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Abstract

Creating large-scale high-quality labeled datasets
is a major bottleneck in supervised machine learn-
ing workflows. Threshold-based auto-labeling
(TBAL), where validation data obtained from hu-
mans is used to find a confidence threshold above
which the data is machine-labeled, reduces re-
liance on manual annotation. TBAL is emerging
as a widely-used solution in practice. Given the
long shelf-life and diverse usage of the resulting
datasets, understanding when the data obtained
by such auto-labeling systems can be relied on is
crucial. This is the first work to analyze TBAL
systems and derive sample complexity bounds
on the amount of human-labeled validation data
required for guaranteeing the quality of machine-
labeled data. Our results provide two crucial in-
sights. First, reasonable chunks of unlabeled data
can be automatically and accurately labeled by
seemingly bad models. Second, a hidden down-
side of TBAL systems is potentially prohibitive
validation data usage. Together, these insights
describe the promise and pitfalls of using such
systems. We validate our theoretical guarantees
with extensive experiments on synthetic and real
datasets.

1. Introduction

Machine learning (ML) models with millions or even bil-
lions of parameters are used to obtain state-of-the-art perfor-
mance in many applications, e.g., object identification (Red-
mon & Farhadi, 2017), machine translation (Vaswani et al.,
2017), and fraud detection (Zeng & Tang, 2021). Such large-
scale models require training on large-scale labeled datasets.
As an outcome, the typical supervised ML workflow begins
with the construction of a large-scale high-quality dataset.
Datasets with up to millions of labeled data points, have
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played a pivotal role in the advancement of computer vi-
sion. However, collecting labeled data is an expensive and
time consuming process. A common approach is to rely on
the services of crowd-sourcing platforms such as Amazon
Mechanical Turk (AMT) to get ground-truth labels.

Even with crowd-sourcing, obtaining labels for the entire
dataset is expensive. To reduce costs, data labeling systems
that partially rely on using a model’s predictions as labels
have been developed. Such systems date back to teacher-less
training (Fralick, 1967). Modern examples include Amazon
Sagemaker Ground Truth (SGT, 2022) and others (Superb-
Al 2022; Samsung-SDS, 2022; Airbus, 2022; Venguswamy
et al., 2021). These approaches can be broadly termed auto-
labeling.

Auto-labeling systems aim to label unlabeled data using
predictions from ML models that are often trained on small
amounts of human-labeled data which can produce incorrect
labels. The shelf life of datasets is longer than those of
models, e.g., ImageNet continues to be a benchmark for
many computer vision tasks (Deng et al., 2009) fifteen years
after its initial development. As a result, to reliably train
new models on auto-labeled datasets and deploy them, we
need a thorough understanding of how reliable the datasets
output by these auto-labeling systems are. Unfortunately,
many widely used commercial auto-labeling systems (SGT,
2022; Samsung-SDS, 2022) are largely opaque with limited
public information on their functionality. It is therefore
unclear whether the quality of the datasets obtained can be
trusted. To address this, we study the high-level workflow
of a popular threshold-based auto-labeling (TBAL) system
(see Figure 1). We emphasize that our goal is to understand
such systems and their performance—not to promote them
as a superior alternative to other approaches. Our goal is:

Goal: Develop a fundamental understanding of TBAL
systems. This is crucial: there is a lack of theoretical
understanding of reliability of these systems despite their
wide adoption.

The TBAL systems we study (Figure 1) work iteratively. At
high level, in each iteration, the system trains a model on
currently available human-labeled data and decides to label
certain parts of unlabeled data using the trained model by
finding high-accuracy regions using validation data. It then
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Figure 1. High-level workflow threshold-based auto-labeling (TBAL). Box (B) shows the key component estimating the auto-labeling

region using validation data and autolabeling points in it.

collects human labels on a small portion of unlabeled data
that is deemed helpful for training the current model in the
next iteration. The validation data is created by sampling
i.i.d. points from the unlabeled pool and querying human
labels for them. In addition to training data, the validation
data is a major driver of the cost and accuracy of auto-
labeling, and will be a key component in our study.

Our Contributions: We study TBAL systems (Figure 1)
and make the following contributions:

* Provide the first theoretical characterization of TBAL
systems, developing tradeoffs between the quantity of
manually-labeled data and the quantity and quality of
auto-labeled data (Section 3).

* Empirical results validating our theoretical understanding
on real and synthetic data (Section 4).

Our results reveal two important insights. Promisingly,

even poor-quality models are capable of reliably labeling

at least some data when we have access to sufficient valida-
tion data and a good confidence function that can accurately
quantify the confidence of a given model on any data point.

On the downside, in certain scenarios, the quantity of the val-

idation data required to reach a certain quantity and quality

of auto-labeled data can be high.

2. Threshold-Based Auto-Labeling Algorithm

In this section, we discuss the TBAL algorithm in detail.

2.1. Problem Setup

Notation: Let the instance and label spaces be X and
Y ={1,...,k}. Weassume that there is some deterministic
but unknown function f* : X — ) that assigns true label
y = f*(x) to any x € X. We also assume that there is a
noiseless oracle O that can provide the true label y € Y
for any given x € &X'. Let X,,,,; C X denote a sufficiently
large pool of unlabeled data to be labeled.

The goal of an auto-labeling algorithm is to produce accurate

labels g; € Y for points x; € X,y While minimizing the
number of queries to the oracle. Let [m] := {1,2,...,m},
A C [N] be the set of indices of auto-labeled points,
and Xpo01(A) be these points. The auto-labeling error

E(Xpoot(A)) and the coverage 73(Xpooz (A)) are defined as
~ 1

E(Xpoot(A)) := N Z 1(g; # f*(x;)) and (1)
@ icA
P(Xpaa(4)) = ] = T, @

where N, denotes the size of auto-labeled set A. TBAL algo-
rithm aims to auto-label the dataset so that £(X 00 (A)) <
€, While maximizing coverage P (X00:(A)) for any given
€a € (0,1).

Hypothesis Class and Confidence Function: A TBAL
algorithm is given a fixed hypothesis space H and a con-
fidence function g : H x X + T C RT that quantifies
the confidence of h € H on any data point x € &X'. Confi-
dence functions include prediction probabilities and margin
scores. For example, when H is a set of unit-norm homo-
geneous linear classifiers, i.e. hy(x) = sign(w’x) with
w € {w € R? : ||w|[z = 1}, a reasonable confidence
function is g(hy,x) = |[wlx]|.

Note that the target f* might not be in the hypothesis space
‘H. Our analysis (Section 3) shows that the TBAL algorithm
can work well, i.e., accurately label a reasonable fraction of
unlabeled data with simpler hypothesis classes that do not
contain the target hypothesis f*. We illustrate this with a
simple example in Section 2.3 and Figure 2. Note as well
that the features x could be raw features or representations
from self-supervised techniques, pre-trained models etc. We
analyze TBAL in settings (i) with no assumptions on the
features and (ii) when the the features are linearly separable.

2.2. Description of the algorithm
The TBAL algorithm is given in Algorithm 1. It starts with
an unlabeled pool X ,,,; and an auto-labeling error threshold
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€. For ease of exposition, the algorithm is given the labeled
validation set D,; of size N, separately. In practice, it is
created by selecting points at random from X,,0;.

Algorithm 1 Threshold-based Auto-Labeling (TBAL)

Input: Unlabeled pool X ., Auto labeling error threshold
€q, Seed data size ng, Batch size for active query ny,
Labeled validation data pool D,,;.

Output: D,y = {(xi,7:) : VX3 € Xpoor }

1 x® = Xpool; Diffl = Dyal

2: Dé})ﬂy = randomly,query,batch(Xﬁl), ng)

3: Remove queried points from X, W
4 Dt(gt)un = ¢’ i =1, Doyt = Dglu)t Dt(;i)ery

5: while X" #+ ¢ do

6 Dipnin = Dirai) U Dilery

7: lAl =empirical_ rlskmln(H Dg:n)am)

8: t; = Estimate Threshold(X& ), €a, hi, Dila)l)

9 Dl = {66 hi) s x € X7, g(hi, %) 2 1}
10: Remove auto-labeled points from X,
Dyt = DU {x € Dy s glhix) 2 4y
12: D((IZE}«Z, = active_query batch(h;, X 1), b)
13: Remove queried points from X @

140 Dyt = Dou DY), U DGEY,

15: i=1+1
16: end while

Algorithm 2 Estimate Threshold
Input: Xz(f), Xi()i), €a izi, no
Output: Threshold ¢;
1T = {g(hs,x) : x € XV}
2 T ={teT: X (hi,t)] > no} U {oo}
3 £ = min{t € Ty : E,(hi, | X)) + C165 < €}

The algorithm starts with an initial batch of ng random data
points and obtains oracle labels for these. The algorithm
works in an iterative manner using the following steps.

1. Data obtained in each iteration ¢ is added to the training

pool Dt(?am It is used to train a model /; by performing
empirical risk minimization (ERM).

