy
algorithm and the modular function dominates in the later
steps of greedy. In order to speed up SDS2 (specifically to
avoid the need to perform forward passes through the entire
history before a single step), we randomly subsample from
the history before performing submodular maximization so
S ⊂ A ⊂ D1:t−1. The objective of CAL-SDS2 is to ensure
that the set of samples that are replayed are both difficult and
diverse, similar to the motivation of the heuristic employed
in (Wei et al., 2015).

5. Experiments and Results
We evaluate the validation performance of the model when
we train on different fractions (b/n) of the full dataset. We
compute the speedup attained by a CAL method by divid-
ing the wall-clock time of the baseline AL method over
the wall-clock time of the CAL method. We test the CAL
methods on a variety of different datasets spanning multiple
modalities. Two baselines do not utilize CAL which are
standard AL (active learning) as well as AL w/ WS (active
Learning with warm starting but still training using all the
presently available labeled data).

Our objective is to demonstrate: (1) at least one CAL-based
method exists that can match or outperform a standard active
learning technique while achieving a significant speedup
for every budget and dataset and (2) models that have been
trained using a CAL-based method behave no differently
than standard models. We emphasize that the purpose of this
work is not to champion a single method, but rather to show-
case an assortment of approaches in the CAL paradigm that
achieve different performance/speedup trade-offs. Lastly,
we would like to point out that some of the CAL methods are
ablations of each other. For example, CAL-ER is ablation
for CAL-DER (or CAL-SD) when we replace the distillation
component. Similarly, CAL-SD is ablation of CAL-SDS2,
where we remove the submodular selection part.

5.1. Datasets and Experimental Setup

We use the following datasets, which span a spectrum of data
modalities, scale (both in terms of dataset size, and model’s
computational/memory footprint), and class balance.

FMNIST: The FMNIST dataset consists of 70,000 28×28
grayscale images of fashion items belonging to 10
classes (Xiao et al., 2017). A ResNet-18 architecture (He
et al., 2016) with SGD is used. We apply data augmentation,

as in (Beck et al., 2021), consisting of random horizontal
flips and random croppings.

CIFAR-10: CIFAR-10 consists of 60,000 32×32 color
images with 10 different categories (Krizhevsky, 2009). We
use a ResNet-18 and use the SGD optimizer for all CIFAR-
10 experiments. We apply data augmentations consisting of
random horizontal flips and random croppings.

MedMNIST: We use the DermaMNIST dataset within the
MedMNIST collection (Yang et al., 2021a;b) for perfor-
mance evaluation of CAL on medical imaging modalities. It
consists of 3-color channel dermatoscopy images of 7 differ-
ent skin diseases, originally obtained from (Codella et al.,
2019; Tschandl et al., 2018). A ResNet-18 architecture is
used for all DermaMNIST experiments.

Amazon Polarity Review: (Zhang et al., 2015) is an NLP
dataset consisting of reviews from Amazon and their corre-
sponding star-ratings (5 classes) which was used for active
learning in Coleman et al. (2020b). Similar to the previous
work we consider a total unlabeled pool of size 2 million
sentences and use a VDCNN-9 (Schwenk et al., 2017) ar-
chitecture trained using Adam.

COLA: COLA (Warstadt et al., 2018) aims to check the lin-
guistic acceptability of a sentence via binary classification.
We consider an unlabeled size-7000 pool similar to Ein-Dor
et al. (2020) and use a BERT (Devlin et al., 2019) backbone
trained using Adam.

Single-Cell Cell Type Identity Classification: Recent
single-cell RNA sequencing (scRNA-seq) technologies have
enabled large-scale characterization of hundreds of thou-
sands to millions of cells in complex tissues, and accu-
rate cell type annotation is a crucial step in the study of
such datasets. To this end, several deep learning models
have been proposed to automatically label new scRNA-seq
datasets (Xie et al., 2021). The HCL dataset is highly class-
imbalanced and consists of scRNA-seq data for 562,977
cells across 63 cell types represented in 56 human tis-
sues (Han et al., 2020). We use the ACTINN model (Ma &
Pellegrini, 2019), a four-layer multi-layer perceptron that
predicts the cell-type for each cell given its expression of
28832 genes, and uses an SGD optimizer.

Hyperparameters: Details about the specific hardware and
the choices of hyperparameters used to train models for each
technique can be found in Appendix A.5.

Active Learning setup: As done in previous work (Cole-
man et al., 2020b; Killamsetty et al., 2021a) for CIFAR10
and Amazon polarity review, budgets go from 10% to 50%
in increments of 10%. For FMNIST, MedMNIST, and Cell-
type datasets, it goes from 10% to 30% in increments of
5%. Lastly, for COLA, we follow a budget using absolute
sizes from 200 to 1000 in increments of 200 (similar to Ein-
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Figure 3. Relative accuracy vs. speedup averaged over different labeling budgets. For every dataset, we have at least one CAL method,
that is faster with same (if not better) accuracy than baseline (top right region is desiderata).

Dor et al. (2020)).2 We adopt the AL framework proposed
in (Beck et al., 2021) for all experiments. In the main paper,
we here present results for an uncertainty sampling-based
acquisition function and provide results using other acqui-
sition functions in Appendix C. Lastly, in appendix A.5
we provide a sensitivity analysis of our proposed methods,
where we demonstrate that CAL methods are robust to the
changes to the hyperparameters.

5.2. Performance vs Speedup
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Figure 4. Relative accuracy vs. speedup averaged over different
datasets. For every given budget, we have at least one CAL method
that is faster with the same (if not better) accuracy than the baseline.

