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Abstract
Noise plagues many numerical datasets, where the
recorded values in the data may fail to match the
true underlying values due to reasons including:
erroneous sensors, data entry/processing mistakes,
or imperfect human estimates. Here we consider
estimating which data values are incorrect along a
numerical column. We present a model-agnostic
approach that can utilize any regressor (i.e. statis-
tical or machine learning model) which was fit to
predict values in this column based on the other
variables in the dataset. By accounting for various
uncertainties, our approach distinguishes between
genuine anomalies and natural data fluctuations,
conditioned on the available information in the
dataset. We establish theoretical guarantees for
our method and show that other approaches like
conformal inference struggle to detect errors. We
also contribute a new error detection benchmark
involving 5 regression datasets with real-world
numerical errors (for which the true values are
also known). In this benchmark and additional
simulation studies, our method identifies incor-
rect values with better precision/recall than other
approaches.

1. Introduction
Modern supervised machine learning has grown quite ef-
fective for most datasets thanks to development of highly-
accurate models like random forests (RF), gradient-boosting
machines (GBM), and neural networks (NN). Although it’s
generally assumed that the labels used for training are accu-
rate, this is often not the case in real-world datasets (Müller
& Markert, 2019; Northcutt et al., 2021; Kang et al., 2022;
Kuan & Mueller, 2022a). For classification data, many
techniques have been proposed to address this issue by mod-
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ifying training objectives or directly estimating which data
is erroneous (Jiang et al., 2018; Zhang & Sabuncu, 2018;
Song et al., 2022; Northcutt et al., 2021).

In this paper, we consider methods to identify similar er-
roneous values in regression datasets where the labels are
continuous-valued1. Incorrect numeric values lurk in real-
world data for many reasons including: measurement error
(e.g. imperfect sensors), processing error (e.g. incorrect
transformation of some values), recording error (e.g. data
entry mistakes), or bad annotators (e.g. poorly trained data
labelers) (Wang & Mueller, 2022; Kuan & Mueller, 2022a;
Nettle, 2018). We are particularly interested in straightfor-
ward model-agnostic approaches that can utilize any type
of regression model to identify the errors. These desiderata
ensure our approach is applicable across diverse datasets in
practice and can take advantage of state-of-the-art regres-
sors (including future regression models not yet invented).
By fitting a regression model to predict each column in a
numerical dataset (not necessarily the same type of model
since different models may be better suited for predicting
different target columns), we can use such model-agnostic
approaches to estimate all erroneous values in the dataset.
Once identified, the datapoints with erroneous values may
be filtered out from a dataset or fixed via external confirma-
tion of the correct value to replace the incorrect one.

To help prioritize review of the most suspicious values, we
consider a veracity score for each datapoint that reflects how
likely a specific value is correct or not. Many prediction-
based scores have been explored, such as such as residu-
als, likelihood values, and entropies (Northcutt et al., 2021;
Kuan & Mueller, 2022a; Wang & Mueller, 2022; Thyagara-
jan et al., 2022). While these methods are easy to implement
and widely applicable, the uncertainties present in the ob-
served data can impact prediction accuracy, consequently
affecting both veracity scores and error detection. Two com-
mon types of uncertainties, epistemic and aleatoric, arise
from a lack of observed data and intrinsic stochasticity in
underlying relationships. Both types of uncertainties play a
critical role in establishing the reliability of predictions.

1Code to run our method: https://github.
com/cleanlab/cleanlab. Code to repro-
duce paper: https://github.com/cleanlab/
regression-label-error-benchmark
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In this paper, we introduce novel veracity scores that in-
corporate both epistemic and aleatoric uncertainties. By
accounting for these two types of uncertainties, an error de-
tection procedure can more effectively distinguish between
genuine anomalies and natural data fluctuations, ultimately
resulting in more reliable identification of errors. Further-
more, we propose a simple yet efficient filtering procedure
for eliminating potential errors. This algorithm automati-
cally determines the number of errors to be removed and is
compatible with any machine learning or statistical model.
We introduce a comprehensive benchmark of datasets with
naturally-occuring errors for which we also have correspond-
ing ground truth values that can be used for evaluation. Re-
sults on this benchmark and extensive simulations illustrate
the empirical effectiveness of our proposed approach to
identify incorrect numerical values in a dataset.

2. Related Work
A significant body of research has focused on identifying
numerical outliers or anomalies that depend on contextual
or conditional information (Tang et al., 2013; Song et al.,
2007; Hong & Hauskrecht, 2016). (Song et al., 2007) in-
troduced the concept of conditional outliers, which model
outliers as influenced by a set of behavioral attributes (e.g.,
temperature) that are conditionally dependent on contextual
factors (e.g., longitude and latitude). (Valko et al., 2011)
detected conditional anomalies using a training set of la-
beled examples, accounting for potential label noise. (Tang
et al., 2013) proposed an algorithm for detecting contex-
tual outliers in categorical data based on attribute-value sets.
(Hong & Hauskrecht, 2016) employed conditional probabil-
ity to detect anomalies in clinical applications. However, the
methods proposed in these papers are model-specific and
not universally applicable to all regression models, thereby
limiting their utility in real-world data analysis involving
complex data structures.

The random sample consensus (RANSAC) method pro-
posed by Fischler & Bolles (1981) is a model-agnostic ap-
proach to error detection that iteratively identifies subsets
of datapoints that are not well-fitted by a trained regression
model. In contrast to RANSAC, our method effectively
accounts for uncertainty in predictions from the regressor,
which is crucial for differentiating confidently incorrect
values from those that are merely inaccurately predicted.
Conformal inference (Vovk et al., 2005; Lei et al., 2018;
Bates et al., 2023) provides a framework to estimate the
confidence in predictions from an arbitrary regressor, but
we show here its direct application fares poorly when some
data values are contaminated by noise.

3. Methods
3.1. Veracity scores

We consider a standard regression setting of covariates X
and target values Y . Our goal is to utilize any fitted regres-
sion model to help detect observations Yi where the recorded
value in the dataset is actually incorrect (i.e. corrupted).

Our approach constructs a numeric veracity score for each
datapoint Xi, which reflects how likely Yi is correctly mea-
sured (based on how typical its value is given all of the
other available information). For response variables Y
that are categorical, the predictive likelihood/entropy-based
scores proposed by (Kuan & Mueller, 2022a) have demon-
strated effective performance for identifying erroneous la-
bels via arbitrary classification models. Unlike standard
classifiers, a typical regression model does not directly es-
timate the full conditional distribution of continuous target
Y (most models simply output point estimates). Thus a
model-agnostic method (that can use any regression model)
to detect errors in numerical data cannot employ analogous
likelihood/entropy measures.