2. Finding the region to auto-label: where h; can auto-
label accurately. The algorithm estimates a threshold #;
on the confidence score above which it can auto-label
with the desired auto-labeling accuracy on the validation
data (see Algorithm 2). Thresholds that have too little
validation data are discarded, as they produce large er-
rors. The minimum threshold is found such that the sum
of the estimated error and an upper confidence bound,
e.g., using the standard deviation of the estimated error

Ealhi, t|X£Z)), is at most the given auto-labeling error
threshold. _

3. Auto-label the points in the pool, Xq(f), which have confi-
dence g(ﬁi, x) > t;. These are added to the set D,,,; and
removed from the unlabeled pool. The validation points
that fall in the auto-labeled region are also removed from
the validation set so that in the next round the valida-
tion set and the unlabeled pool are from the same region
and the same distribution. Removing the auto-labeled
points from X, is a crucial step in the TBAL algorithm
that enables it to focus only on the remaining unlabeled
regions in the next iteration.

4. If there are points left in X001, the algorithm selects
points using some active querying strategy, obtains hu-
man labels for them, and adds them to the training pool.

This process continues until there are no data points left to

be labeled. The algorithm then outputs the labeled dataset,

which is a mixture of human- and machine-labeled points.

2.3. Comparison between Auto-Labeling, Active
Learning and Selective Classification

What is the difference between TBAL and methods such as

active learning and selective classification?

Active learning: The goal of active learning (Settles, 2009)
(AL) is to find the best model in hypothesis class H by
training with less labeled data compared to passive learning.
This is usually achieved by obtaining labels for the most
informative points. Note that the end goal is to output a
model from the function class whose predictions on new
data as good as the best model in the function class could.

Selective Classification: The goal of selective classification
(SL) (El-Yaniv & Wiener, 2010) is to find the best combina-
tion of the hypothesis and selection functions to minimize
error and maximize coverage of selection regions.

Auto-Labeling: The output of an auto-labeling procedure is
a labeled dataset (not a model). When the hypothesis class
is of lower complexity, it is often not possible to find a good
classifier. The goal of an auto-labeling system is to label as
much of the unlabeled data as accurately as possible with
a given function class and with limited labeled data from
humans.

Is active learning alone enough to auto-label data? AL
has been found to be effective in reducing the amount of
labels needed to learn versus passive learning, particularly
in low-noise cases (Hanneke, 2014). Using auto-labeling
using AL followed by SC may be effective in such settings.
However, in real-world scenarios, noise levels may be higher
and the hypothesis class could be misspecified. In these
instances, using the model learned through active learning
to automatically label all data may result in a high number
of errors.
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Figure 2. Comparison of TBAL and Active Learning followed by Selective Classification (AL+SC) on the Circles dataset (Sec. 2.3) using
linear classifiers and confidence functions. (a) Samples auto-labeled, queried, and left unlabeled. (b) The auto-labeling error and coverage

achieved. (50 trials.)

We illustrate this difference between AL, SL, and auto-
labeling through an example. Suppose the data consists of
two concentric circles, one for each class, with the same
number of points per class (Figure 2(a)). This setting is not
linearly separable. We run TBAL, AL, and AL followed by
SL with an error tolerance of €, = 1% and linear classifiers
and confidence functions. The results are shown in Figure 2.
Note that the multiple optimal linear classifiers will all incur
an error of 50%. AL algorithms can only output models that
make at least 50% error. If we naively use the output model
for auto-labeling, we can obtain near full coverage but incur
around 50% auto-labeling error. If we use the model output
by AL with threshold-based SC, labeling error is reduced.
However, it can only label ~ 25% of the unlabeled data.
In contrast, TBAL is able to label almost all of the data
accurately (close to 100% coverage) with less than 1% auto-
labeling error.

3. Theoretical Analysis

The performance of the TBAL algorithm 1 depends on many
factors including the hypothesis class, the accuracy of the
confidence function, the data sampling strategy, and the size
of the training and validation data. In particular, the amount
of validation data plays a critical role in determining the
accuracy of the confidence function, which in turn affects
the accuracy and coverage.

We derive bounds on the auto-labeling error and the cov-
erage for Algorithm 1 in terms of the size of the valida-
tion data, the number of auto-labeled points Nék), and the
Rademacher complexity of the extended hypothesis class
HT:9 induced by the confidence function g. Our first result,
Theorem (3.2), applies to general settings and makes no
assumptions on the particular form of the hypothesis class,
the data distribution, and the confidence function. We then
instantiate and specialize the results for a specific setting in
Section 3.1. We introduce some notation to aid in stating
our results,

Definition 3.1. (Hypothesis Class with Abstain) The func-
tion g (along with set T') induces an extended hypothe-
sis class HT9. Let HT"9 = H x T. For any function
(h,t) € HT*9 it defined as (h,t)(x) = h(x) if g(h,x) >t
and | otherwise.

Here (h,t)(x) =1 means (h,t) abstains in classifying the
point x. Otherwise, it is equal to h(x). Let S C X de-
note a non-empty sub-region of X and S C S be a finite
set of i.i.d. samples from S. The subset S(h,t) C S
denotes the regions where (h, t) does not abstain. Its prob-
ability is S(h,t) == {x € S : (h,t)(x) #L}, P(h,t|S) :=
P(S(h,1)[S), PB(h,tS) := % In general we use
P(S) to denote the probability mass of set S and P(S’|S)
for the conditional probability of S’ C S given S. Their
empirical counterparts are IP(S) and P(S’|S), respectively.

Define the conditional error in set S C X as
E(h,t|S) Exsllo_1(h.t,x,y)] and the condi-
tional error in set S(h, t) i.e. the subset of S on which (h, t)
does not abstain denoted by E(h,t|S(h,t)) as follows:

E(h,t|S) = Exs[lo_i(h,t,x,y)] and E(h,t|S) =
E(h,t|S(h,1)) - Sicfsy.  Similarly,  de-
fine their empirical counterparts as  follows,
g(h,ﬂS) = ‘lﬁlineseé_—l(hvtaxiayi)aga(hvﬂs) =

E(h?ﬂs(h?t)) = mines(h,t) E(J)_—l(h7tvxi7yi)
In this notation, the auto-labeling error in i-th epoch
is given by, &, (h, ;] X )
m((ll) ijﬂebei)(iLi,tAi) Eéﬁl(hi,ti,xj,yj) is the
number of auto-labeling mistakes in i-th epoch and

mgf) / n((f) where

n$) = |X1(f) (h, ;)| is the number of auto-labeled points in
that epoch.

Rademacher Complexity: The Rademacher complexities
for the function classes induced by the H, T', g and the loss
functions are defined as R, (H"9) = R, (H,lo-1) +
Ry, (HT9,01). Let h; and #; be the ERM solution and the
auto-labeling threshold at epoch 4. Let p, € (0,1) be a con-
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stant such that P(h,, £;]X ) > p, for all i. Let X5 denote
the validation set, and n/ and n$” the number of vahda—
tion and auto-labeled points at epoch i. Let Ealhi t; \X B ))
be the empirical conditional risk of h; in the region where
g(hi,x) > 1; evaluated on the validation data x5,

We provide the following guarantees on the auto-labeling
error and the coverage achieved by TBAL.

Theorem 3.2. (Overall Auto-Labeling Error and Coverage)
Let k denote the number of rounds of the TBAL Algorithm 1.
Let m(, ), (@) denote the number of validation and auto-
labeledpomts at epoch i and nY = | X |, Let X,o01(Ar)
be the set of auto-labeled points at the end of round k.
N(k) ZZ 1 nl(l) denote the total number of auto-labled

points. Then, with probability at least 1 — 6/2,
R Ea0
5()(pool(Ak)> < ZW ga (h,‘,ti|X51))

=1 a N————

(a)

2 1 8k
— (R o + — 4 —= log(—
B e b n1(}Z) ( 5 )>

0

()
k()
4 Ng k 8k
— R o (HT ——log(—) |3
+ (ZN(k) <>(H )+ N Og(5)>)

P i=1

(e)

and w.p. at least 1 — 5/2

7/5 pool Ak Z P X(l h ) - 2mn(i) (HT’g)
2k2 8k
—\/ 5 los (F)' (4)

Discussion. We interpret this result, starting with the
auto labehng error term 5( Xpool (Ag)). The term (a)

o (hl-, ti |X v ) is the empirical conditional error in the auto-
labeled region computed on the validation data in i-th round,
which is at most ¢,. Thus, summing term (a) over all the
rounds is at most €,. The term (b) provides an upper bound
on the excess error over the empirical estimate term (a) as a
function of the Rademacher complexity of "9 and the val-
idation data used in each round. The last term (c) captures
the variance in the overall estimate as a function of the total
number of auto-labeled points and the Rademacher complex-
ity of HT:9. TIf we let ng,i) > n, i.e. the minimum validation
points ensured in each round, then we can see the second

term is O(R,,, (H7+9)) and the third term is O (\/ 1/nv).
Therefore, validation data of size O (1 / eg) in each round is

sufficient to get a O(¢, ) bound on the excess auto-labeling
error. The terms with Rademacher complexities suggest that

it is better to use a hypothesis class and confidence function
such that the induced hypothesis class has low Rademacher
complexity. While such a hypothesis class might not be
rich enough to include the target function, it would still
be helpful for efficient and accurate auto-labeling of the
dataset which can then be used for training richer models in
the downstream task. The coverage term provides a lower
bound on the empirical coverage P (X pooi(Ax)) in terms of
the true coverage of the sequence of estimated hypotheses
izi and threshold ;.