Our goal is to show that for every dataset and budget, there
exists at least one CAL method that performs equivalent (if
not better) than baseline AL. However, with raw accuracies,
it is difficult to compare different CAL methods and baseline
AL over different datasets at different budgets. Therefore,
we begin by observing the relative gain in accuracy over the
AL baseline. Relative gains further make it feasible to take
an average across the budgets, for a given dataset, and to take
averages across the datasets, for a given budget. For every
budget, we normalize the accuracies of each method by that
of baseline AL. This makes the baseline accuracy always 1,
irrespective of budget and dataset. Relative performances
greater than 1 indicate better than baseline accuracy (and
the opposite for the less than 1 case). Having said that:
(1) keeping the budgets fixed to 10%, 20%, and 30% and
averaging over the datasets (except COLA, since it has a
different budget) give us Figure 4; (2) keeping the dataset
fixed, averaging the relative accuracy vs. speedups across
different budgets give us Figure 3; and (3) further averaging
the above across different datasets give us Figure 1. Methods

2We follow the query set sizes from (Ein-Dor et al., 2020)

in the top right corner are preferable. For space reasons,
we display only relative accuracies in the main paper, but
all detailed absolute accuracies and standard deviations for
each method for every dataset and every budget are available
in Appendix A.2.

From the overall and per-dataset depiction of CAL’s perfor-
mance (Figures 1 and 3, respectively), it is evident that there
exists a CAL method that attains a significant speedup over
a standard AL technique for every dataset and budget while
preserving test set accuracy. From Figure 3, we can further
see that for some datasets (such as FMNIST and CIFAR-10),
CAL-ER, a non-distillation, and uniform sampling-based
method, only incur a minor drop in performance but attain
the highest speedup. This suggests that naively biasing
learning towards recent tasks can be sufficient to adapt the
model to a new set of points between AL rounds. However,
as we show in Figure 4 it is not universally true for all the
datasets (at different budgets). Hence, the methods which
include some type of distillation term (CAL-DER, CAL-
SD, CAL-SDS2) generally perform the best out of all CAL
methods. We believe that the submodular sampling-based
method (CAL-SDS2) can be accelerated using stochastic
methods and results improved by considering other submod-
ular functions, which we leave as future work. It should
be mentioned, however, that the concave function on h(xi)
was essential for CAL-SDS2’s performance.

5.3. Comparison Between Standard and CAL Models

Similar to how two models with similar accuracy can
still have different generalization behavior, we next assess
whether CAL training has any adverse effect on the final
model’s behavior. We first demonstrate that CAL does
not result in any deterioration of model robustness (Sec-
tion 5.3.1). We then demonstrate that CAL models and
baseline trained models are uncertain about a similar set of
unseen examples (Section 5.3.2).

5.3.1. ROBUSTNESS

Test time distributions can vary greatly from training distri-
butions, so it is important to ensure that models can gener-
alize across different domains. Since models trained using



Accelerating Batch Active Learning Using Continual Learning Techniques

CAL methods require significantly fewer gradient steps, the
modified training procedure may produce fickler models
that are less robust to domain shifts. To ensure against this,
we evaluate CAL-method-trained model robustness in this
section. We consider CIFAR-10C (Hendrycks & Dietterich,
2019), a dataset comprising 19 different corruptions each
done at 5 levels of severity. For each model trained up to a
50% budget, we report the average classification accuracy
over each corruption relative to the baseline AL in Figure 5;
each result is an average of over three random seeds. We
note that most of the CAL methods perform statistically
similarly to standard active learning, all while providing
significant acceleration. Moreover, on average across all the
tests, models trained with CAL-SDS2 are better than the
models trained with CAL-DER, where we see a difference
of as much as 5% in corruptions such as glass blur; please
refer to appendix A.3 table 7. Submodular sampling replays
a diverse representative subset of history which is likely the
reason behind CAL-SDS2’s better robustness. Relationship
of diversity with robustness have also been explored in pre-
vious works including (Killamsetty et al., 2021b; Fang et al.,
2022; Rozen et al., 2019; Gong et al., 2018).
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Figure 5. Comparison of CAL methods with the baseline on
CIFAR-10C; results on individual benchmark are reported in Ap-
pendix table 7. All CAL methods perform within a standard de-
viation of the standard AL baseline, and CAL-SDS2 achieves the
highest robust accuracy on average.

5.3.2. CORRELATION OF UNCERTAINTY SCORES

For models trained using CAL techniques to be used as
valid substitutes for standard AL models, these two classes
of models need to query similar samples at each AL round.
This is particularly important if AL is being used solely as a
data subset selection procedure (where the user is concerned
about the quality of the resulting labeled dataset as opposed
to the final model). When using uncertainty sampling as the
AL acquisition function, computing the Pearson correlation
between the entropy scores of baseline and CAL models
on the validation set after every query round is one way of
determining this. Since most AL policies incorporate some
notion of uncertainty, we hypothesize that the results of this

experiment should extend to other acquisition functions as
well. A similar analysis is done in (Coleman et al., 2020b).

As seen in Figure 6, the Pearson correlation between all
pairs of models is positive at every AL query round. Thus,
the nature of samples that the models are uncertain about,
and thus are likely to be chosen at each round, is similar
between the CAL-trained models and baseline AL-trained
models. A breakdown of these correlations at every round
is provided in Figure 13 in the Appendix.

In the grid of cells below-left, we show the mean, max, std, 
and min (clockwise starting at left of each cell) of the cor-
relations of the entropies of the models trained using each 

of the seven techniques, where the statistics in 
each case are computed over the di�erent active 
query rounds. In general, high mean, and low std, 
correlation implies that the unlabeled samples 

each model is uncertain about are simi-
lar to each other. We see positive 
mostly strong correlations and low stds, 

implying that CAL-based 
methods are not changing 
the inherent behavior of the 

active learning 
processes, provid-
ing further evi-
dence for the utility 

of the 
CAL 
methods. 

Figure 6. Cross-Method Entropy Correlation Statistics.