Instead, the residual Ŝr(Xi, Yi) = |Yi− f̂(Xi)| is a straight-
forward choice of score, where f̂ represents the estimated re-
gression function. Ideally, when the underlying relationship
f is relatively simple and f̂(x) is a well-fitted regressor, dat-
apoints with abnormally large Ŝr(Xi, Yi) values are likely
to be anomalous values that warrant suspicion. Throughout,
all references to residuals and other prediction-based esti-
mates (e.g. uncertainties) are assumed to be out-of-sample,
i.e. produced for Xi from a copy of the regression model
that was never fit to this datapoint. Out-of-sample predic-
tions can be obtained for an entire dataset through K-fold
cross-validation, and are important to ensure less biased
estimates for our veracity scores that are less subject to
overfitting. Complexities of real-world data analysis make
error detection more challenging, for instance non-uniform
epistemic or aleatoric uncertainty due to lack of observa-
tions or heteroscedasticity. In the context of prediction,
epistemic uncertainty results from a scarcity of observed
data that is a similar to a particular X , whose associated
Y value is thus hard to guess. On the other hand, aleatoric
uncertainty results from inherent randomness in the under-
lying relationship between X and Y that cannot be reduced
with additional data of the same covariates (but could by
enriching the dataset with additional covariates). Figure 1
illustrates these two types of uncertainties: the epistemic
uncertainty is large at a datapoint x with few nearby dat-
apoints, while the aleatoric uncertainty is large at x when
the true underlying Y |X = x is dispersed (e.g. a bimodal
distribution).

After fitting a regression model in an expert manner, there
are generally three reasons a residual Ŝr(Xi, Yi) might be
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Figure 1. Dataset from our simulation study, with non-uniform
epistemic and aleatoric uncertainties. Erroneous data are marked
in red.

large:

• Yi was incorrectly measured (i.e. a data error).

• The estimation quality of f̂(x) is poor around x =
Xi, e.g. due to large epistemic uncertainty (lack of
sufficiently many observations similar to Xi).

• There is high aleatoric uncertainty, i.e. the underlying
conditional distribution over target values, Y |x = Xi,
is not concentrated around a single value.

Therefore, the residual score might be suboptimal for precise
error detection due to false positive scores arising simply
due to large uncertainty. We instead propose two veracity
scores that rescale the residual in order to account for both
epistemic and aleatoric uncertainties:

Ŝa(x, y) =
Ŝr(x, y)

û(x) + σ̂(x)
Ŝg(x, y) =

Ŝr(x, y)√
û(x)σ̂(x)

.

(1)

Here, epistemic uncertainty estimate û(x) :=
√

V̂ar(f̂(x))

is the standard deviation of f̃(x) over many regressors f̃ (of
the same type as f̂ ) fit on bootstrap-resampled versions of
the original data. Aleatoric uncertainty estimate σ̂(x) :=

E(|f̂(X)− Y | | X = x, f̂) is an estimate of the size of the
regression error, producing by fitting a separate regressor

(of the same type as f̂ ) to predict the residuals’ size based
on covariates X .

Our construction of Ŝa(x, y) and Ŝg(x, y) is a straightfor-
ward way to account for both epistemic and aleatoric un-
certainties via their arithmetic or geometric mean. For dat-
apoints where either uncertainty is abnormally large, the
residuals are no longer reliable indicators. Thus presented
with two datapoints whose Y values deviate greatly from
the predicted values (high residuals of say equal magni-
tude), we should be more suspicious of the datapoint whose
corresponding prediction uncertainty is lower.

3.2. Filtering procedure

A challenge arises in estimating regression model uncertain-
ties from noisy data. Uncertainty estimates are based on the
spread of f̂ estimates, which are affected by the corrupted
values in the dataset. Subsequent experiments in Section
5 and Supplement show this same issue plagues the proba-
bilistic estimates required for conformal inference. Here we
propose a straightforward approach to mitigate this issue:
simply filter some of the top most-confident errors from the
dataset, and refit the regression model and its uncertainty
estimates on the remaining less noisy data. For the best
results, we can iterate this process until the noise has been
sufficiently reduced.

We use the following algorithm to iteratively filter poten-
tial errors in a data set D. In Algorithm 1, the dataset
D = (xi, yi)

n
i=1 imposes no restrictions on the covariates,

allowing for numeric, text, images, or multimodal random
variables in xi. The model A can be any parametric or
non-parametric statistical regression model, or a machine
learning model such as gradient boosting, random forest, or
neural network. K represents the maximum proportion of
erroneous values that the user believes may be present in D,
generally not expected to exceed 20%. To reduce computa-
tion time, the grid search over k ≤ K can be replaced by a
binary search or a coarse-then-fine grid.

In this algorithm, we use the (out-of-sample) R2 metric
as the criterion to assess the performance of the current
removal process. It is crucial to evaluate the R2 metric
on the entire dataset D, rather than only on the remaining
data. Evaluating it solely on the remaining data would cause
the R2 value to increase continuously as more data points
are removed. Although the complete dataset D contains
errors, its corresponding R2 value should improve if f̂ is
trained on a dataset with fewer errors. Conversely, a smaller
sample size may lead to poorer performance of model A
and a decrease in the corresponding R2 value evaluated
on D, especially if we have started removing data that has
no errors. Like RANSAC (Fischler & Bolles, 1981), this
approach iteratively discards data and re-fits f̂ , but each
iteration in our approach utilizes the veracity scores.
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Algorithm 1 Filtering procedure to reduce the amount of
erroneous data

Input: Dataset D; a regression model A; the maximum
proportion of corrupted data Kerr.

1. Fit model A via K-fold cross-validation over the whole
dataset, and compute veracity scores for each datapoint
via out-of-sample predictions.
for k = 1, 2, . . . ,Kerr do

a. Remove k% of the datapoints with the worst veracity
scores. Denote the indices of removed datapoints as
INDk.
b. Re-fit the model A with the remaining data (again
via K-fold cross-validation) and denote the estimated
regression function f̂ . Calculate the out-of-sample R2

performance of the resulting predictions: 1−
∑
i∈D

(yi −

f̂(xi))
2/
∑
i∈D

(yi − ȳ)2 over the entire dataset, where

ȳ =
1

|D|
∑
i∈D

yi.

end for
2. Select the k∗ that produces the largest R2 among k =
1, . . . ,Kerr.
Output: Estimated corruption proportion k∗, indices of
filtered data INDk∗ .