We note that the size of the validation data needed to guaran-
tee the auto-labeling error in each round by Algorithm 1 is
optimal up to log factors. This follows by applying a result
on the tail probability of the sum of independent random
variables due to Feller (Feller, 1943):

Lemma 3.3. Let ci,co and o > 0. Let x; € X be a set of n
i.i.d. points from X with corresponding true labels y;. Given
(h,t) € HT9, let B[(€¢_ (h, t,xi,y:) — E(h, 1|X))°] =
o? > a2 for every x; for o; > 0 and let > 0?2 > ¢ then
for every e € [0, Zlfg] 12652 log(4cs) the fol-
lowing holds w.p. at least 1/4, E,(h, t|X) > E,(h, t| X )+e.

with n, <

Therefore, if a sufficiently large validation set is not used in
each round, there is a constant probability of erroneously
deciding on a threshold for auto-labeling. Such a require-
ment on validation data also applies to active learning if
we seek to validate the output model. Bypassing this re-
quirement demands the use of approaches that are different
from threshold-based auto-labeling and traditional valida-
tion techniques. We note the possibility of using recently
proposed active testing techniques (Kossen et al., 2021), a
nascent approach to reducing validation data usage.

3.1. Linear Classifier Setting

Next, we consider a simple setting where active learning
is known to be optimal to see if TBAL can offer similar
performance guarantees. To do so, we instantiate results
from 3.2 to homogeneous linear separators under the uni-
form distribution in the realizable setting. Let Py be sup-
ported on the unit ball in R%, X = {x € R% : Hx|| <1}
Let W= {w € R? : |[|w|ls = 1} = Sg, H = {x
sign({w, x))Vw € W}, the score function be given by
g(h,x) = g(w,x) = [(w,x)|, and set T = [0,1]. For
simplicity, we will use WV in place of H.

Corollary 3.4. (Overall Auto-Labeling Error and Cover-
age) Let w;, t; be the ERM solution and the auto-labeling
margin threshold respectively at epoch i. Let ng,i), nt(li) de-
note the number of validation and auto-labeled points at
epoch i. Let the auto-labeling algorithm run for k-epochs.

Then, w.p. at least 1 — 6/2,
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and w.p. at least 1 — /2

P(Xpoot (Ag))> 1 — mini;\/4d/7
2 eN 8k
Zk\/N <2d10g (7) +1log (5))6)

These results imply that by ensuring the sum of the empirical
validation error term (a) and the upper confidence interval
to be less than ¢, in each round of the algorithm we can
ensure that the overall auto-labeling error remains below
€,. Furthermore, by applying standard VC theory to the
first round, we obtain that £; < 1 /2. Therefore, right after
the first round, we are guaranteed to label at least half of
the unlabeled pool. We empirically observe that TBAL has
coverage at par with active learning while respecting the
auto-labeling error constraint (See Figure 4(a)).

4. Experiments

We study the effectiveness of TBAL on synthetic and real
datasets. We validate our theoretical results and aim to
understand the amount of labeled validation and training
data required to achieve a certain auto-labeling error and
coverage. We also seek to understand whether our findings
apply to real data—where labels may be noisy—along with
how TBAL performs compared to common baselines.

Baselines: We compare TBAL to the following methods:

a) Passive Learning (PL) queries a subset of the points
randomly to train a model from a given model class
and then uses it to predict the labels for the remaining
unlabeled pool.

b) Active Learning (AL) (using margin-random query strat-
egy, described below) trains a model from a model class
and uses it to predict the labels for the remaining unla-
beled pool.

¢) Passive Labeling + Selective Classification (PL+SC) first
performs passive learning to train a model from a given
model class. Then it performs auto-labeling on the unla-
beled data using threshold-based selective classification
with the model output by passive learning. Only those
unlabeled points that are deemed as fit to be labeled by
the selection function are auto-labeled.

d) Active Learning + Selective Classification (AL+SC) first
performs active learning (using margin-random query
strategy) to train a model from a given model class. It
then performs auto-labeling using threshold-based se-
lective classification with the model output by active
learning.

For selective classification in the above methods, we use
Algorithm 2 to estimate the threshold and use it to per-
form auto-labeling. In experiments, we adapt Algorithm
2 slightly—instead of estimating a single threshold for all
classes, we estimate thresholds for each class separately.

Active Querying Strategy: We use the margin-random
query strategy for querying the next batch of training data.
In this strategy, the algorithm first sorts the points based
on the margin (uncertainty) score and then selects the top
Cnyp (C > 1) points from which n;, points are picked at
random. This is a simple and computationally efficient
method that balances the exploration and exploitation trade-
off. We note that other active-querying strategies exist;
we use margin-random as our standard querying strategy
to keep the focus on comparing auto-labeling—not active
learning approaches.

Datasets: We use five datasets, three synthetic and two
real. For each dataset, we split the data into two sufficiently
large pools. One is used as X,,, on which auto-labeling
algorithms are run and the other is used as X,,4; from which
the algorithms subsample validation data.

a) Unit-Ball: is a synthetic dataset of uniformly sampled
points from the d-dimensional unit ball. The true labels
are generated using a homogeneous linear separator with
w = [1/Vd,...,1/v/d]. We use d = 30 and generate
N=20k samples, 16k are in X, and 4k are in X,,q;.

b) Tiny-Imagenet (tin) is a subset of the larger ImageNet
(Deng et al., 2009) dataset, designed for image classifi-
cation tasks. It consists of 200 classes, each with 500
training images and 50 validation and test images. With
a total of 100,000 images, Tiny ImageNet provides a
diverse and challenging dataset. We get embeddings of
the images using CLIP (Radford et al., 2021).

¢) IMDB Reviews (Maas et al., 2011) is a comprehensive
collection of movie reviews, consisting of 50,000 indi-
vidual reviews. It is a balanced dataset of positive and
negative labels. We use the standard train set of size 25K
and split into X,0; and X,4; of sizes 20K and 5K respec-
tively. We get embeddings of reviews using a pretrained
transformer model (Reimers & Gurevych, 2019).

d) CIFAR-10 (Krizhevsky et al., 2009) is an image dataset.
We randomly split the standard training set into X },o; of
size 40k and the validation pool of size 10k. We use the
raw features for model training.
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Figure 3. Effect of variation of validation data size with and without using a UCB on error estimates. We keep the maximum number of
training samples fixed at 500, 4000, 5000 for Unit-ball, IMDB and Tiny-Imagenet respectively.

Models and Training: For the linear models, we use SVM
with the usual hinge loss and train it to loss tolerance 1075,
To train a multi-layer perceptron (MLP) on the precom-
puted embeddings of IMDB and Tiny-Imagenet we we use
SGD with a learning rate of 0.05 and batch sizes 64, 256
respectively. To train the medium CNN we use SGD with
a learning rate of 102, batch size 256, and momentum of
0.9. More details on model training are in the Appendix.

The score function g: For SVMs we use the standard im-
plementations of (Wu et al., 2003; Platt, 1999) in sklearn
to get the prediction probabilities and use them as the score
function. Neural networks use softmax output.

4.1. Role of Validation Data

The TBAL algorithm uses validation data to estimate the
auto-labeling errors at various thresholds to determine the
threshold for automatically labeling points accurately. Thus,
it is crucial to have accurate estimates of the auto-labeling
errors. Our analysis shows that to get such good estimates,
large amounts of validation data are needed. In this section
we study the effect of varying the amount of validation data
on auto-labeling performance .

Setup: We fix the maximum training data size N, and run
the algorithm with different amounts of validation data. We

also consider the two cases where the algorithm uses an
upper confidence bound on the error estimate and where it
does not. We use the Unit-Ball, Tiny-Imagenet and IMDB
datasets for this study with IV, = 500, 2000 and 5000, re-
spectively, and the auto-labeling error thresholds ¢, = 1%,
5%, 10%, respectively. Initial seed data of size n, is 20%
of N, and query batch size ny, is 5% of Ny; C' = 2 for both
AL and TBAL for both datasets. We give the same initial
seed samples of size ng to all the methods to ensure they
have the same starting point.

Results: Figure 3 demonstrates the impact of validation
data on the performance of TBAL and other algorithms. The
auto-labeling error and coverage of TBAL and other meth-
ods are affected by the amount of validation data provided.
When the validation data is insufficient, the auto-labeling
error of TBAL increases. However, as more validation
data is used, the auto-labeling error and coverage of TBAL
improves. Providing too little X,,,; can lead to incorrect
estimates of the auto-labeling error, which in turn results in
poor auto-labeling performance. This is further highlighted
in our theoretical analysis as seen in Theorem 3.2. We also
take a more nuanced look at the performance when the al-
gorithm uses an upper confidence bound (with C; = 0.25)
on the estimates and when it does not. We see the effects
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Figure 4. Results for varying the maximum number of samples algorithm can use for training while providing sufficient validation samples.

of not using any upper confidence bound (i.e. C; = 0).
Figures 3(a)3(c), 3(e) show the results when C; = 0 and
Figures 3(b), 3(d), 3(f) show the results when C; = 0.25.
These show that not using UCB leads to high auto-labeling
error (i.e. not meeting the guarantees) even when there is a
sufficient amount of validation data. This can happen with
high coverage as well—yielding a dataset with large error.
On the other hand using UCB, i.e. C7 = 0.25, the algorithm
can keep the auto-labeling error below the given threshold
but suffers in coverage.