6. Conclusion & Future Work
We proposed the CAL framework, the first method to cir-
cumvent the problem of having to retrain models between
batch AL rounds. Across vision, natural language, medical
imaging, and biological datasets, we show there is always
a CAL-based method that either matches or outperforms
standard AL while achieving considerable speedups. Since
CAL is independent of the model architecture and AL strat-
egy, this framework applies to a broad range of settings.
Future research directions may include the following: (1)
CAL reduces the training time of the model, but not the
AL query time although query time reductions could be an
offshoot of this work; (2) CAL operates using existing AL
query acquisition functions, but it should be possible to tai-
lor acquisition functions for CAL methods yielding further
improvements in both generalization and computation; (3)
while SDS2’s use of submodularity helped robustness, addi-
tional submodular strategies can be used to further improve
results and also for diverse AL query selection; and (4) CAL
provides a novel application for CL; future CL work can be
partially assessed based on its CAL performance.
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A. Additional Experimental Details on Main Results
A.1. Procedure for normalized accuracy plots

Here we again explain the procedure to generate the normalized accuracy versus speedup plots, as reported in figures 1, 4,
and 3. These plots help us to understand and compare the performance of different CAL methods against the baseline AL.
For every dataset, we first get the respective accuracies and speedups of CAL methods and baseline AL, for every budget.
This is also reported as a tabular form besides the scatter plot visualizations in section A.2.

For every budget, we normalize the accuracies of each method by that of baseline AL. This makes the baseline always at 1,
irrespective of budget and dataset. Relative performances greater than 1 indicate better than baseline accuracy (and similarly
for the less than 1 case). Note that, for CIFAR10 and Amazon polarity review, budgets go from 10% to 50% in increments
of 10%. However, for FMNIST, MedMNIST, and Celltype datasets, it goes from 10% to 30% in increments of 5%. Lastly
for COLA, the budgets are different from the above, therefore, we don’t include that when we average across the dataset at a
fixed budget. Having said that,

• Keeping the budgets fixed to 10%, 20%, and 30% and averaging over the datasets (except COLA, since it has a different
budget) will give us figure 4.

• Keeping the dataset fixed, averaging the relative accuracy v.s. speedups across different budgets will give us figure 3.

• Further averaging the above across different datasets will give us the main result figure 1.

From the results above, we can infer that CAL-DER and specialized methods such as CAL-SD/SDS2 always provide a
speedup, all while preserving the accuracy, if not better.

A.2. Results in Tabular Form

In this section, we expand our results mentioned in section 5.2. In particular, we report the absolute accuracies for each
dataset, at every budget, and plot it against the observed speedup. All methods highlighted in blue are methods that use CAL.
Note that all the results in this section are for uncertainty-based query pool acquisition functions. The choice of budget scale
is taken from the previous works (Beck et al., 2021; Ein-Dor et al., 2020). Each dataset has a different complexity (and we
train on them using different neural architectures), therefore they differ in the labeling budget.

FMNIST Please refer to table 1 and figure 7.
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Figure 7. FMNIST Results
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Test Accuracy (%) Factor Speedup

Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%

CAL-ER 92.6 ± 0.1 93.9 ± 0.2 94.5 ± 0.1 94.9 ± 0.2 94.9 ± 0.2 1.5× 1.4× 2.0× 2.4× 2.8 ×
CAL-MIR 92.6 ± 0.3 93.9 ± 0.2 94.5 ± 0.0 94.9 ± 0.1 94.9 ± 0.0 0.9 × 1.2× 1.3× 1.5× 1.7×
CAL-DER 92.7 ± 0.1 93.9 ± 0.1 94.5 ± 0.1 94.8 ± 0.2 94.9 ± 0.1 1.4 × 2.0× 2.4× 2.7× 3.1×
CAL-SD 92.6 ± 0.1 94.0 ± 0.2 94.5 ± 0.1 94.8 ± 0.2 94.9 ± 0.1 1.4 × 2.0× 2.4× 2.7× 3.1×

CAL-SDS2 92.6 ± 0.1 94.0 ± 0.2 94.6 ± 0.2 94.9 ± 0.1 94.9 ± 0.1 1.1× 1.5× 1.7× 1.9× 2.1×
AL w/ WS 92.7 ± 0.3 93.8 ± 0.2 94.4 ± 0.1 94.6 ± 0.1 94.4 ± 0.2 1.1× 1.4× 1.5× 1.5× 1.5×

AL 92.6 ± 0.3 93.8 ± 0.0 94.4 ± 0.1 94.9 ± 0.2 94.9 ± 0.1 1.0× 1.0× 1.0× 1.0× 1.0×

Table 1. FMNIST Results

CIFAR10 Please refer to table 1 and figure 8.
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Figure 8. CIFAR-10 Results

Test Accuracy (%) Factor Speedup

Method 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

CAL-ER 82.1 ± 0.5 89.9 ± 0.3 92.4 ± 0.1 93.5 ± 0.1 93.7 ± 0.3 1.6× 2.8× 4.0× 5.3× 6.5×
CAL-MIR 82.4 ± 0.4 89.5 ± 0.3 92.6 ± 0.3 93.6 ± 0.1 93.8 ± 0.2 0.7 × 1.0× 1.4× 1.8× 2.2×
CAL-DER 83.5 ± 0.1 90.0 ± 0.4 92.3 ± 0.1 93.1 ± 0.2 93.4 ± 0.1 1.4× 2.3× 3.2× 4.2× 5.2×
CAL-SD 83.0 ± 0.0 90.0 ± 0.4 92.7 ± 0.2 93.3 ± 0.3 93.9 ± 0.3 1.4× 2.2× 3.2× 4.1× 5.1×

CAL-SDS2 82.5 ± 0.1 90.1 ± 0.2 92.9 ± 0.4 94.0 ± 0.2 94.4 ± 0.1 1.1× 1.6× 2.1× 2.7× 3.4×
AL w/ WS 81.9 ± 0.4 89.6 ± 0.5 92.4 ± 0.2 93.5 ± 0.1 94.1 ± 0.1 1.2× 1.1× 1.1× 1.1× 1.1×

AL 82.0 ± 0.3 89.1 ± 0.2 92.1 ± 0.4 93.5 ± 0.3 93.8 ± 0.2 1.0× 1.0× 1.0× 1.0× 1.0×

Table 2. CIFAR-10 Results

MedMNIST Please refer to table A.2 and figure 9.
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Figure 9. MedMNIST Results
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Test Accuracy (%) Factor Speedup

Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%

CAL-ER 56.8 ± 10.1 62.6 ± 2.9 64.3 ± 3.9 63.8 ± 8.1 62.6 ± 3.0 1.5× 2.3× 2.8× 3.3× 3.9×
CAL-MIR 60.8 ± 4.5 66.0 ± 3.8 64.3 ± 8.6 68.3 ± 2.1 69.5 ± 1.7 1.1× 1.3× 1.3× 1.5× 1.7×
CAL-DER 65.5 ± 3.7 69.1 ± 0.8 69.9 ± 0.3 70.1 ± 0.8 71.9 ± 0.5 1.3× 1.9× 2.2× 2.6× 3.0×
CAL-SD 62.9 ± 3.2 68.5 ± 0.5 69.3 ± 0.7 70.8 ± 0.6 70.7 ± 1.3 1.3× 1.9× 2.2× 2.6× 3.0×

CAL-SDS2 61.3 ± 10.5 69.1± 2.5 69.4 ± 1.7 70.2± 0.8 70.7± 1.2 1.1× 1.5× 1.7× 2.0× 2.2×
AL w/ WS 66.0 ± 0.9 65.6 ± 0.4 69.4 ± 0.9 69.7 ± 0.7 70.7 ± 0.4 1.1× 1.4× 1.6× 2.1× 2.2×

AL 66.2 ± 3.4 70.2 ± 0.6 68.7 ± 2.5 69.4 ± 3.2 71.4 ± 1.2 1.0× 1.0× 1.0× 1.0× 1.0×

Table 3. MedMNIST Results

Amazon Polarity Review Please refer to table A.2 and figure 10.
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Figure 10. Amazon Polarity Results

Test Accuracy (%) Factor Speedup

Method 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

CAL-ER 90.7 ± 3.1 92.4 ± 1.2 93.5 ± 0.1 93.7 ± 0.2 93.8 ± 0.2 1.5x 3.5x 3.3x 4.1x 4.9x
CAL-MIR 92.0 ± 0.9 92.9 ± 0.1 93.3 ± 0.3 93.7 ± 0.1 93.7 ± 0.2 0.9x 1.3x 1.8x 2.3x 2.7x
CAL-DER 92.9 ± 0.3 94.1 ± 0.3 94.0 ± 0.7 93.6 ± 0.8 94.2 ± 0.3 1.5x 2.4x 3.2x 4.0x 4.7x
CAL-SD 92.1 ± 0.3 92.6 ± 0.4 93.7 ± 0.1 93.8 ± 0.1 94.1 ± 0.1 1.5x 2.4x 3.2x 4.0x 4.7x

CAL-SDS2 92.6 ± 0.3 93.2 ± 0.1 93.6 ± 0.1 93.8 ± 0.4 94.1 ± 0.0 1.2x 1.9x 2.5x 3.1x 3.7x

AL w/ WS 92.6 ± 0.5 93.0 ± 0.2 93.0 ± 0.1 93.2 ± 0.3 93.1 ± 0.1 1.0x 1.0x 1.0x 1.0x 1.0x
AL 92.8 ± 0.2 93.1 ± 0.7 93.3 ± 1.1 93.8 ± 0.5 94.1 ± 0.2 1.0x 1.0x 1.0x 1.0x 1.0x

Table 4. Amazon Polarity Results

COLA Please refer to table A.2 and figure 11.
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Figure 11. COLA Results
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Test Accuracy (%) Factor Speedup

Method 2.9% 5.7% 8.6% 11.4% 14.3% 2.9% 5.7% 8.6% 11.4% 14.3%

CAL-ER 73.2 ± 1.7 75.4 ± 0.8 76.4 ± 1.0 77.0 ± 2.0 77.3 ± 1.4 1.7x 2.8x 3.9x 5.0x 6.1x
CAL-MIR 75.1 ± 0.2 75.5 ± 1.2 76.6 ± 1.0 76.5 ± 0.4 77.0 ± 0.3 0.8x 1.2x 1.6x 2.0x 2.4x
CAL-DER 71.5 ± 2.7 74.9 ± 3.2 75.7 ± 1.5 76.9 ± 1.6 78.3 ± 0.8 1.7x 2.7x 3.7x 4.8x 5.8x
CAL-SD 73.6 ± 1.9 74.9 ± 1.1 77.7 ± 1.3 76.4 ± 0.3 78.0 ± 0.9 1.7x 2.7x 3.7x 4.8x 5.8x

CAL-SDS2 74.7 ± 2.8 75.5 ± 1.0 77.2 ± 0.9 78.1 ± 0.8 79.2 ± 0.5 1.4x 2.1x 2.9x 3.7x 4.5x

AL w/ WS 74.6 ± 0.7 76.1 ± 0.4 76.3 ± 1.0 76.3 ± 1.5 77.2 ± 0.9 1.2x 1.7x 1.6x 1.8x 1.8x
AL 73.9 ± 2.9 75.5 ± 0.5 76.6 ± 2.0 76.3 ± 0.9 77.3 ± 1.6 1.0x 1.0x 1.0x 1.0x 1.0x

Table 5. COLA Results.

Single-Cell Cell-Type Identity Please refer to table A.2 and figure 12.
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Figure 12. Single-Cell Cell-Type Identity Classification Results

Test Accuracy (%) Factor Speedup

Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%

CAL-ER 86.3 ± 0.1 88.3 ± 0.1 89.7 ± 0.3 90.6 ± 0.2 91.0 ± 0.1 1.5× 2.0× 2.4× 2.9× 3.4×
CAL-MIR 86.3 ± 0.1 88.3 ± 0.1 89.7 ± 0.2 90.5 ± 0.2 90.9 ± 0.2 1.2× 1.6× 1.9× 2.2× 2.6×
CAL-DER 86.9 ± 0.3 88.8 ± 0.3 89.9 ± 0.3 90.7 ± 0.2 91.2 ± 0.1 1.4× 1.9× 2.3× 2.8× 3.3×
CAL-SD 86.3 ± 0.1 88.3 ± 0.1 89.5 ± 0.2 90.3 ± 0.2 90.8 ± 0.2 1.4× 1.9× 2.3× 2.8× 3.3×