4. Theoretical Analysis
We use (Xi, Yi) to denote a benign datapoint (whose Y -
value is correct), where its distribution is given by Yi =
f(Xi)+ϵi(Xi), with f(·) denoting the true regression func-
tion and ϵi(Xi) denoting the traditional regression noise.
On the other hand, an erroneous datapoint is represented as
(X ′

i, Y
′
i ), with distribution Y ′

i = f(X ′
i) + ϵi(X

′
i) + ϵ∗i (X

′
i),

incorporating an additional corruption error: ϵ∗(X ′
i). In the

scenario where the regression function is known, the Ŝr

becomes: Sr(Xi, Yi) = |ϵi(Xi)| for benign data (Xi, Yi),
and Sr(X

′
i, Y

′
i ) = |ϵi(X ′

i) + ϵi(X
′
i)

∗| for erroneous data
(X ′

i, Y
′
i ). Let Fx and Gx represent the cumulative distri-

bution functions (CDF) of |ϵ(X)| and |ϵ(X) + ϵ∗(X)| at
X = x, respectively, where ϵ(x) and ϵ∗(x) are prototypes
error functions of ϵi(x) and ϵ∗i (x), and ϵi(x) and ϵ∗i (x) are
independent and identically distributed (i.i.d.) samples from
ϵ(x) and ϵ∗(x).

Theorem 4.1. Assume E(ϵ(X)|X) = 0 and is unimodal
at 0, ϵ(X) and ϵ∗(X) are independent. If |ϵ(X ′

i) + ϵ∗(X ′
i)|

stochastically dominates |ϵ(Xi)| in the third order, that is,

•
∫ x

−∞

[∫ z

−∞{FXi(t)−GX′
i
(t)}dt

]
dz ≥ 0 for all x

and

•
∫
R xdGX′

i
(x) ≥

∫
R xdFXi(x).

Then, P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) ≥ 1/2.

Theorem 4.1 provides a sufficient condition ensuring that
the probability of Sr(Xi, Yi) < Sr(X

′
i, Y

′
i ) exceeds 1/2.

This implies that when the disparity between corrupted and
clean target values is relatively large, the residual score
can be effective for error detection. Third-order stochastic
dominance is relatively weak and can be derived from first
and second-order stochastic dominance. The subsequent
corollary examines the case where the standard regression
noise follows a Gaussian distribution, and the additional
error corruption is a point mass at a. In that case, we have
FXi

(t)−GX′
i
(t) ≥ 0, which implies that |ϵ(x′) + ϵ∗(x′)|

stochastically dominates |ϵ(x)| in the first order.

Corollary 4.2. If ϵ(x) ∼ N(0, 1), ϵ∗(x) = a for all x.
Then P(Sr(Xi, Yi) < Sr(X

′
i, Y

′
i )) > 1/2 for all a ̸= 0

and P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) → 1 exponentially as

a → ∞.

When the estimated regression function f̂ is consistent, Ŝr is
asymptotically equivalent to the oracle case. The subsequent
corollary directly follows from Theorem 4.1.

Corollary 4.3. Denote f̂ the estimator of f and
Ŝr(Xi, Yi) := |f̂(Xi) − Yi| the estimated residual scores.
If ∥f̂ − f∥∞

p→ 0, and GX′
i

or FXi
is absolutely continu-

ous, then P(Ŝr(Xi, Yi) < Ŝr(X
′
i, Y

′
i )) = P(Sr(Xi, Yi) <

Sr(X
′
i, Y

′
i )) + o(1).

The following theorem illustrates the conditions under
which our proposed scores outperform the residual-based
approach.

Theorem 4.4. Let Ŝa(Xi, Yi) and Ŝg(Xi, Yi) be the pro-
posed veracity scores defined in 1,

• If û(Xi)+ σ̂(Xi) ≥ û(X ′
i)+ σ̂(X ′

i), P(Ŝa(Xi, Yi) <

Ŝa(X
′
i, Y

′
i )) ≥ P(Ŝr(Xi, Yi) < Ŝr(X

′
i, Y

′
i )).

• If û(Xi)σ̂(Xi) ≥ û(X ′
i)σ̂(X

′
i), P(Ŝg(Xi, Yi) <

Ŝg(X
′
i, Y

′
i )) ≥ P(Ŝr(Xi, Yi) < Ŝr(X

′
i, Y

′
i )).

If û(Xi) > û(X ′
i), that is, the bootstrap variance at f̂(Xi)

is larger than that at f̂(X ′
i), it indicates greater epistemic

uncertainty for (Xi, Yi). Similarly, if the variance of the
regression error at f̂(Xi) exceeds that at f̂(X ′

i), there is
higher aleatoric uncertainty for (Xi, Yi). In both instances,
the residual might offer misleading information when as-
sessing whether Yi is corrupted or not. Theorem 4.4 sug-
gests that, in the presence of both epistemic and aleatoric
uncertainties in the data, our proposed scores demonstrate
superior performance compared to the residual.
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5. Simulation Study
Here we present two experiments using diverse simulated
datasets to evaluate the empirical performance of our pro-
posed veracity scores as well as the filtering procedure. Two
underlying data-generating settings are considered, which
are detailed in the Supplement. Setting 1: a 5-dimensional
nonlinear relationship involving non-uniform epistemic and
aleatoric uncertainties due to non-uniform covariate sam-
pling and heteroscedasticity (depicted in Figure 1). Setting
2: a simpler 5-dimensional linear relationship. In both cases,
we consider corruptions of different degrees a (larger mag-
nitude values correspond to larger corruptions applied to
the original Y values in the erroneous data). We consider
settings in which we have clean training data and evaluate
the error detection performance of methods in additional
test data (no filtering needed), as well as settings where the
entire dataset contains errors. In the latter case, we first
apply our proposed filtering procedure, and subsequently
compute veracity scores via the final model fit to the filtered
dataset.

Our simulation study focuses on comparing our proposed
veracity scores (Ŝa and Ŝg) against the residual score Ŝr, in
order to investigate the empirical effect of additionally tak-
ing the regression uncertainties into account. In the Supple-
ment, we compare many alternative veracity scores against
the residual score Ŝr over a diverse set of real datasets, and
find that none of these alternatives is able to consistently
outperform the residual score (making Ŝr a worthy base-
line). Even though we know the underlying relationship in
these simulations, we nonetheless fit a variety of popular re-
gressors that are often used in practice: Random Forest (RF)
(Breiman, 2001) and Gradient Boosting with LightGBM
(LGBM) (Ke et al., 2017).

5.1. Conformal inference using the proposed scores

We first examine the performance of our proposed veracity
scores in conformal inference. To reduce the computational
burden associated with grid search, we utilize the splitting
conformal method, which is widely adopted due to its ef-
ficiency (Chernozhukov et al., 2021; Bates et al., 2023).
The splitting conformal method requires a training set to
fit the model, a calibration set to evaluate the rank of the
scores, and a testing set to assess performance. For each set-
ting, the training and calibration sets are generated based on
the aforementioned settings without errors. For the testing
set, 10% of the data are designated as errors with a corrup-
tion strength a = −3,−2,−1, 1, 2, 3, while the remaining
90% are benign datapoints, having the same distributions as
those in the training and calibration sets. For each (Xi, Yi)
in the testing set, the conformal inference methodology
enables us to obtain a p-value for the null hypothesis test
H0,i : Xi ∼ P0 (Bates et al., 2023), where P0 represents

Algorithm 2 Conformal Outlier Detection
Input: Training set Dtrain, calibration set Dcal, and test-
ing set Dtest; a model A; a conformal score s(x, y); a
target FDR level α.