4.2. Role of Training Data Size

The labels queried for model training also play an important
role in the process while incurring costs to obtain. The next
experiment focuses on the impact of training data.

Setup: We limit the amount of training data the algorithm
can use and record the resulting auto-labeling error and
coverage. We ensure all algorithms have sufficiently large
but equal amounts of validation data. We run on Unit-Ball,
IMDB, Tiny-Imagenet, CIFAR-10 datasets with the same
values of ng, np, and C' as in previous experiments.

Results: Figures 4(a), 4(b), and 2(b) indicate that TBAL
and methods utilizing selective classification (AL+SC,
PL+SC) maintain a high level of accuracy, even in sce-
narios where minimal training samples are used. This is
expected as the threshold estimation method (when used
with sufficient validation data) will find auto-labeling thresh-
olds such that the auto-labeling error does not exceed ¢,.
The impact of training data size can be seen clearly in the
coverage achieved by the algorithms. As expected, with
fewer training samples the model has low accuracy leading
to low coverage. However, as more samples are acquired, a
more accurate model within the function class is learned, re-
sulting in increased coverage. The Appendix has additional
discussion and results on other datasets.

5. Related Work

We briefly review related work, deferring a more detailed
discussion to the Appendix. There is a rich body of work
on active learning (AL) (Settles, 2009; Dasgupta, 2011;
Hsu, 2010; Hanneke, 2014; Citovsky et al., 2021) focused

on learning the best model in a function class with less la-
beled data than passive learning. Various AL algorithms
have been developed and analyzed, e.g., uncertainty sam-
pling (Tong & Koller, 2001; Mussmann & Liang, 2018),
disagreement region based (Cohn et al., 1994; Hanneke,
2007), margin based (Balcan & Long, 2013) and abstention
based methods that minimize the Chow’s excess risk (Zhu
& Nowak, 2022). Selective classification (SC) equips a
given classifier with the option to abstain from prediction
in order to guarantee prediction quality. The foundations
for SC are laid down in (El-Yaniv & Wiener, 2010; Wiener
& El-Yaniv, 2011; El-Yaniv & Wiener, 2012; Wiener & El-
Yaniv, 2015) where results on the error rate in the prediction
region and the coverage of the given classifier are provided.
However, these works lack practical algorithms to find the
prediction region. A recent work (Gelbhart & El-Yaniv,
2019) gives a disagreement-based active learning strategy
to learn a selective classifier. A recent paper (Qiu et al.,
2020) studies a TBAL-like algorithm for auto-labeling. It
focuses on the cost of training incurred when these systems
use large-scale model classes for auto-labeling. It proposes
an algorithm to predict the training set size that minimizes
the overall cost and provides an empirical evaluation. Weak
supervision is another line of work aimed at auto-labeling
that does not rely on obtaining human labels but instead
uses potentially noisy but cheaply available sources to infer
labels (Ratner et al., 2016; Fu et al., 2020). In contrast, we
are focused specifically on analyzing the performance of
TBAL algorithms (SGT, 2022).

6. Conclusion and Future Work

In this work, we analyzed threshold-based auto-labeling sys-
tems and derived sample complexity bounds on the amount
of human-labeled validation data required for guarantee-
ing the quality of machine-labeled data. Our study shows
that these methods can accurately label a reasonable size
of data using seemingly bad models when good confidence
functions are available. Our analysis points to the hidden
downside of these systems in terms of a large amount of
validation data usage and calls for more sample-efficient
methods including active testing.
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Supplementary Material
Promises and Pitfalls of Threshold-based Auto-labeling

A. Appendix

The appendix is organized as follows. We summarize the notation in Table 1 and section A.2. Then we give the proof of the
main theorem (Theorem 3.2) followed by proofs of supporting lemmas. We provide details of its instantiation for finite
VC-dimension hypothesis classes and the homogeneous linear separators case. Then, we provide the technical details of
the lower bound (Lemma 3.3). Then we provide details of additional experiments in section B. In section B.3 we provide
additional insights into auto-labeling using PACMAP (Wang et al., 2021b) visualizations of auto-labeled regions in each
round. Finally, we provide extended related work in section C

A.1. Glossary
The notation is summarized in Table 1 below. More detailed notation is in section A.2.

A.2. Basic Definitions and Setup

Let X be the instance space and p(x) be a density function supported on X. For any x; € X let y; be its true label. Let
X ={x1,...,xn} be aset of N i.i.d samples drawn from X. Let set S C X denote a non-empty sub-region of X" and
S C XNSbeasetof n > 0i.i.d. samples.

Definition A.1. (Hypothesis Class with Abstain) We can think of the function g along with set 7" as inducing an extended
hypothesis class H(T9). Let HT*9 = H x T. For any function (h,t) € H(7"9) is defined as

h(x)  ifg(h,x) =1
1 0.W.

(h,t)(x) := { @)
Here (h,t)(x) =L means the hypothesis (h, t) abstains in classifying the point x. Otherwise, it is equal to h(x).

The subset S(h,t) C S where (h,t) does not abstain and its complement S(h,t) where (h,t) abstains, are defined as
follows,

S(h,t):={xeS: (ht)(x)#L}, S(h,t) :={x eS8 : (ht)(x)=1}

Probability Definitions: The probability P(S) of subset S C X" and the conditional probability of any subset S’ C S are
given as follows,

B(S) = P(S|X) = / p)dx,  P(S')S) = LS

A bt = B 0)S)

The empirical probabilities of S and S’ C S are defined as follows,

_ 15
S|

1S(h, t)]
B

P(5|9) : P(h,t|S) :=

Loss Functions: The loss functions and the corresponding Rademacher complexities are defined as follows,

lo—1(h,x,y) = 1(h(x) £y), £Li(h,t,x):=1(g(h,x)>1), Eéﬁl(h,t,x,y) = Vlo—1(h,x,y) - L1 (h,t,%).
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Symbol Definition
X feature space.
y label space.
H hypothesis space.
h a hypothesis in .
X,y x is an element in X" and y is its true label.
S,S S C X isasub-regionin X, S = {x1,...,%,} ii.d. samples in S.
Xpool unlabeled pool of data points.
quz), ng,i) set of validation points at the beginning of z'th round and nSf) = \Xq(,i) |
X,g ), ((1) set of auto-labeled points in zth round and n |X |
h“ t; ERM solution and auto-labeling thresholds respectively in ¢th round.
x® unlabeled region left at the beginning of ith round i.e. {x € X : g(ﬁj, x) < t; Vj < i}.
X unlabeled pool left at the beginning of ith round i.e. {x € Xpo01 : g(hj, x) < f; Vj < i}.
((zi) number of auto-labeling mistakes in ith round.
k number of rounds of the TBAL algorithm.
Xpool (Ak) set of all auto-labeled points till the end of round k.
confidence function g : H x X — T. Where T’ C R™, usually 7" = [0, 1]
HT9 Cartesian product of H and T the range of g.
N, rgk) Ef 1 n,(f).
lo—1(h,x,y) L(h(x) #y).
£y (h,t,x) 1(g(h,x) > 1).

g (ht,x,y)  Lo—1(h,x,y) - €1 ((h,t),%).

R (H, lo-1) Eo.s | suppey = 2oy oilo—1(h, xi, yi)} .

R (HT9,0,) Eo,s | SUp(, pyenro = 2oy 0il1 (hyt, Xl)]
R,(HT9, 08 1) Eos SUD (1, 1)enT .o % S oilg_y (bt x;, yl)}

Ry, (HT9) R (H, lo—1) + R (HT9,0,) .
E(h,t|S) Exsllo—1(h.t,x,y)].

E(h,1]5) e S g (bt xi, ).

P(h, t|S) x|3[€L(h,t,x)].

B(h, t|S) ‘S et X ).

Eal(h,t]S) E(h,1|S)/P(h, 1]S).

Ea(h, t]S) E(h,t|S)/B(h,t|S).

Table 1. Glossary of variables and symbols used in this paper.

Error Definitions: Define the conditional error in set S C X as follows,

Eht1S) = Busltia(htox) = [t htxn) B ax
XES P(S)
Then, the conditional error in set S(h, t) i.e. the subset of S on which (h, t) does not abstain,

. E(h, t|S)

Ea(haﬂ‘s) = 5(h,t|5(h,t)) *Ex|8(h t)[gO 1(h t X, )] (h t‘S)

Similarly, define their empirical counterparts as follows,

E(h,t|S) : Z 0 (ot xi,y:)s Ea(hyt]S) i=E(h, t|S(h,t)) := STl (htxiy),

xleS x1€S(h t)

Note that,

Z K&—l(hvtaxi7yi) = Z gé—l(hatvxiayi) = Z Eo—l(hvxiayi)

x; €S x;, €S (h,t) x; €S (h,t)
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Rademacher Complexity: The Rademacher complexities for the function classes induced by the H, 7T, g and the loss
functions are defined as follows,

R (s f0-1) = B sup Zmeo L(hyxis )|

~ 1 n
mn HTl’gagL = EU,S sup . UzeL(h7t’Xl):| ’
( ) L (h,t)eHT9 T ;
_ 1 <&
R (W19, 45) = Eos| sup — 3 ould (ot xi ).
“(ht)eHTo TV i

mn (HT7g) = mn (Ha EO—l) + E):{n (HT7g7£J_)

A.3. Proofs for the General Setup
We begin by restating the theorem here and then give the proof.