CAL-SDS2 86.3 ± 0.1 88.2± 0.1 89.2 ± 0.3 90.1± 0.2 90.6± 0.1 1.4× 1.9× 2.3× 2.8× 3.3×
AL w/ WS 86.3 ± 0.1 88.3 ± 0.1 88.4 ± 0.8 88.2 ± 0.8 88.1 ± 0.8 1.0× 1.0× 1.2× 1.6× 1.9×

AL 83.6 ± 1.0 87.0 ± 0.3 88.6 ± 0.1 89.5 ± 0.2 89.9 ± 0.3 1.0× 1.0× 1.0× 1.0× 1.0×

Table 6. Single-Cell Cell-Type Identity Classification Results

A.3. Out-of-distribution (OOD) generalization

We compare the performance of CAL methods with baseline AL for OOD generalization. Reported mean values and
standard deviations are computed over three different random seeds. As shown in the table below, CAL methods are as
robust to perturbations as baseline AL, despite the speedup. Finally, in table 8 we report that CAL-SDS2 is better compared
to other CAL methods, on average. This trend can also be observed from figure 5 when we compute the accuracy average
relative to the baseline AL on full CIFAR-10C. We hypothesize that this can be attributed to submodular sampling from
history.
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Corruption CAL-ER CAL-MIR CAL-DER CAL-SD CAL-SDS2 AL AL w/ WS

saturate 90.4 ± 0.4 90.7 ± 0.2 90.4 ± 0.1 90.5 ± 0.4 90.8 ± 0.2 90.7 ± 0.4 90.8 ± 0.2

impulse noise 52.4 ± 1.4 53.4 ± 0.8 53.3 ± 3.9 53.6 ± 2.6 55.8 ± 1.3 54.5 ± 2.9 48.7 ± 2.7

defocus blur 79.6 ± 1.3 81.6 ± 0.4 79.3 ± 1.2 80.6 ± 1.1 79.6 ± 1.7 80.9 ± 1.0 80.4 ± 0.7

contrast 74.6 ± 0.3 76.1 ± 0.8 73.8 ± 0.9 75.1 ± 1.0 74.2 ± 0.6 77.1 ± 1.4 76.4 ± 2.5

frost 76.0 ± 0.4 76.1 ± 2.0 73.8 ± 1.0 75.4 ± 1.5 76.9 ± 1.2 75.4 ± 1.6 77.0 ± 0.3

speckle noise 61.7 ± 1.7 61.7 ± 2.6 60.9 ± 3.7 61.6 ± 3.8 64.3 ± 0.5 61.7 ± 0.3 59.4 ± 1.0

pixelate 74.4 ± 1.3 73.9 ± 2.2 75.2 ± 0.9 74.8 ± 1.6 76.5 ± 0.7 75.9 ± 1.3 77.0 ± 1.3

zoom blur 74.4 ± 1.0 76.7 ± 1.0 74.4 ± 2.3 75.4 ± 1.5 74.1 ± 2.8 75.9 ± 1.9 75.3 ± 1.0

elastic transform 82.5 ± 0.1 83.5 ± 0.2 82.0 ± 0.5 82.1 ± 0.8 82.6 ± 0.6 82.0 ± 1.3 82.9 ± 0.2

spatter 81.8 ± 0.7 82.9 ± 1.2 82.4 ± 0.6 82.6 ± 0.5 82.8 ± 0.8 83.0 ± 1.0 82.5 ± 1.2

snow 80.3 ± 0.4 80.2 ± 0.7 79.5 ± 0.8 79.7 ± 0.7 80.8 ± 0.1 80.1 ± 0.8 80.6 ± 0.3

fog 86.8 ± 0.3 86.9 ± 0.3 85.9 ± 0.9 86.3 ± 0.5 86.5 ± 0.4 86.6 ± 0.3 87.9 ± 0.7

Gaussian noise 46.6 ± 1.0 46.6 ± 3.3 44.9 ± 6.3 46.7 ± 4.7 50.7 ± 0.9 45.9 ± 0.4 43.2 ± 1.1

brightness 92.1 ± 0.3 92.4 ± 0.3 92.1 ± 0.3 92.2 ± 0.1 92.5 ± 0.1 92.7 ± 0.1 92.6 ± 0.2

Gaussian blur 69.7 ± 2.2 72.3 ± 1.3 69.3 ± 2.5 71.3 ± 1.5 69.3 ± 2.8 71.6 ± 1.6 70.4 ± 1.3

motion blur 75.1 ± 1.2 77.1 ± 1.2 74.4 ± 0.9 75.1 ± 1.6 74.5 ± 0.7 74.7 ± 0.6 76.8 ± 0.4

shot noise 58.6 ± 1.5 58.5 ± 2.9 57.3 ± 4.8 58.6 ± 4.1 61.6 ± 0.5 58.3 ± 0.2 56.1 ± 1.0

jpeg compression 79.0 ± 1.5 78.4 ± 0.5 78.5 ± 0.2 78.6 ± 0.5 79.1 ± 0.1 77.7 ± 0.1 77.7 ± 0.1

glass blur 51.8 ± 1.4 54.6 ± 3.0 48.6 ± 2.8 50.7 ± 2.1 53.9 ± 2.4 49.4 ± 3.1 52.6 ± 2.1

Table 7. Accuracy (in %) comparison of CAL methods with the baseline on the CIFAR-10C dataset. Results were reported as an average
over three random seeds. Models trained with CAL procedure perform statistically similar to the one trained with baseline AL.

Method Average Accuracy difference (in %)

CAL-ER -0.34
CAL-MIR 0.49
CAL-DER -0.96
CAL-SD -0.17

CAL-SDS2 0.63

AL w/ WS -0.32

Table 8. The average difference in the accuracy (in %) of models trained with baseline AL from models trained with CAL, on different
benchmarks across the CIFAR10-C dataset. Higher numbers are better. We can see that CAL-SDS2 is better compared to other CAL
methods, on average. We hypothesize that this can be attributed to submodular sampling from history.