1. Based on Dtrain, obtain the estimated score ŝ(X,Y ).
2. Evaluate the scores {ŝi = ŝ(Xi, Yi)}D

cal

i=1 for all data-
point in the calibration set, and denote the empirical CDF
of {ŝi}ni=1 by F̂ŝ.

3. For each data point (Xi, Yi) ∈ Dtest, get the conformal
p-value ûi = (F̂ŝ ◦ ŝ)(Xi, Yi).

4. Based on {ûi}i∈Dtest , apply BH procedure to determine
which datapoint should be removed.
Input: Indices of outliers, i.e. datapoints expected to be
erroneous.

the distribution of the benign data. The error detection prob-
lem is then transformed into a multiple testing problem, and
we can apply the Benjamini-Hochberg (BH) procedure to
control the false discovery rate (FDR). This entire procedure
is demonstrated in Algorithm 2.

For each setting, we conduct 50 Monte-Carlo runs to miti-
gate the randomness that may occur in a single simulation.
We use Ŝr, Ŝa and Ŝg as the conformal scores ŝ(x, y) in
Algorithm 2 and the sample size n = 200 is the same for
Dtrain, Dcal, and Dtest. For each run, we calculate the cor-
responding False Discovery Rate (FDR), the proportion of
benign data among the test points incorrectly reported as
errors, and the Power, the proportion of errors in the test-
ing set correctly identified as errors. For each setting, two
scenarios are considered, the first scenario is the typical
conformal scenario where the training and calibration sets
have no errors; while for the second scenario, the training
and calibration sets are also contaminated and the errors
proportion is the same to the testing set.

Table 1 presents the average FDR and Power for each setting
where the training and calibration sets are clean. For Setting
1, which contains epistemic and aleatoric uncertainty, our
proposed scores outperform the residual scores in both FDR
and Power. For Setting 2, where the residual scores are
expected to perform well, our proposed scores perform very
closely to the residual scores and even surpass them in some
cases.

Table 2 shows that the conformal method fails when the
training and calibration sets are contaminated. This is be-
cause the validity of conformal inference crucially relies
on the exchangeability (or some variant of exchangeability)
between the calibration set and the future observation, thus
if the calibration set is contaminated, the conformal predic-
tion set will have biased coverage. Note that in the scenario
where training, calibration and testing set are all equally
noisy, this can be equivalently viewed as the performance

5
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Table 1. Average FDR and Power for different settings by confor-
mal inference. Each setting is trained on clean labels with Random
Forest regressor. The target FDR is 10%.

Setting 1

corruption strength -3 -2 -1 1 2 3

FDR

Ŝr 0.16 0.30 0.44 0.37 0.19 0.16

Ŝa 0.13 0.16 0.35 0.24 0.14 0.13

Ŝg 0.12 0.18 0.36 0.34 0.14 0.13

Power

Ŝr 0.31 0.09 0.04 0.02 0.08 0.30

Ŝa 0.71 0.41 0.06 0.06 0.38 0.72

Ŝg 0.71 0.38 0.06 0.05 0.36 0.73

Setting 2

corruption strength -3 -2 -1 1 2 3

FDR

Ŝr 0.13 0.15 0.31 0.41 0.20 0.11

Ŝa 0.13 0.15 0.34 0.27 0.20 0.13

Ŝg 0.13 0.13 0.36 0.29 0.20 0.13

Power

Ŝr 0.77 0.24 0.03 0.04 0.29 0.81

Ŝa 0.77 0.33 0.06 0.05 0.37 0.79

Ŝg 0.77 0.32 0.05 0.04 0.37 0.80

for identifying errors in a given dataset.

5.2. Filtering procedure

In this subsection, we examine the numerical performance
of our proposed filtering procedure. For each setting in each
Monte-Carlo run, we have n = 200 data points with 10% er-
rors and corruption strength a. Given error detection can be
viewed as an information retrieval problem, we follow Kuan
& Mueller (2022a) and use the Area Under the Precision-
Recall Curve (AUPRC) metric to evaluate various veracity
scores. AUPRC quantifies how well these scores are able to
rank erroneous datapoints above those with correct values,
which is essential to effectively handle errors in practice.

Table 3 presents the average AUPRC based on the original
dataset, proportion of corruptions removed, proportion of
corruptions in the remaining data, and AUPRC based on the
remaining data for 50 Monte-Carlo runs. We observe that
in both Setting 1 and Setting 2, the corruption proportions
in the remaining data decrease as the corruption strength
increases, and the AUPRC improves after running our re-
moval algorithm. Furthermore, the removed proportion is
very close to the true corruption proportion in the original
dataset. In Setting 1, which includes epistemic and aleatoric
uncertainty, our proposed scores Ŝa and Ŝg outperform the
residual score in AUPRC across all scenarios. In Setting 2,
where the underlying uncertainty should be relatively uni-
form, our proposed scores perform similarly to the residual

Table 2. Average FDR and Power for different settings by confor-
mal inference. Each setting is trained on 10% contaminated data
with Random Forest regressor. The target FDR is 10%.

Setting 1

corruption strength -3 -2 -1 1 2 3

FDR

Ŝr 0.03 0.13 0.38 0.48 0.14 0.08

Ŝa 0.01 0.03 0.18 0.29 0.04 0.00

Ŝg 0.01 0.03 0.23 0.29 0.03 0.00

Power

Ŝr 0.05 0.04 0.01 0.00 0.03 0.05

Ŝa 0.05 0.05 0.03 0.02 0.03 0.05

Ŝg 0.05 0.05 0.02 0.02 0.04 0.06

Setting 2

corruption strength -3 -2 -1 1 2 3

FDR

Ŝr 0.00 0.05 0.31 0.23 0.01 0.01

Ŝa 0.00 0.00 0.17 0.23 0.01 0.00

Ŝg 0.00 0.01 0.15 0.20 0.01 0.00

Power

Ŝr 0.05 0.05 0.03 0.04 0.04 0.06

Ŝa 0.04 0.05 0.02 0.04 0.05 0.05

Ŝg 0.04 0.05 0.02 0.04 0.05 0.05

score.

6. Benchmark with Real Data and Real Errors
Here, we evaluate the performance of our proposed meth-
ods using five publicly available datasets. For each dataset,
we have an observed target value that we use for fitting
regression models and computing veracity scores and other
estimates. For evaluation, we also have a true target value
available in each dataset (not made available to any of our
estimation procedures). For instance, in the Air CO air
quality dataset, the observed target values stem from an infe-
rior sensor device, whereas the true target values stem from
a much high-quality sensor placed in the same locations.
Detailed information regarding these datasets can be found
in Section B of the Supplement.