Theorem 3.2. (Overall Auto-Labeling Error and Coverage) Let k denote the number of rounds of the TBAL Algorithm 1.

Letn$? n$ denote the number of validation and auto-labeled points at epoch i and n'®) = | XD, Let Xpoo1(Ay) be the

set of auto-labeled points at the end of round k. Na R = Zle nt(l) denote the total number of auto-labled points. Then,
with probability at least 1 — 0/2,

nd!

5( pool Ak ) < Z N( <A ( ,£L|X51)) + g(iﬁnw (HT"Q) + 2 blog(?))
=1 ——

0 Y2 Ny
(a)

k()
4 Ng T.g k 8k
= E ALY, - S ) AN PN

+ ( N 9{”(0) (H ) + N og( 5 ))

B i=1 +Va a

(c)
and w.p. at least 1 — 0/2

~ 2k2 8k
P (Xpoot (Ar)) (hiyi5)) = 2R (HT9) =/ S 1og ().

N 0

HM;T

Proof. Recall the definition of auto-labeling error,

_ E |
S(Xpool(Ak)) =3 oL m(® = . &, (h;, 1;| X D).
i=1 a
Here, m((f) is the number of auto-labeling mistakes made by the Algorithm in the 7th round and ga (ﬁi, fi|X (i)) is the
auto-labeling error in that round. Note that we cannot observe these quantities since the true labels for the auto-labeled
points are not available. To estimate the auto-labeling error of each round we make use of validation data. Using the
validation data we first get an upper bound on the true error rate of the auto-labeling region i.e. &, (ﬁh t;| X (i)) in terms of

the auto-labeling error on the validation data SAQ (ﬁh | X 51)) and then get an upper bound on empirical auto-labeling error
rate £, (ﬁ“ ti| X (i)) using the true error rate of the auto-labeling region.
We get these bounds by application of Lemma A.2 with §3 = §/4k for each round and then apply union bound over all k

epochs. Note that we have to apply the lemma twice, first to get the concentration bound w.r.t the validation data and second
to get the concentration w.r.t to the auto-labeled points.

o 2 2 /1 8k
@) v ®) o 2 T, Ry
Eallo 1) < &0l HXE) 3 8,00 (H9) s ()
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I a2 2 [ 1 8k
e apRo C(HT
Eulhiy £ X D) < &, (s, 11X D) Umngﬂ(ﬂ 9) + e 10g<5).

0 a

Substituting &, (hs, £;] X)) by its upper confidence bound on the validation data.

i XY < &, (1, BX) + 98,0 (M) £ %, (1)
0 0
2 1 8k 2 1 8k
+po\/n£}z) lOg (7) + po\/n((zz) lOg (7)

Having an upper bound on the empirical auto-labeling error for i*” round gives us an upper bound on the number of
auto-labeling mistakes m((f) made in that round. It allows us to upper bound the total auto-labeling mistakes in all k£ rounds

and thus the overall auto-labeling error as detailed below,

i

N(gk) ) a a

E(Xpool(Ak)> = y
i—1

Since we have an upper bound on the empirical auto-labeling error in each round, we have an upper bound for each m,(f),

which are used as follows to get the bound on the auto-labeling error,

R B )
g(Xpool(Ak)) = Z D)
i=1 Na
s
i=1 thk) ”t(zi)
k(i)
ne’ o [ i
=3 s Ea(hafi|x @)
i—1 Na

ko (d)
B O A N PV G N ST A L WO
;Ncﬁ’“) (é'a(hz,tz])( )+p0%n&”(7'[ 9)+p0 e 1og< )

IN

IN

ko)
na (e i Ix®)y - Ar ey 2 L (%)
;Na(k) <€a(hl,tZ]Xv )+p09fing>(7-t 9)+p0 O log

4 T, 2 1 8k
+ Emng) (7‘[ g) + — o) log (7)

po MNa

N———

ko0
na’ (G IO+ I (1T 4 Ak (1T - 2L 1o (BF
> (é’a(hz,tZ]Xv )+p09%n5f> (H 9)+p09%n5;> (H q)+p0 e log( )

k
i=1 N(S )
k(@)
N 2 1 8k
+ — | — flog s )
; NC(Lk) (po n((;) ( 6 )

IA

The last term is simplified as follows,
k

(1) k (3)
Ng 2 1 8k 2 Ng 1 8k
Yo G (9) =2 Ly (5)

=1
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:le”Z 9 1og (%F)
“ale()
:% le’“) o6 (5)

The last inequality follows from the application of the inequality ||u||; < v/k||u]|2 for any vector u € R¥. Here we let
u= [\/ﬁ((ll), -..v/n™), and since Vi \/n$) > 0 so, SF Ve = |[ul]; and N = ||u])2.

a

SaVed VAl vE [k

N Tl T B [l Y N

To get the bound on coverage we follow the same steps except that we can use all the unlabeled pool of size n(i) to estimate
the coverage in each round which gives us the bound in terms of n(Y) and N as follows,

k

~ 1 .

P(Xpoot(Ak)) = N an(zl)
i=1

_ L S ) BXO|x )

;]Znu) B, 1] X )

. ‘ 1 8k
2 Z nN (P(h¢7ti|?€(’)) — 20,0 (H") - n(®) to <5)>

k
o ‘ k 8k
= N (P<hiati")((l)> — 2,0 (HT’g)> “Vnee <7)

‘We bound the first term as follows,

@

.
> P(hi,f,» Xm) -y P )

i=1 i=1
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Substituting it back we get,

7/5( pool Ak ZP Z) il - an(z) (HT 9) — k\/ 10 8k \/

k o 42 8k
EZ:]P’(X(Z)(h,»,ti))—2§Rn(i>(HT’9)— —~ los (5)

For the last step we use the inequality \/a + v/b < \/2(a + b) for any a,b € R*. O

Next we state the result for uniform convergence between Ea( , ), fa (h, t‘S) and give its proof.

Lemma A.2. Forany03,p, € (0,1), let S and S be defined as above. Let P(h,t|S) > p, and P(h,t|S) > p,¥(h,t) € HT9,
the following holds w.p. at least 1 — 632

|Ea(hyt|S) — Eu (Rt

9)| < +§mn (H"9) + 2 %log((;z) Y(h,t) € HT9. ®)

0 p() 3

Proof. We begin with proving one side if the inequality and the other side is shown by following the same steps. The proof
is based on applying the uniform convergence results for £ E(h,t]S) and IP’(h t|.S) from Lemma A.3. The main difficulty here

isthat Eg [Ea (h, t|S ) # &, (h, t|S ) , so we cannot directly get the above result from standard uniform convergence bounds.

We prove it, by using the results from the Lemma A.3 and restricting the region S such that it has probability mass at least
b,

By definitions of &, (h, t|S) and E,A'a( )

) we have,

E(h,t|S) =P(h, t]S) - £ (h,

Let &1 = 4/(1/n)log(2/61),& = +/(1/n)log(2/d3). From lemma A.3 we have,

) and  E(h,t]S) = P(h,t[S) - & (h,t|S).

E(h,t|S) < E(h,t]S) + 2R, (HT9) + & Y(h,t) e HDY  wp. 1—81/2. )
P(h,t|S) < P(h,t|S) + 2R, (HT9) + & V(h,t) € HTY  wp. 1 —d2/2. (10)

Plugging in the above definitions of errors in equation (9) we get,
P(h,1]S) - £ (h, t|S) < B(h,t|S) - &, (h, t|S) + 20, (HT9) + €1 (11)

% (H0) &
P(h,t|S)  P(h,t|S)’

Ea(h,t|S) < @&(h,ﬂs) +2

B(1 13) (12

Substituting ]IA"(h7 t|S) from equation 10 in the above equation, we get the following w.p. (1 — d1/2)(1 — d2/2),

(h,t|S) + 2R, (HT9) + &
( P(7,1S)
HTQ) &2 &
= (1+ P(h,|S) +P(h,t|5))5“< )
R (H'9) =
Findm 19+

2R, (H"9) & »
) o (h,t|S) + B 1]5) +P<h’t|8) Y(h,t) € HT9.

2%, (M) &1
)t Bhs) TR aS)

P 2R, (H™9) n &1
P(h, 1]S) P, 1S) | B, 1S)

(R, t]S) <

=&, (h,t|S) + Ea(h,t|S) +

Using upper bound & (h, t|S ) < 1 in the second and third terms,

Ry (HT"Q) &+ &
) B 1s) T B, 8S)

Ea(h,t]S) < & (h,

V(h,t) € HTIw.p. > 1 — (6 + 62)/2.
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Using P(h,1/S) > p,

+§1+§2

Eq(h,t
( 0

S) < & (h,t V(h,t) € HT9 w.p. > 1 — (81 + 62)/2.