A.4. Correlation between CAL and baseline AL

In figure 13, we provide the Pearson correlation between the uncertainty scores of models on the held-out test set, before
every query round. A positive correlation between CAL models and baseline AL models before every query round suggests
that the nature of examples chosen by the CAL models is similar to that of baseline AL models. Note that each entry in the
correlation matrix is averaged over three random seeds corresponding to the random initialization of each model.
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CAL-DER

CAL-SD

CAL-SDS2

CAL-ER

CAL-MIR

AL

AL w/ WS

1 0.58 0.53 0.53 0.51 0.49 0.49

0.58 1 0.6 0.62 0.59 0.51 0.54

0.53 0.6 1 0.6 0.62 0.49 0.53

0.53 0.62 0.6 1 0.64 0.49 0.54

0.51 0.59 0.62 0.64 1 0.48 0.54

0.49 0.51 0.49 0.49 0.48 1 0.45

0.49 0.54 0.53 0.54 0.54 0.45 1

1 0.43 0.41 0.42 0.42 0.39 0.39

0.43 1 0.49 0.51 0.5 0.46 0.45

0.41 0.49 1 0.49 0.5 0.44 0.44

0.42 0.51 0.49 1 0.51 0.44 0.44

0.42 0.5 0.5 0.51 1 0.45 0.46
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Figure 13. Pearson correlation between uncertainty scores of models on held out set after every query round. We are showing nine query
rounds in row-major order (so the top left is after the first query round, the top middle is after the second, and so on). Positive correlation
of uncertainty scores suggests that the nature of examples the models are uncertain about, and thus likely to be chosen at every query
round, is similar between the CAL-trained models and baseline AL-trained models.

A.5. Hyperparameters

For every dataset and every CAL/AL strategy, learning rate (lr) and batch size (m) are chosen based on whichever setting
achieves the highest performance on standard AL. This means CAL methods can still improve if we tune either of learning
rate or batch size. Replay size is critical for the performance of continual learning algorithms. On the one hand, we do not
want the replay batch size, m(h), to be too small since then we will forget some history. But on the other hand, we also
do not want m(h) to be too large since there will be a computational cost associated with that. Considering the mentioned
constraints, for all CAL methods, we, therefore, set replay size as m(h) ∈ {m, 2m} (used in all CAL methods). Via
experimentation on a subset of the datasets, we found m(h) less than or greater than this range suffered either from forgetting
(when too small) or extra computation without an accuracy benefit (when too large). We set α ∈ {0.1, 0.25, 0.5, 0.75} (used
in CAL-DER, CAL-SD, and CAL-SDS2), β ∈ {0.75, 1} (used in CAL-DER). The scale and size of the search space for
α and β is inspired from Buzzega et al. (2020). Lastly, σ ∈ {0.1, 1} (used in CAL-SDS2), and λ ∈ {0.1, 1, 10} (used in
CAL-SDS2).

We select the configuration for each CAL model that achieves the highest accuracy. “c” is the hyperparameter used in
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CAL-MIR and CAL-SDS2 to subsample the history before finding the m(h) samples to replay, but this parameter is not
tuned for any of the presented results. We list the specific set of hyperparameters we use for all the main experimental
results in this section.

A.5.1. FMNIST

All experiments for FMNIST used a ResNet-18 with an SGD optimizer, with learning rate of 0.01 and batch size of 64. For
all the CAL methods, we fix m(h) = 128. A NVIDIA GeForce RTX 1080 GPU was used to run all the reported experiments.

CAL-MIR c = 256

CAL-DER α = .1, β = 1

CAL-SD α = .25

CAL-SDS2 c = 256, α = .25, σ = 0.1, λ = 1

A.5.2. CIFAR-10

All experiments for CIFAR-10 used a ResNet-18 with an SGD optimizer, with learning rate of 0.02 and a batch size of 20.
For all the CAL methods, we fix m(h) = 40. Training is done on an NVIDIA GeForce RTX 2080.

CAL-MIR c = 100

CAL-DER α = .1, β = 1

CAL-SD α = .25

CAL-SDS2 c = 100, α = .25, σ = 0.1, λ = 0.1

A.5.3. MEDMNIST

All experiments for MedMNIST used a ResNet-18 with an Adam optimizer, with learning rate of 0.001 and a batch size of
128. For all CAL methods, we fix m(h) = 128. All reported models were trained on an NVIDIA GeForce RTX 2080.

CAL-MIR c = 270, m(h) = 128

CAL-DER m(h) = 128, α = .1, β = 1

CAL-SD m(h) = 128, α = .5

CAL-SDS2 c = 270, m(h) = 128, α = .5, σ = 0.1, λ = 10

A.5.4. AMAZON POLARITY REVIEW

Throughout our experiments, we sample 2M sentences, and use them as the total training set instead. We use Adam optimizer
with standard parameters with learning rate of 0.001 and a batch size 128. For all the CAL methods, we fix m(h) = 128. All
reported models were trained on an NVIDIA GeForce 1080 Ti.

CAL-MIR c = 256,

CAL-DER α = .25, β = 0.75

CAL-SD α = .5
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CAL-SDS2 c = 256, α = .75, σ = 1, λ = 1

A.5.5. COLA

For all of our experiments we use Huggingface’s transformer library (Wolf et al., 2020) and use a maximum sentence length
of 100. We use Adam optimizer and a learning rate of 5 · 10−5, use a batch size of 25 and m(h) = 25. Models were trained
on a single NVIDIA GeForce 1080 Ti.

CAL-MIR c = 50

CAL-DER α = 0.25, β = 0.75

CAL-SDS α = 0.75, β = 0.25

CAL-SDS2 c = 50, α = 0.5, β = 0.5, σ = 1, λ = 1.

A.5.6. SINGLE-CELL CELL-TYPE IDENTITY CLASSIFICATION

All experiments use SGD optimizer with standard parameters with learning rate of 0.001 and a batch size 128. For all the
CAL methods, we fix m(h) = 128. Training is done on an NVIDIA A100-PCIE-40GB.