The proportion of actual errors contained in each dataset
varies. We first evaluate the performance of our proposed
scores compared to the residual when the regression mod-
els are trained on clean labels. We consider four types of
regression models: Gradient Boosting with LightGBM (Ke
et al., 2017), Feedforward Neural Network (NN) (Gurney,
1997), Random Forest (Breiman, 2001), and a Weighted
Ensemble of these models fit via Ensemble Selection (WE)
(Caruana et al., 2004). Estimates are evaluated using four
metrics popular in information retrieval applications: area
under the receiver operating characteristic curve (AUROC),

6
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Table 3. Model is trained by LightGBM and cross-validation is
used in calculating the scores.

corruption Setting 1

strength AUPRC before removed prop error prop AUPRC after

a=-3

Ŝr 0.60 11.74% 5.13% 0.66

Ŝa 0.64 11.22% 4.98% 0.72

Ŝg 0.62 9.60% 5.62% 0.71

a=-2

Ŝr 0.33 12.34% 7.55% 0.34

Ŝa 0.40 11.64% 6.89% 0.44

Ŝr 0.37 11.74% 7.01% 0.43

a=-1

Ŝr 0.15 11.26% 9.37% 0.16

Ŝa 0.16 11.98% 8.82% 0.19

Ŝg 0.16 10.66% 9.14% 0.18

a=1

Ŝr 0.16 11.04% 9.39% 0.15

Ŝa 0.21 12.72% 8.29% 0.20

Ŝg 0.20 13.88% 8.24% 0.19

a=2

Ŝr 0.33 11.18% 7.01% 0.31

Ŝa 0.40 11.36% 6.11% 0.43

Ŝg 0.38 11.76% 6.19% 0.40

a=3

Ŝr 0.59 10.56% 5.29% 0.67

Ŝa 0.62 10.04% 5.24% 0.70

Ŝg 0.61 11.34% 5.20% 0.68

corruption Setting 2

strength AUPRC before removed prop error prop AUPRC after

a=-3

Ŝr 0.84 14.64% 2.62% 0.94

Ŝa 0.78 14.88% 2.58% 0.93

Ŝg 0.78 15.36% 2.50% 0.93

a=-2

Ŝr 0.63 12.92% 4.43% 0.70

Ŝa 0.60 13.14% 4.52% 0.68

Ŝr 0.60 13.18% 4.54% 0.66

a=-1

Ŝr 0.25 11.38% 8.01% 0.28

Ŝa 0.24 12.08% 8.09% 0.27

Ŝg 0.24 12.00% 8.08% 0.27

a=1

Ŝr 0.25 11.66% 7.86% 0.28

Ŝa 0.24 10.92% 8.15% 0.27

Ŝg 0.24 11.72% 8.01% 0.27

a=2

Ŝr 0.59 12.48% 4.71% 0.71

Ŝa 0.57 13.50% 4.79% 0.69

Ŝg 0.55 12.56% 5.07% 0.66

a=3

Ŝr 0.84 11.66% 7.86% 0.95

Ŝa 0.79 10.92% 8.15% 0.92

Ŝg 0.79 11.72% 8.01% 0.91

AUPRC, lift at T (where T is the true underlying number
of errors in dataset), and lift at 100. Each metric evaluates
how well a method is able to retrieve or rank the corrupted
datapoints ahead of the benign data.

Table 4 shows the average improvement of our proposed
scores compared to the residual scores. For example, the
first four numbers in the first row represent (AUROC(Ŝa)−
AUROC(Ŝr))/AUROC(Ŝr) corresponding to the Light-
GBM, Neural Network, Random Forest, and Weighted En-
semble models. A larger positive percentage indicates better
performance of our proposed scores. Table 4 reveals that
our proposed scores outperform the residuals Ŝr in most
cases.

Next, we compare our proposed filtering procedure with
the RANSAC algorithm (Fischler & Bolles, 1981). Here
we separately run each of these data filtering procedures,
and then compute three veracity scores Ŝa, Ŝg, Ŝr from the
same type of model fit to the filtered data. Some values
in the table are left blank because the RANSAC algorithm
from the scikit-learn package can only handle nu-
meric covariates, which excludes the "Stanford Politeness
Wiki" dataset. Table 5 and Table 5 show that, when the
entire dataset may contain corrupted values, our proposed
filtering procedure generally performs better than RANSAC,
which tends to overestimate or underestimate the corrup-
tion proportions. Furthermore, our veracity score combined
with our filtering procedure leads to the best overall error
detection performance across these datasets.

7. Discussion
For detecting erroneous numerical values in real-world data,
this paper introduces novel veracity scores to quantify how
likely each datapoint’s Y -value has been corrupted. When
we have a clean training dataset that is used to detect errors
in subsequent test data, these veracity scores significantly
outperform residuals alone, by properly accounting for epis-
temic and aleatoric uncertainties. When the entire dataset
may contain corruptions, the uncertainty estimates degrade.
For this setting, we introduce a filtering procedure that re-
duces the amount of corruption in the dataset. Such filtering
helps us obtain better uncertainty estimates that result in
more effective veracity scores for detecting erroneous val-
ues. We present a comprehensive benchmark of real-world
regression datasets with naturally occuring erroneous val-
ues, over which our proposed approaches outperform other
methods. All of our proposed approaches work with any
regression model, which makes them widely applicable.
Armed with our methods to detect corrupted data, data sci-
entists will be able to produce more reliable models/insights
out of noisy datasets.

7
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Table 4. Average improvement of arithmetic and geometric scores
compared with residual. Models are trained on clean labels and
evaluated on the whole dataset with different methods.