S) + Iy, (H™9)
Py

Letting 0, = 6 = d3 and & = & = 5% gives & = ;%n log () and
0

Ea(h,t

~ 4
S) < &a(h,t|S) + 0 (H"9)+¢  V(ht) e HTI wp. >1— 3.
0
This proves one side of the result, the other side of results follows similarly. O

Lemma A.3. Let S C X be a sub-region of X and S = {x1,...,X,} be a set of n i.i.d samples in S drawn from
distribution Py. Let {y1,...yn} be the corresponding true labels, let R, (’HT’Q ) be the rademacher complexity of class
HT'9 then for any 61,62 € (0,1) we have,

4 1 2
E(h,t|S) — E(h,t|S)| < 2R, (HT9) + - log(a) V(h,t) € HT9  wp. 1—6,/2. (13)

. 1 2
IP(h,t|S) — P(h,t|S)| < 2R, (HT9) + 4/~ log(~) V(h,t) € HI wp. 1 —6y/2. (14)
n 2
Proof. The proof is similar to the standard proofs for Rademacher complexity based generalization error bound. Since we
work with the modified loss function and hypothesis class to include the abstain option, thus for completeness we give the
proof here. The proofs for error and probability bounds are very much the same except for the change in the loss function.
We give the proof for the error bound here.

The result follows by applying McDiarmid’s inequality on the function ¢(.S) defined as below,

8(S) = sup  E(htS) - Es(h,1]S).
(h,t)eHT9

To apply McDiarmid’s inequality we first show that ¢(.S) satisfies the bounded difference property (Lemma A.5). This gives
us,

E(h,t|S) — Es(h,1]S) < $(S) < Es[6(5)] + %log(%) Y(h,t) € HTY  wp. 1 5

Using the bound on Eg[¢(.S)] from Lemma A.4 we get,

E(h,t|S) < E(,1]S) + 2R, (HT9) + %log(;) V(h,t) e HT9  wp. 1 - %1
1

Similarly, the bound for other side is obtained which holds w.p. 1 — ¢; /2 and combining both we get eq. (13).
The bound of probabilities is obtained by following the same steps as above but with a different loss function, ¢, , since
P(h, t|S) is the probability mass of the region where (%, t) does not abstain.

O

Lemma Ad4. Let S C X be a sub-region of X and S = {x1,...,X,} be a set of n i.i.d samples in S drawn from
distribution Py. Let {y1, ... yn} be the corresponding true labels and let R, (HT’g ) be the Rademacher complexity of the
function class H™9 defined over n i.i.d. samples. Then we have,

Es| sup & t|S) —é(h,t\S)] < 2, (HT9). (15)
(ht)eHT9
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Proof. Let S = {X1,X2,...X,} be another set of independent draws from the same distribution as of S and let the
corresponding labels be {f1, . . . ¥, }. These samples are usually termed as ghost samples and do not need to be counted in
the sample complexity.

Es| sup E(h,t|S)—§(h,t\S)]:Es[( sup Eg[é(h,ﬂé)]—é(h,tm)]

(h,t)eHT9 h,t)eHT:9

- ES[ sup  Eg[E(h,tS) - SA(h7t|S)H.

(htyeHTo
< Es [Eg[(hsggm [E(h,1]S) — 5(h,t|5)]”.

—Eg; [hesfﬁ)q (h,t3) — (h,t\S)]]

—Egs [(hjgg“ { iéé_l(h,t,ii,gji) - iiéé‘_l(h,t,xi,yi)”.
— Eo’s’g{hes;_lgg [ Zalﬁo L (o, % ) ;UJO 1ot x| -

n

1
<E,s| sw =S oitd (bt %) |+
K (h,t)ew,gn; 01

Eos| sup oilk (ht i, 33)].
(ht)e?—LTgnZ ot

= 2R, (H"9,45_,).
< 2%, (HTY).

In the last step we used the upper bound on the Rademacher complexity from Lemma A.6. [

Lemma A.5. (Bounded Difference) Let S be a set of i.i.d samples from Px then for ¢(S) = sup, yyeyr.0 E(h, t|S) —
E(h, t|S), with probability at least 1 — 6,

6(5) < Eslo(8) + | g7 loa(5) (16)

Proof. Tt is proved by showing that ¢(S) satisfies the conditions (in particular the bounded difference assumption)

needed for the application of McDiarmid Inequality. To see this, Let S = {x1,X2,...X;,...,X,} and let S’ =
{x1,X2,...%},...,%,},i.e. S and S’ may differ only on the i'" sample.
6(S) — 6(S)| = | sup  E(h,t|S)—E(h,t]S)— sup  E(h,t|S) — E(h,t]S)|.
(h,t)eHT9 (h,t)eHT:9
<| sup (E(h, 1S) — E(h, 1]S) — E(h, t|S) + E(h, t|S’)) ]
(h,t)eHT 9
=| sup ( (h,t|S) — E(h t|S’))‘
(h,t)eHT:9
= sup ( 0 (bt x5, ;) — o htx,y))’
e, (i X et g 3 s
= sup ( EO (htox,y5) — K(il(h,t,xj,yj)) +
(h,t)eHT:9

1
E(Zé_fl(hvt’ Xivyi) - Ed_fl(hvta X;’y;))) ’
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1
= L oty xs, i) — 6 (o, X, o) ‘
‘(h;ggw(n(o 1 X, Yi) — Lo—1( X y)))

1
S —
n
The last step follows since ¢3-_; is a 0-1 loss function so letting ¢5-; (h,t,x;,vy;) = 1 and £3_; (h,t,x},y!) = 0 gives an

upper bound on the difference. Thus we can apply McDiarmid Inequality here and get the bound.
O

The relationship between the Rademacher complexities is obtained using the following Lemma A.6 due to (DeSalvo et al.,
2015).

Lemma A.6. ((DeSalvo et al., 2015)) Let {y_1,£ , ﬂd‘_l be the loss functions defined as above and the Rademacher
complexities on n i.i.d. samples S be ‘R, ('7'-[7 60,1) Ry (HT’-", EJ_) R (HT’-‘J, E(J);l) respectively. Then,

R (H9,051) < R (M, lo1) + R (H9,01) = R, (HT9). (17)

Detailed proof of this lemma can be found in (DeSalvo et al., 2015). The result follows by expressing fg_1 - £ as
(Lo—1 + €1 — 1) and then applying Talagrand’s contraction lemma (Ledoux & Talagrand, 1991).

A.4. Bounds for Finite VC-Dimension Classes
Here we specialize the auto-labeling error and coverage bounds to the setting of finite VC-dimension classes and then
instantiate for a specific setting of homogeneous linear classifiers and uniform distribution.

Lemma A.7. (Mohri et al., 2012) (Corollary 3.8 and 3.18). Let the VC-dimension of function class induced by F be any
class of functions from X — Y U {L}, and £ : Y U{L} — {0,1} be a 0-1 function. Then,

R, (F,0) < \/W(f’ 9 1og (V(if g)). (18)

Corollary A.8. (Auto-Labeling Error and Coverage for Finite VC-dimension Classes) Let k denote the number of rounds
of TBAL algorithm 1. Let V(’H,T’g) = d Let Xpooi(Ar) be the set of auto-labeled points at the end of round k. Nék) =
Zle ngL) denote the total number of auto-labeled points. With probability at least 1 — 6,

E(Xpoo (A i Eolho 81 XDy + L T2 (od10g (F20) 4 10g (EF
( pool( k)) = ,71W a( i3 z| v )"‘pfo nTvl) og (7>+ og (?)

(b

+ 30 (\/;;) <2d10g (ej\;c(lk)) + log (8(5]{:)))

and

POt 3008 0) a4 L o () )]

i=1
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Proof. The proof follows by substituting the Rademacher complexity bounds for finite VC dimension function classes from
Lemma A.7 in the general result from Theorem 3.2.

b 2 TLS,Z)

NF) v
(@) (b)

. G 4 [ k
5(Xpool(Ak’)) < Z e <5a(hi,tvi|qul)) +*(9%n<v:) (HT’Q) + %ng‘» (HT’Q)) +— log (8—)
i=1

We first simplify the terms dependent on ng,i) as follows. Here we use the inequality \/a + vb < +/2(a + b) for any
a,beRT.

00 s (5) < s () + ()

<2 (o () s (%))
(4)

Next, we simplify the terms dependent on n,,’ as follows. First, we substitute the Rademacher complexity using the bound

in Lemma A.7 and then apply the same steps as in the proof of Theorem 3.2 to bound Zle n((f) / Nék) by \/ k /N,gk)
followed by the application of v/a + v/b < \/2(a + b) to get the final term.

im1 Na Na
k (@) (k)

Na eNg k 8k
< E 2d log ( ) + log (—)
% k
= NP d NP 0

A.5. Homogeneous Linear Classifiers with Uniform Distribution

Here we instantiate Theorem 3.2 for the case of homogeneous linear separators under the uniform distribution in the
realizable setting. Formally, let Px be a uniform distribution supported on the unit ball in R¢, X = {x € R?: ||x|| < 1}.
Let W = {w € R? : ||w|]z = 1} = Sgand H = {x ~ sign({w,x))V¥w € W]}, the score function is given by
g(h,x) = g(w,x) = [(w,x)| and set T = [0, 1]. For simplicity, we will use W in place of H.