CAL-MIR c = 200,

CAL-DER α = .1, β = 1

CAL-SD α = 1

CAL-SDS2 c = 100, α = .25, σ = 0.1, λ = 1

A.6. Hyperparameter Sensitivity Analysis for Proposed Methods

In this section, we provide a hyperparameter sensitivity analysis methods for CAL-SD and CAL-SDS2 on CIFAR-10. For
CAL-SD, only α is tuned and the best value is used for CAL-SDS2. Therefore, we tuned 1 hyperparameter for CAL-SD
while σ and λ are tuned for CAL-SDS2. Note that the differences in final test accuracy at 50% budget on CIFAR-10 across
different configurations are negligible, as shown in the tables below.

α 0.1 0.25 0.75 0.9
93.79 93.90 93.58 93.38

Table 9. CAL-SD Sensitivity

σ
λ

0.1 0.5 1 5 10

0.1 94.20 94.27 94.32 94.34 94.16
1 94.33 94.22 94.28 94.15 94.44

10 94.32 94.29 94.27 94.30 94.18

Table 10. CAL-SDS2 Sensitivity

B. A primer on Continual Learning
We define D1:n =

⋃
i∈[n] Di. In CL, the dataset consists of T tasks {D1, ...,DT } that are presented to the model sequentially,

where Dt = {(xi, yi)}i∈Nt , Nt are the task-t sample indices, and nt = |Nt|. At time t ∈ [T ], the data/label pairs are
sampled from the current task (x, y) ∼ Dt, and the model has only limited access to the history D1:t−1. If the model is
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trained only on Dt using standard optimization algorithms, the model will exhibit catastrophic forgetting. The CL objective
is to efficiently adapt the model to Dt while retaining the performance on the history. Given a loss function ℓ : X × Y 7→ R,
initial parameters θt−1, and a model f , θt can be obtained as the solution to the CL optimization problem (Aljundi et al.,
2019b; Chaudhry et al., 2019; Lopez-Paz & Ranzato, 2017):

min
θ

E
(x,y)∼Dt

ℓ(y, f(x; θ))

s.t. E
(x′,y′)∼D1:t−1

ℓ

(
y′, f(x′; θ))

)
≤ E
(x′,y′)∼D1:t−1

ℓ

(
y′, f(x′; θt−1))

)

C. Results for Additional Active Learning Strategies
In this section, we demonstrate that CAL methods can accelerate AL strategies other than entropy sampling without
incurring any significant performance drops. We test multiple AL strategies on FMNIST (Xiao et al., 2017) and CIFAR-10
(Krizhevsky, 2009). Note that the speedups are approximately the same as the ones reported in Section A since the training
time is generally independent of the selected AL strategy.

C.1. Overview of Strategies

Margin Score Sampling This strategy is another form of uncertainty sampling (Settles, 2009) as described in the main
paper. Instead of the entropy of f(x; θ), the margin score is used as the entropy score i.e., h(x) ≜ 1− (f(x; θ)i − f(x; θ)j)
where i and j are the indices corresponding to the highest and second highest values of f(x; θ) respectively.

FASS FASS (Wei et al., 2015) is a two-staged selection method that uses both uncertainty sampling and submodular
maximization. Initially, a set of samples A of cardinality c ∗ bt is chosen from U using uncertainty sampling, where c > 1 is
a tuneable hyperparameter. Next, Ut is constructed by greedily selecting samples that maximize a submodular set function
G : 2A → R+ defined on a ground set A. Entropy is once again used as the uncertainty metric for the initial stage. For the
second stage, G is defined to be the facility location function (Wei et al., 2015) expressed below:

G(S) =
∑
xi∈A

max
xj∈S

wij , (4)

where S ⊆ A and wij is a similarity score between samples xi and xj . In our experiments, wij = exp (−∥zi − zj∥2/2σ2)
where zi is the penultimate layer representation of model f for xi and σ is a hyperparameter.

GLISTER GLISTER (Killamsetty et al., 2021a) solves a bi-level optimization problem in order to select samples to label.
Specifically, GLISTER solves

argmax
S⊆Ut,|S|≤bt

LLV (argmax
θ

LLT (θ,S),V) (5)

where LLV is the log-likelihood on the validation set V , and LLT is the log-likelihood on the subset S.
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C.2. Results

Test Accuracy (%)

Method 10% 15% 20% 25% 30%

CAL-ER 92.8 ± 0.1 94.1 ± 0.1 94.8 ± 0.1 95.1 ± 0.3 95.2 ± 0.2

CAL-MIR 92.6 ± 0.2 94.1 ± 0.4 94.9 ± 0.2 95.0 ± 0.2 95.2 ± 0.2

CAL-DER 91.8 ± 0.5 93.1 ± 0.1 94.3 ± 0.3 94.6 ± 0.1 94.8 ± 0.2

CAL-SD 92.5 ± 0.1 93.8 ± 0.1 94.8 ± 0.0 95.1 ± 0.2 95.2 ± 0.0

CAL-SDS2 87.8 ± 1.1 93.4 ± 0.1 94.6 ± 0.1 95.0 ± 0.2 95.2 ± 0.1

AL w/ WS 92.8 ± 0.0 94.0 ± 0.3 94.6 ± 0.1 94.8 ± 0.1 95.0 ± 0.2

AL 92.7 ± 0.1 94.1 ± 0.3 94.9 ± 0.1 95.0 ± 0.2 95.2 ± 0.1

Table 11. FMNIST with Margin Score Sampling

Test Accuracy (%)