data set metric
Ŝa

LGBM NN RF WE

Air CO

auroc -0.37% -0.40% 2.57% 1.48%

auprc 38.47% 13.33% 41.58% 138.76%

lift_at_num_errors 23.48% 10.53% 15.76% 64.20%

lift_at_100 44.00% 70.00% 39.71% 156.76%

metaphor

auroc 3.10% 1.20% 5.05% 4.62%

auprc 64.76% 62.95% 92.87% 64.73%

lift_at_num_errors 21.95% 39.13% 39.76% 49.47%

lift_at_100 55.00% 53.85% 74.42% 66.10%

stanford stack

auroc 1.20% 0.96% 0.99% 0.48%

auprc 11.53% 13.30% 10.77% 1.76%

lift_at_num_errors 11.92% 11.88% 10.00% 6.70%

lift_at_100 6.38% 9.89% 6.38% 0.00%

stanford wiki

auroc 0.85% -0.91% 1.01% 1.01%

auprc 13.54% 5.29% 8.65% 8.76%

lift_at_num_errors 6.07% 2.66% 4.22% 6.01%

lift_at_100 14.94% 6.98% 6.38% 5.26%

telomere

auroc -0.34% -0.08% 0.15% 0.00%

auprc 0.77% -1.18% 4.38% 0.14%

lift_at_num_errors -3.41% -3.89% 8.37% 0.22%

lift_at_100 3.09% 0.00% 1.01% 0.00%

data set metric
Ŝg

LGBM NN RF WE

Air CO

auroc -1.17% -3.25% 2.92% 0.64%

auprc 44.42% -1.39% 43.21% 117.49%

lift_at_num_errors 24.35% -3.51% 18.79% 55.56%

lift_at_100 50.00% 35.00% 41.18% 127.03%

metaphor

auroc 3.21% 3.04% 6.56% 7.72%

auprc 70.80% 99.15% 114.37% 73.55%

lift_at_num_errors 25.61% 43.48% 55.42% 56.84%

lift_at_100 67.50% 96.15% 104.65% 66.10%

stanford stack

auroc 1.24% 0.59% 1.08% 0.66%

auprc 11.72% 10.26% 11.31% 2.21%

lift_at_num_errors 13.25% 5.00% 11.88% 6.70%

lift_at_100 6.38% 8.79% 6.38% 0.00%

stanford wiki

auroc 1.14% -1.02% 1.10% 1.44%

auprc 14.99% 5.16% 8.61% 10.12%

lift_at_num_errors 6.54% 3.19% 4.22% 9.44%

lift_at_100 14.94% 5.81% 6.38% 5.26%

telomere

auroc -1.39% -1.33% 0.15% -0.28%

auprc -10.15% -15.50% 4.29% -2.81%

lift_at_num_errors -15.61% -20.14% 7.14% -6.87%

lift_at_100 3.09% -3.00% 1.01% 1.01%

Table 5. Our proposed filtering procedure applied with a Light-
GBM regressor. Veracity score is computed after data filtering.

Our proposed filtering procedure

original error prop removed prop error prop after AUROC AUPRC

Air CO
Ŝr

5.13%
2.00% 5.03% 0.58 0.08

Ŝa 7.01% 4.89% 0.58 0.07
Ŝg 6.00% 4.98% 0.54 0.06

metaphor
Ŝr

6.55%
5.03% 6.33% 0.93 0.09

Ŝa 17.99% 5.98% 0.94 0.09
Ŝg 19.01% 6.01% 0.94 0.09

Stanford stack
res

11.86%
3.06% 10.09% 0.93 0.65

Ŝa 5.01% 8.17% 0.94 0.68
Ŝg 4.03% 8.79% 0.94 0.73

Stanford wiki
Ŝr

22.96%
22.04% 13.31% 0.82 0.60

Ŝa 24.03% 12.55% 0.82 0.64
Ŝg 10.07% 17.22% 0.82 0.64

telomere
Ŝr

4.66%
16.00% 0.04% 0.99 0.78

Ŝa 18.00% 0.07% 0.99 0.83
Ŝg 22.00% 0.10% 0.97 0.73

Table 6. RANSAC algorithm applied with a LightGBM regressor.
eracity score is computed after data filtering.

RANSAC in sklearn

original error prop removed prop error prop after AUROC AUPRC

Air CO
Ŝr

5.13% 2.11% 4.90%
0.56 0.08

Ŝa 0.55 0.08
Ŝg 0.54 0.07

metaphor
Ŝr

6.55% 43.58% 4.88%
0.64 0.10

Ŝa 0.64 0.10
Ŝg 0.62 0.09

Stanford stack
res

11.86% 72.37% 0.44%
0.95 0.69

Ŝa 0.93 0.65
Ŝg 0.94 0.67

Stanford wiki
Ŝr

22.96%Ŝa

Ŝg

telomere
Ŝr

4.66% 0.62% 4.18%
0.99 0.77

Ŝa 0.99 0.80
Ŝg 0.97 0.72
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Appendix: Detecting Errors in Numerical Data via any Regression
Model

A. Proofs of theorems in Section 4
of Theorem 4.1. Note that

P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) =

∫∫
x>y

dGX′
i
(x)dFXi

(y) =

∫ ∞

−∞

∫ x

−∞
dFXi

(y)dGX′
i
(x)

=

∫ ∞

−∞
FXi

(x)dGX′
i
(x).

If G stochastically dominates F in the third order, then EGU(x) ≥ EFU(x), for all nondecreasing, concave utility functions
U that are positively skewed. Since FXi

(x) is the CDF of absolute value of the regression error, it is obviously nondecreasing
and positively skewed. To see FXi

(x) is concave, note that

d2FXi(x)

dx2
=

dfXi(x)

dx
+

dfXi(−x)

dx
= 2

dfXi(x)

dx
≤ 0, for x > 0,

where fXi(x) is the density function of FXi(x) and the last inequality is from E(ϵ(x)) = 0 and is unimodal at 0. Thus,
FXi

(x) is a concave utility function and∫ ∞

−∞
FXi(x)dGX′

i
(x) ≥

∫ ∞

−∞
FXi(x)dFXi(x) =

∫ 1

0

xdx =
1

2
,

which complete the proof.

of Corollary 4.2. Under the assumption of Corollary 4.2, ϵi(Xi) ∼ N(0, 1), ϵ(X ′
i) + ϵ∗(X ′

i) ∼ N(a, 1). Thus

dGX′
i
(x) =

{
1√
2π

e−
(x−a)2

2 +
1√
2π

e−
(x+a)2

2

}
dx, dFXi

(y) =
2√
2π

e−
y2

2 dy.

Denote

f(a) := P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i ))

=

∫ ∞

0

∫ x

0

{
1√
2π

e−
(x−a)2

2 +
1√
2π

e−
(x+a)2

2

}
2√
2π

e−
y2

2 dxdy

=
1

2

√
2

π

∫ ∞

0

{
e−

(x−a)2

2 + e−
(x+a)2

2

}
Erf

(
x√
2

)
dx,

where Erf(z) = 2π−1/2
∫ z

0
e−t2dt is the error function. Note that f(0) = 1/2, we hope to show

f(a)− f(0) =
1

2

√
2

π

∫ ∞

0

{
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

}
Erf

(
x√
2

)
dx ≥ 0.

A change of variable leads to∫ ∞

0

{
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

}
Erf

(
x√
2

)
dx

=

∫ ∞

0

{
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

}∫ x√
2

0

e−t2dtdx

=
2√
π

∫ ∞

0

e−t2
∫ ∞

√
2t

{
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

}
dxdt

=
√
2

∫ ∞

0

e−t2
{
2Erf(t)− Erf

(
t− a√

2

)
− Erf

(
t+

a√
2

)}
dt

=
√
2

∫ ∞

0

e−t2

{∫ t

t− a√
2

e−u2

du−
∫ t+ a√

2

t

e−u2

du

}
dt.
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Since
∫ t

t− a√
2

e−u2

du−
∫ t+ a√

2

t e−u2

du is always positive due to the monotonicity of e−u2

, which implies f(a)− f(0) > 0.