Corollary 3.4. (Overall Auto-Labeling Error and Coverage) Let W, t; be the ERM solution and the auto-labeling margin

threshold respectively at epoch i. Let m(f), n,(f) denote the number of validation and auto-labeled points at epoch i. Let the
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auto-labeling algorithm run for k-epochs. Then, w.p. at least 1 — § /2,

k(i) (%)
~ L S O N 2 eny 8k
E(Xpoot (Ar)) < > N <5a(wl,tz|Xv )+p0 ) 2dlog( p +1o g( 5
=1 a v
(a)
4 % eNP 8k
Jr%(\/Nék) <2d10g( ] >+log<6>)

and w.p. at least 1 — /2

P(Xpoor(Ar) >1—mmt\/m—2k\/ (2dlog( (Ziv)—&-lo (8;))

Proof. The bound on auto-labeling error follows directly from Theorem A.8 as the VC dimension for this setting is d. For
the coverage bound, we utilize the fact that the distribution Py is the uniform distribution over the unit ball. This enables us
to obtain explicit lower bounds on the coverage. The details are given in Lemma A.9 and Lemma A.10. O

Lemma A.9. Let the auto-labeling algorithm run for k-epochs and let W;, t; be the ERM solution and the auto-labeling
margin threshold respectively at epoch i. Let X be the unlabeled region at the beginning of epoch i, then we have,

k
ZP(X@ (Wi, 1)) > 1 — minf;\/4d/7. (19)
=1

Proof. Let X (W;,t;) = {x € X : |(W;,x)| > ;} denote the region that can be auto- labeled by W;, t;. However, since in

each round the remaining region is X'(*) the actual auto-labeled region of epoch i is X9 = ={x € X0 |(W;,x)| > 1;}.
Let X' (W, ;) denote the complement of set X' (W, t;).

Now observe that X, = Uf’:lXéi) and X (W, fk) C X, because any x € X (wy, fk) is either auto-labeled in previous
rounds 7 < k or if not then it will be auto-labeled in the k*" round. More specifically, any x € X (Wy, t;) is either in
Uf;ll Xéi) and if not then it must be in Xék). Thus the sum of probabilities,

k

> P(XO (W, 1)) ZIP’X(Z

i=1
= IF’(Xa)
> minP(X (W;,1;))
=1—maxP(X(W;,1;))

The last step used Lemma 4 from (Balcan et al., 2007)) with ; = #; and 5 = 0 to upper bound P(X (W, £;)) by #;/4d / .
The lemma is stated as follows in Lemma A.10,

Lemma A.10. ((Balcan et al., 2007) (Lemma 4)) Let d > 2 and let x = [11,...24] be uniformly distributed in the
d-dimensional unit ball. Given v, € [0,1],v2 € [0, 1], we have:

P((z1,22) € [0,7] % [12,1]) <

721\/\/7? exp ( _ (d _22)73)
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A.6. Lower Bound

Lemma 3.3. Let ci,co and o > 0. Let x; € X be a set of n i.i.d. points from X with corresponding true labels y;. Given

(h,t) € HT9, let B[ (Ly_y (.t xi, yi) — S(h,t|X))2] = 0? > o2 for every x; for ; > O and let ¥ 0 > c; then for

every € € |0, %{}10?] with n, < 12(2’2 log(4cy) the following holds w.p. at least 1/4, E,(h, t|X) > E,(h, | X) + €.

Proof. 1t follows by application of Feller’s result stated in lemma A.11. [

Lemma A.11. (Feller, Lower Bound on Tail Probability of Sum of Independent Random Variables) There exists positive

universal constants ¢y and co such that for any set of independent random variables X1, . . ., Xy, satisfying E[X;] = 0 and
m N2
| X;| < M, foreveryi e {1,...,m}, if > E[(X)?] > c1, then for every € € [0, %\}g’)]}}

2

12 ZT”_E[(XZ»)Q])'

i=1

P(i X; > €) > coexp ( (20)

i=1

B. Additional Experiments
In this section, we discuss additional experiments on the role of hypothesis class in auto-labeling datasets and experiments

for studying the role of confidence function in auto-labeling. Finally, we visualize PACMAP embeddings of the CIFAR-10
and MNIST data points to get a sense of auto-labeling regions in various rounds of the algorithm.

B.1. Additional Experiments on Role of the Hypothesis Class
First, we provide details of the datasets used in the following experiments.

Datasets:

XOR: is a synthetic dataset. Recall that it is created by uniformly drawing points from 4 circles, each centered at the corners
of a square of with side length 4 centered at the origin. Points in the diagonally opposite balls belong to the same class. We
generate a total of N = 10, 000 samples, out of which we keep 8,000 in X,,,,; and 2, 000 in the validation pool X,;.

MNIST: (Deng, 2012) is a standard image dataset of hand-written digits. We randomly split the standard training set into
Xy001 and the validation pool X ,,,; of sizes 48,000 and 12,000 respectively. While training a linear classifier on this dataset
we flatten the 28 x 28 images to vectors of size 784.
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(a) Output of TBAL and AL+SC on XOR dataset (b) Auto labeling performance of various methods

Figure 5. Comparison of Threshold-Based Auto-Labeling (TBAL) and Active-Learning followed by Selective Classification (AL+SC) on
XOR-dataset. Left figure (a) shows samples that were auto-labeled, queried, and left unlabeled by these methods. Right figure (b) shows

the auto-labeling error and coverage achieved. The lines show the mean and the shaded region shows 1-standard deviation estimated over
10 trials with different random seeds.

XOR Experiment: We run the TBAL algorithm 1 with an error tolerance of €, = 1%. we use 20% of N, as seed training
data and keep query size n; as 5% of N;. We compare it with active learning and active learning followed by selective
classification. The given function class and selective classifier are both linear for all the algorithms. The results are shown in
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(a) Auto-labeling MNIST data using a linear classifier. The valida-  (b) Auto-labeling MNIST data using LeNet classifier. The valida-
tion size used here is 12k. tion size used here is 12k.

Figure 6. Auto-labeling performance on MNIST data using different models (hypothesis classes) as a function of samples available for
training. The left figure (a) shows the results with the linear classifier and the right figure (b) shows the results with the LeNet classifier.
The auto-labeling error threshold €, = 5% in both experiments and the algorithms are given the same amount of validation data. The
lines show the mean and the shaded region shows 1-standard deviation estimated over 5 trials with different random seeds.

Figure 5. Clearly, there is no linear classifier that can correctly classify this data. We note that there are multiple optimal
classifiers in the function class of linear classifiers and they will all incur an error of 25%. So, active learning algorithms can
only output models that make at least 25% error. If we naively use the output model for auto-labeling, we can obtain near
full coverage but incur 25% auto-labeling error. If we use the model output by active learning with threshold-based selective
classification, then it can attain lower error in labeling. However, it can only label & 25% of the unlabeled data. In contrast,
the TBAL algorithm is able to label almost all of the data accurately, i.e., attain close to 100% coverage, with an error close
to 1% auto-labeling error.

MNIST Experiment: For training LeNet (LeCun et al., 1998) we use SGD with a learning rate of 0.1, batch size of 32, and
train for 20 epochs. We use auto-labeling error threshold e, = 5%. We use 20% of N, as seed training data and keep query
size ny, as 5% of Ny. The results are presented in Figure 6 we observe that TBAL using less powerful models can still yield
highly accurate datasets with a significant fraction of points labeled by the models. This confirms the notion that bad models
can still provide good datasets.

B.2. Role of Confidence Function

The confidence function g is used to obtain uncertainty scores is an important factor in auto-labeling. In particular, for
threshold-based auto-labeling we expect the scores of correctly classified and incorrectly classified points to be reasonably
well separated and if this is not the case then the algorithm will struggle to find a good threshold even if the given classifier
has good accuracy in certain regions.

Setup We perform auto-labeling on the CIFAR-10 dataset using a small CNN network with 2 convolution layers followed by
3 fully connected layers (PyTorch, 2022). We use two different scores for auto-labeling, a) Usual softmax output b) Energy
score with temperature = 1 (LeCun et al., 2006). We vary the maximum number of training samples IV, and keep 20% of
N, as seed samples and query points in the batches of 10% of N,. The model is trained for 50 epochs, using SGD with a
learning rate of 0.05, batch size = 256, weight decay = 5e~* and momentum=0.9. The auto-labeling threshold is set to 10%.

Results The results with softmax scores and energy scores used as confidence functions can be seen in Figures 9(a) and 9(b)
respectively. We see that for both of these cases, TBAL does not obtain a coverage of more than =~ 6%. We observe that
using the energy score as the confidence function performed marginally better than using the softmax scores. We note that
this is the case even though the test accuracies of the trained models were around 50% for most of the rounds. Note that
CIFAR-10 has 10 classes, so an accuracy of 50% is much better than random guessing and one would expect to be able to
auto-label a significant chunk of the data with such a model. However, the softmax scores and energy scores are not well
calibrated, and therefore, when used as confidence functions, they result in a poor separation between correct and incorrect
predictions by the model. This can be seen in Figure 9 where neither of the softmax and energy scores provides a good
separation between the correct and incorrect predictions. We can also see that the energy score is marginally better in terms
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(a) Auto-labeling CIFAR-10 data using a small network and soft- (b) Auto-labeling CIFAR-10 data using a small network and energy
max scores. Validation size = 10k. scores. Validation size = 10k.