Method 10% 20% 30% 40% 50%

CAL-ER 81.5 ± 0.1 89.3 ± 0.1 92.2± 0.2 93.4± 0.1 93.8 ± 0.0

CAL-MIR 81.9 ± 0.1 89.6 ± 0.2 92.2 ± 0.4 93.6 ± 0.0 94.0 ± 0.2

CAL-DER 83.0 ± 0.2 89.5 ± 0.2 92.2 ± 0.2 93.2 ± 0.2 93.6 ± 0.0

CAL-SD 82.6 ± 0.4 89.9 ± 0.4 92.4 ± 0.2 93.5 ± 0.1 93.8 ± 0.2

CAL-SDS2 82.5 ± 0.2 90.2 ± 0.2 92.5 ± 0.2 93.8 ± 0.2 94.1 ± 0.1

AL w/ WS 83.1 ± 0.1 90.3 ± 0.3 93.0 ± 0.2 93.5 ± 0.3 93.6 ± 0.2

AL 75.1 ± 1.2 87.1 ± 1.0 90.2± 0.5 92.0± 0.0 92.8 ± 0.5

Table 12. CIFAR-10 with Margin Score Sampling

Test Accuracy (%)

Method 10% 15% 20% 25% 30%

CAL-ER 92.6 ± 0.1 93.9 ± 0.2 94.6 ± 0.2 95.0 ± 0.1 94.9 ± 0.0

CAL-MIR 92.5 ± 0.1 93.8 ± 0.3 94.6 ± 0.1 94.8 ± 0.1 94.9 ± 0.2

CAL-DER 92.7 ± 0.1 93.8 ± 0.1 94.5 ± 0.1 94.7 ± 0.1 95.0 ± 0.2

CAL-SD 92.8 ± 0.1 93.9 ± 0.1 94.7 ± 0.1 94.8 ± 0.3 94.9 ± 0.1

CAL-SDS2 92.8 ± 0.0 93.8 ± 0.2 94.5 ± 0.1 94.8 ± 0.2 94.9 ± 0.1

AL w/ WS 92.5 ± 0.1 93.8 ± 0.3 94.0 ± 0.2 94.3 ± 0.2 94.3 ± 0.0

AL 92.7 ± 0.4 93.9 ± 0.1 94.5 ± 0.1 94.7 ± 0.3 94.8 ± 0.1

Table 13. FMNIST with FASS
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Test Accuracy (%)

Method 10% 20% 30% 40% 50%

CAL-ER 82.2 ± 0.2 89.8 ± 0.2 92.5± 0.2 93.4± 0.4 93.7 ± 0.2

CAL-MIR 82.2 ± 0.3 89.4 ± 0.2 92.3 ± 0.1 93.4 ± 0.0 93.5 ± 0.1

CAL-DER 83.1 ± 0.3 89.7 ± 0.2 91.9 ± 0.1 93.1 ± 0.2 93.5 ± 0.1

CAL-SD 83.0 ± 0.3 90.0 ± 0.3 92.5 ± 0.1 93.5 ± 0.1 94.0 ± 0.1

CAL-SDS2 83.0 ± 0.1 90.1 ± 0.1 92.7 ± 0.2 93.5 ± 0.2 94.0 ± 0.0

AL w/ WS 82.8 ± 0.4 90.3 ± 0.1 92.8 ± 0.2 93.6 ± 0.1 93.7 ± 0.3

AL 72.5 ± 2.0 86.6 ± 0.4 90.1± 0.4 91.7± 0.2 92.9 ± 0.2

Table 14. CIFAR-10 with FASS

Test Accuracy (%)

Method 10% 15% 20% 25% 30%

CAL-ER 92.6 ± 0.0 93.9 ± 0.2 94.3 ± 0.1 94.7 ± 0.1 94.7 ± 0.2

CAL-MIR 92.5 ± 0.0 93.9 ± 0.4 94.3 ± 0.2 94.4 ± 0.2 94.6 ± 0.1

CAL-DER 92.7 ± 0.1 93.9 ± 0.2 94.3 ± 0.3 94.7 ± 0.2 94.9 ± 0.3

CAL-SD 92.6 ± 0.1 93.8 ± 0.1 94.4 ± 0.3 94.6 ± 0.1 94.7 ± 0.1

CAL-SDS2 92.6 ± 0.1 93.9 ± 0.2 94.4 ± 0.2 94.6 ± 0.3 94.7 ± 0.2

AL w/ WS 92.5 ± 0.1 93.6 ± 0.1 93.9 ± 0.1 94.1 ± 0.1 94.3 ± 0.1

AL 92.5 ± 0.2 93.8 ± 0.1 94.2 ± 0.1 94.6 ± 0.2 94.7 ± 0.2

Table 15. FMNIST with GLISTER

Test Accuracy (%)

Method 10% 20% 30% 40% 50%

CAL-ER 81.7 ± 0.3 89.2 ± 0.2 91.9 ± 0.2 93.0 ± 0.1 93.3 ± 0.1

CAL-MIR 81.6 ± 0.3 89.3 ± 0.4 91.7 ± 0.2 92.9 ± 0.1 93.5 ± 0.2

CAL-DER 82.8 ± 0.4 89.5 ± 0.4 91.7 ± 0.4 92.8± 0.6 93.1 ± 0.2

CAL-SD 82.5 ± 0.3 89.6 ± 0.2 92.1 ± 0.2 93.1 ± 0.2 93.8 ± 0.1

CAL-SDS2 81.4 ± 0.4 89.1 ± 0.2 92.1 ± 0.2 93.2 ± 0.3 93.9 ± 0.1

AL w/ WS 81.7 ± 0.4 89.3 ± 0.4 92.1 ± 0.3 93.0 ± 0.1 93.3 ± 0.4

AL 81.0 ± 0.6 88.5 ± 0.5 91.5 ± 0.3 93.0 ± 0.2 93.4 ± 0.3

Table 16. CIFAR-10 with GLISTER

D. Additional Details on Single-Cell Cell-Type Identity Classification Dataset
The human cell landscape (HCL) dataset consists of scRNA-seq data for 562,977 cells across 63 cell types represented in 56
human tissues. Each cell type may be present in multiple tissues. The cell type classes are highly imbalanced, with the
rarest cell type, human embryonic stem cell, accounting for 0.06 % of the total dataset and the most common, fibroblast,
accounting for 6%. The raw data is first normalized for library size and scaled to 10000 reads in total, followed by log
transformation. We visualize the dataset using UMAP 14.



Accelerating Batch Active Learning Using Continual Learning Techniques

Figure 14. UMAP embedding of single cells in HCL annotated by their cell type.
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