Thus P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) > 1/2. Furthermore, note that lima→∞ 2Erf(t)−Erf

(
t− a/

√
2
)
−Erf

(
t+ a/

√
2
)
→

2Erf(t) exponentially. Thus

√
2

∫ ∞

0

e−t2
{
2Erf(t)− Erf

(
t− a√

2

)
− Erf

(
t+

a√
2

)}
dt

→
√
2

∫ ∞

0

e−t22Erf(t)dt =

√
π

2
,

which complete the proof.

of Corollary 4.3. For all δ > 0, note that

P(Ŝr(Xi, Yi) < Ŝr(X
′
i, Y

′
i ))

≥P(Ŝr(Xi, Yi) < Ŝr(X
′
i, Y

′
i ), ∥f̂ − f∥∞ ≤ δ)

=P(|f(Xi)− Yi + f̂(Xi)− f(Xi)| < |f(X ′
i)− Y ′

i + f̂(X ′
i)− f(X ′

i)|, ∥f̂ − f∥∞ ≤ δ)

≥P(|f(Xi)− Yi| < |f(X ′
i)− Y ′

i | − 2δ, ∥f̂ − f∥∞ ≤ δ)

≥P(|f(Xi)− Yi| < |f(X ′
i)− Y ′

i | − 2δ)− P(∥f̂ − f∥∞ > δ).

For the first term in the right hand side of last equation,

P(|f(Xi)− Yi| < |f(X ′
i)− Y ′

i | − 2δ) =

∫∫
x>y+2δ

dGX′
i
(x)dFXi

(y)

=

∫ [∫
x>y

−
∫
x∈(y,y+2δ)

]
dGX′

i
(x)dFXi

(y).

If GX′
i

or FXi
is absolutely continuous, then

∫ [∫
x>y

−
∫
x∈(y,y+2δ)

]
dGX′

i
(x)dFXi

(y) = o(1) as δ → 0.

Under the assumption ∥f̂ − f∥∞
p→ 0, P(∥f̂ − f∥∞ > δ) = o(1) for all δ > 0, which complete the proof.

of Theorem 4.4. The proof is straight forward since

P(Ŝa(Xi, Yi) < Ŝa(X
′
i, Y

′
i ))

=P

(
Ŝr(X

′
i, Y

′
i )

û(X ′
i) + σ̂(X ′

i)
≤ Ŝr(Xi, Yi)

û(Xi) + σ̂(Xi)

)
= P

(
Ŝr(X

′
i, Y

′
i ) ≤

û(X ′
i) + σ̂(X ′

i)

û(Xi) + σ̂(Xi)
Ŝr(Xi, Yi)

)
≥P
(
Ŝr(X

′
i, Y

′
i ) ≤ Ŝr(Xi, Yi)

)
= P(Ŝr(Xi, Yi) < Ŝr(X

′
i, Y

′
i )).

B. Benchmark Details
For each dataset, we have a given_label representing the noisily-measured response variable typically available in real-world
datasets, and a true_label representing a higher fidelity approximation of the true Y value one wishes to measure. The
true_label would be unavailable for most datasets in practice and is here solely used for evaluation of different error detection
methods. To determine which datapoints should be considered truly erroneous in a particular dataset, we conducted a
histogram and Gaussian kernel density analysis of true_label - given_label in each dataset, and identified where these
deviations became atypically large. Below we list some additional details about each dataset.
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Air Quality dataset: This benchmark dataset is a subset of data provided by the UCI repository at https://archive.
ics.uci.edu/ml/datasets/air+quality. The covariates include information collected from sensors and en-
vironmental parameters, such as temperature and humidity, and we aim to predict the CO gas sensor measurement. The
true_label is collected using a certified reference analyzer. While the given_label is collected through an Air Quality
Chemical Multisensor Device, which is susceptible to sensor drift that can affect the sensors’ concentration estimation
capabilities.

Metaphor Novelty dataset: This dataset is derived from data provided by http://hilt.cse.unt.edu/
resources.html. The regression task is to predict metaphor novelty scores given two syntactically related words. We
have used FastText word embeddings to calculate vectors for both words available in the dataset. The true_label is collected
using expert annotators, and the given_label is the average of all five annotations collected through Amazon Mechanical
Turk.

Stanford Politeness Dataset (Stack edition): This dataset is derived from data provided by https://convokit.
cornell.edu/documentation/stack_politeness.html. The regression task is to predict the level of polite-
ness conveyed by some text, in this case requests from the Stack Exchange website. The given_label is randomly selected
from one of five human annotators that rated the politeness of each example, while the median of all five annotators’
politeness ratings is considered as the true_label. As covariates for our regression models, we use numerical features
obtained by embedding each text example via a pretrained Transformer network from the Sentence Transformers package
(Reimers & Gurevych, 2019).

Stanford Politeness Dataset (Wikipedia edition): This dataset is derived from data provided by https://
convokit.cornell.edu/documentation/wiki_politeness.html. The regression task, feature embed-
dings, given_label, and true_label are the same as those in the Stanford Politeness Dataset (Stack edition), but here the text
is a collection of requests from Wikipedia Talk pages.

qPCR Telomere: This dataset is a subset of the dataset generated through an R script provided by https://zenodo.
org/record/2615735#.ZBpLES-B30p. It is a simple regression task where independent covariates are taken from a
normal distribution, and the true_label is generated by f(xi). The given_label is defined as true_label + error. While this is
technically a simulated dataset, the simulation was specifically aimed to closely mimic data noise encountered in actual
qPCR experiments.

C. Simulation Details and Additional Results
Setting 1: Non-parametric Regression with Epistemic/Aleatoric Uncertainty:

• The covariates are i.i.d. from xi = (xi1, . . . , xi5) ∈ R5 with xij ∼ 0.1Unif(−1.5,−0.5) + 0.9Unif(−0.5, 1.5) for
j = 1, . . . , 5.

• The responses are generated by sampling from a mixture distribution

yi ∼
1

2
·N
(
f(xi1)− g(xi1), 0.5

)
+

1

2
·N
(
f(xi1) + g(xi1), 0.5

)
,

where f(x) = (x− 1)2(x+ 1), g(x) = 2
√
x− 0.51(x ≥ 0.5).

Setting 2: 5-D Linear Regression

• Our second setting is a 5-dimensional underlying linear relationship yi = βTxi + ϵi, where xi ∈ R5 and each
coordinate of xi is generated from Unif(−1.5, 1.5). The coefficient entries in β are set to −1 or 1 with random signs
and ϵi are sampled i.i.d. from a N(0, 0.5) distribution.