Figure 7. Auto-labeling performance on CIFAR-10 data using a small network and different scoring functions. The left figure (a) shows
the results with softmax scores and the right figure (b) shows the results with the energy score. The auto-labeling error threshold €, = 10%
in both experiments and algorithms are given the same amount of validation data. The lines show the mean and the shaded region shows
1-standard deviation estimated over 5 trials with different random seeds.
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Figure 8. Results for varying the maximum number of samples algorithm can use for training while providing sufficient validation samples.

of the separation, which allows it to achieve slightly better auto-labeling coverage in comparison to using softmax scores.
This suggests that more investigation is needed to understand the properties of good confidence functions for auto-labeling

which is left to future work. For a more detailed visualization of the rounds of TBAL for this experiment, see Figures 11
and 12 in the Appendix.

B.3. Auto Labeling Visualization

In this section, we visualize the process of TBAL. We use the dimensionality reduction method, PACMAP (Wang et al.,
2021b), to visualize the features of the samples. For neural network models, we visualize the PACMAP embeddings of
the penultimate layer’s output and for linear models, we use PACMAP on the raw features. In these figures, each row
corresponds to one TBAL round. Each figure shows a few selected rounds of auto-labeling. Each figure has four columns
(left to right), which show: a) The samples that are labeled by TBAL in the round are shown in that row. b) The embeddings

for training samples in that round. ¢) The embeddings for validation data points in that round. d) The score distribution for
the validation dataset in that round.

In Figure 10 we see visualizations for auto-labeling on the MNIST data using linear models. In this setting the data exhibits
clustering structure in the PACMAP embeddings learned on the raw features and the confidence (probability) scores produced
are also reasonably well calibrated which leads to good auto-labeling performance.

The visualizations for the process of TBAL on CIFAR-10 using the small network (a small CNN network with 2 convolution
layers followed by 3 fully connected layers (PyTorch, 2022)) with energy scores and soft-max scores for confidence
functions are shown in Figures 11 and 12 respectively. We note that both the energy scores and soft-max scores do not
seem to be calibrated to the correctness of the predicted labels which makes it difficult to identify subsets of unlabeled
data where the current hypothesis in each round could have potentially auto-labeled. We also note that the test accuracies
of the trained models were around 50% for most of the rounds of TBAL even though the small network model is not a
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Figure 9. Histograms of scores computed on the validation data in a few rounds of TBAL run on CIFAR-10 with a small net. We picked
two rounds where it auto-labeled the most i.e. around 800 points.

powerful enough model class for this dataset. Note that CIFAR-10 has 10 classes, so the accuracy of 50% is much better
than random guessing and one would expect to be able to auto-label a reasonably large chunk of the data with such a model
if accompanied by a good confidence function. This highlights the important role that the confidence function plays in a
TBAL system and more investigation is needed which is left to future work.

Note that, in our auto-labeling implementation we find class specific thresholds. In these figures, we show the histograms of
scores for all classes for simplicity. We want to emphasize that the visualization figures in this section are 2D representations
(approximation) of the high-dimensional features (either of the penultimate layer or the raw features).

C. Extended Related Work

We briefly review the related literature in this section.

There is a rich body of work on active learning on empirical and theoretical fronts (Settles, 2009; Dasgupta, 2011; Hsu,
2010; Hanneke, 2014; Citovsky et al., 2021; Ren et al., 2020). In active learning, the goal is to learn the best model in
the given function class with fewer labeled data than in classical passive learning. To this end, various active learning
algorithms have been developed and analyzed, e.g., uncertainty sampling (Tong & Koller, 2001; Mussmann & Liang, 2018),
disagreement region based (Cohn et al., 1994; Hanneke, 2007), margin based (Balcan et al., 2007; Balcan & Long, 2013),
importance sampling based (Beygelzimer et al., 2009) and others (Chaudhuri et al., 2015). Active learning has been shown
to achieve exponentially smaller label complexity than passive learning in noiseless and low-noise settings (Dasgupta et al.,
2005; Balcan et al., 2007; Hanneke, 2007; 2014; Balcan & Long, 2013; Dasgupta, 2006; Hsu, 2010; Chaudhuri et al., 2015;
Krishnamurthy et al., 2017; Katz-Samuels et al., 2021). This suggests, in these settings auto-labeling using active learning
followed by selective classification is expected to work well. However, in practice we do not have favorable noise conditions
and the hypothesis class could be misspecified i.e. it may not contain the Bayes optimal classifier. In such cases, (Kéiridinen,
2006) proved lower bounds on the label complexity of active learning that are order wise same as passive learning. These
findings have motivated more refined goals for active learning — abstain on hard to classify points and do well on the rest of
the points. This idea is captured by the Chow’s excess risk (Chow, 1970) and some of the recent works (Shekhar et al.,
2021; Shah & Manwani, 2020; Puchkin & Zhivotovskiy, 2021; Zhu & Nowak, 2022) have proved exponential savings
in label complexity for active learning when the goal is to minimize Chow’s excess risk. The classifier learned by these
methods is equipped with the abstain option and hence it can be readily applied for auto-labeling. However, the problem
of misspecification of the hypothesis class still remains. Nevertheless, it would be interesting future work to explore the
connections between auto-labeling and active learning with abstention. We also note that similar works on learning with
abstention are done in the context of passive learning (Cortes et al., 2016).

Another closely related line of work is the selective classification where the goal is to equip a given classifier with the option
to abstain from the prediction in order to guarantee prediction quality. The foundations for selective classification are laid
down in (El-Yaniv & Wiener, 2010; Wiener & El-Yaniv, 2011; El-Yaniv & Wiener, 2012; Wiener & El-Yaniv, 2015) where
they give results on the error rate in the prediction region and the coverage of a given classifier. However, they lack practical
algorithms to find the prediction region. A recent work (Gelbhart & El-Yaniv, 2019) proposes a new disagreement-based
active learning strategy to learn a selective classifier.
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Recent work studies a practical algorithm for threshold-based selective classification on deep neural networks (Geifman &
El-Yaniv, 2017). The algorithm estimates the prediction threshold using training samples and they bound the error rate of
the selective classifier using (Gascuel & Caraux, 1992). We note that their result is applicable to a specific setting of a given
classifier. In contrast, in the TBAL algorithm analyzed in this paper, selective classification is done in each round and the
classifiers are not given a priori but instead learned via ERM on training data which is adaptively sampled in each round.

Another related work (Qiu et al., 2020) studies an algorithm similar to TBAL for auto-labeling. Their emphasis is on the
cost of training incurred when these systems use large-scale model classes for auto-labeling. They propose an algorithm to
predict the training set size that minimizes the overall cost and provides an empirical evaluation.

Well-calibrated uncertainty scores are essential to the success of threshold-based auto-labeling. However, in practice, such
scores are often hard to get. Moreover, neural networks can produce overconfident ( unreliable) scores (Hein et al., 2018).
Fortunately, there are plenty of methods in the literature to deal with this problem (Platt, 1999; Wu et al., 2003). More
recently, various approaches have been proposed for uncertainty calibration for neural networks (Gawlikowski et al., 2021;
Minderer et al., 2021; Wang et al., 2021a; Krishnan & Tickoo, 2020; Ma et al., 2021; Seedat & Kanan, 2019). A detailed
study of calibration methods and their impact on auto-labeling is beyond the scope of this work and left as future work.

There is another line of work emerging towards auto-labeling that does not rely on getting human labels but instead uses
potentially noisy but cheaply available sources to infer labels (Ratner et al., 2016; 2018; Fu et al., 2020). The focus of this
paper, however, is on analyzing the performance of TBAL algorithms (SGT, 2022; Airbus, 2022) that have emerged recently
as auto-labeling solutions in systems.
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Figure 10. Auto-labeling MNIST data using linear classifiers. Validation size = 12k. Maximum training samples = 1600. Each round
algorithm queries 160 samples. Coverage of auto-labeling is 62.9% with 98.0% accuracy. For the rounds we show, the test error rates are
21.4%, 13.9%, 12.5%, 10.2%, and 9.8%, respectively. For four columns (left to right), we show: a) The samples that are labeled by TBAL
in this round. b) The embeddings for training samples. ¢) The embeddings for validation data points. d) The score distribution for the
validation dataset.
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Figure 11. Auto-labeling CIFAR-10 data using a small network and energy scores. Validation size = 10k. Maximum training samples =
25k. Each round algorithm queries 2500 samples. Coverage of auto-labeling is 5.3% with 90.0% accuracy. For the rounds we show, the
test error rates are 56.6%, 55.2%, 55.6%, 53.0%, and 49.3% respectively. For four columns (left to right), we show: a) The samples that
are labeled by TBAL in this round. b) The embeddings for training samples. ¢) The embeddings for validation data points. d) The score
distribution for the validation dataset.
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Figure 12. Auto-labeling CIFAR-10 data using a small network and softmax scores. Validation size = 10k. Maximum training samples =
25k. Each round algorithm queries 2500 samples. Coverage of auto-labeling is 2.3% with 91.0% accuracy. For the rounds visualized here
in each row, the test error rates of the trained classifiers are 56.6%, 59.1%, 52.8%, 50.5%, and 51.7% respectively. For four columns (left
to right), we show: a) The samples that are labeled by TBAL in this round. b) The embeddings for training samples. ¢) The embeddings
for validation data points. d) The score distribution for the validation dataset.