Setting 1 is designed to contain non-uniform epistemic and aleatoric uncertainty, inspired by (Lei & Wasserman, 2014).
For each coordinate of xi, 90% of the xij values are from Unif[−0.5, 1.5], while only 10% of the xij values are from
Unif[−1.5,−0.5]. Consequently, the epistemic uncertainty for xij ∈ [−1.5,−0.5] is larger due to insufficient observations
for these xij . It is important to note that the response yi depends only on the first coordinate of xi, and the aleatoric
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uncertainty for those xi1 ∈ [0.5, 1.5] is larger since P(yi|xi) is bimodal. Figure 1 illustrates the observed yi with respect to
the first coordinate of xi. Setting 2 corresponds to the standard idealized linear regression setting adapted from (Hu &
Lei, 2020), where the residual veracity score should perform best as the model is simple and no additional uncertainty is
involved.

In both settings, the corrupted data is set to be y∗i = yi + a, that is, a point mass at a with different corruption strength
a = −3,−2,−1, 1, 2, 3. In our simulation study, the fraction of corrupted data is set to be 10% for all contaminated datasets.
Table 7 and 8 show additional results for our study of conformal methods in Section 5.1, here instead using a LightGBM
regressor instead of the Random Forest model presented in the main text.

Table 7. Average FDR and Power for different settings by conformal inference. Each setting is trained on clean labels with Light GBM
regressor. The target FDR is 10%.

Setting 1 Setting 2

corruption strength -3 -2 -1 1 2 3 -3 -2 -1 1 2 3

FDR

0.13 0.14 0.28 0.31 0.20 0.14 0.12 0.11 0.29 0.23 0.13 0.12

0.12 0.15 0.28 0.33 0.16 0.13 0.12 0.10 0.30 0.26 0.13 0.12

0.13 0.15 0.35 0.37 0.21 0.12 0.12 0.11 0.29 0.28 0.13 0.12

Power

0.40 0.15 0.05 0.02 0.09 0.54 0.94 0.46 0.05 0.07 0.59 0.97

0.59 0.24 0.04 0.04 0.30 0.68 0.92 0.43 0.06 0.07 0.54 0.92

0.57 0.18 0.04 0.03 0.25 0.67 0.93 0.48 0.05 0.06 0.56 0.93

Table 8. Average FDR and Power for different settings by conformal inference. Each setting is trained on 10% contaminated data with
Light GBM regressor. The target FDR is 10%.

Setting 1 Setting 2

corruption strength -3 -2 -1 1 2 3 -3 -2 -1 1 2 3

FDR

0 0.04 0.30 0.38 0.20 0.01 0 0.05 0.19 0.22 0.01 0.00

0.02 0.09 0.31 0.43 0.25 0.03 0.00 0.04 0.22 0.18 0.00 0.01

0.01 0.09 0.33 0.45 0.26 0.03 0.00 0.05 0.19 0.12 0.00 0.01

Power

0.04 0.05 0.02 0.01 0.02 0.06 0.05 0.04 0.03 0.04 0.04 0.05

0.04 0.05 0.02 0.01 0.03 0.05 0.05 0.05 0.02 0.03 0.05 0.05

0.04 0.05 0.02 0.01 0.03 0.05 0.05 0.04 0.02 0.03 0.05 0.05

D. Experiment Details
All regression models fit in this paper (including the weighted ensemble) were implemented via the autogluon AutoML
package (Erickson et al., 2020) which automatically provides good hyperparameter settings and manages the training of
each model. When applying the RANSAC algorithm, we used its default settings given in the scikit-learn package.

E. Additional Benchmark Comparisons
For more comprehensive evaluation, we additionally compare against a number of other model-agnostic baseline approaches
to detect errors in numeric data. Each baseline here produces a veracity score which can be used to rank data by their
likelihood of error, as done for our proposed methodology.
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We evaluated these alternative scores following the same procedure (same metrics and datasets) from our real dataset
benchmark. No data filtering procedure was applied for any of these methods, models were simply fit via K-fold cross-
validation to produce out-of-sample predictions for the entire dataset, which were then used to compute veracity scores under
each approach. Table 9 below shows that none of these alternative methods are consistently superior to the straightforward
residual veracity score studied in our other evaluations.

Here are descriptions of the baseline methods we considered as alternative veracity scores:

Relative Residual. This baseline veracity score is defined as:

exp

(
− |y − ŷ|

|y|+ ϵ

)
(2)

where ϵ = 1e− 6 is a small constant for numeric stability. The relative residual rescales the basic residual by the magnitude
of the target variable Y , since values of Y with greater magnitude are often expected to have larger residuals.

Marginal Density. This baseline veracity score is defined as: p̂(y), the (estimated) density of the observed y value under
the marginal distribution over Y . Here we use kernel density estimates, and this approach does not consider the feature
values X at all. The marginal density score is thus just effective to detect Y values that are atypical in the overall dataset (i.e.
overall outliers rather than contextual outliers).

Local Outlier Factor. This baseline veracity score attempts to better capture datapoints which have either high residual or
low marginal density, since either case may be indicative of an erroneous value. First we form a 2D scatter plot representation
of the data in which one axis is the residual: |ŷ − y| and the other axis is the original y-value. Intuitively, outliers in this 2D
space correspond to the datapoints with abnormal residual or y-value. Thus we employ the local outlier factor (LOF) score
to quantify outliers in this 2D space, employing this as an alternative veracity score (Breunig et al., 2000).

Outlying Residual Response (OUTRE). This baseline veracity score is similar to the Local Outlier Factor approach
above, and identifies outliers in the same 2D space in which each datapoint is represented in terms of its residual and y-value.
Instead of the LOF score, here we score outliers via their average distance to the k-nearest neighbors of each datapoint
(Kuan & Mueller, 2022b), and use the inverse of these distances as an alternative veracity score.

Discretized. This baseline veracity score is defined by reformulating the regression task as a classification setting, and
then applying methods that are effective to detect label errors in classification. More specifically, we discretize the y values
in the dataset into 10 bins (defined by partioning the overall range of the target variable). For each bin k, we construct a
model-predicted "class" probability for that bin proportionally to: exp(−|ŷ − ck|) where ck is the center of bin k. After
renormalizing these probabilities to sum to 1 over k, this offers a straightforward conversion of regression model outputs
to predicted class probabilities if the bins are treated as the possible values in a classification task. Finally, we apply
Confident Learning with the self-confidence label quality score to produce a veracity score for each datapoint (Northcutt
et al., 2021; Kuan & Mueller, 2022a). This approach uses the given class label (identity of the bin containing each yi) and
model-predicted class probabilities to identify which datapoints are most likely mislabeled.
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Table 9. Evaluation of alternative scoring methods across various metrics. The results are calculated as the mean across all datasets and
across all models, as discussed in Section B.

scoring method AUPRC AUROC lift_at_100 lift_at_num_errors spearman_corr

residual 0.42 0.71 5.78 4.96 0.30

relative residual 0.36 0.66 4.61 4.32 0.21

marginal density 0.19 0.57 0.58 1.47 0.05

local outlier factor 0.20 0.64 1.99 2.03 0.23

OUTRE 0.42 0.73 5.76 4.97 0.35

discretised 0.31 0.66 4.85 3.01 0.18
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