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Abstract

Contrastive self-supervised learning has signifi-
cantly improved the performance of deep learning
methods, such as representation learning and clus-
tering. However, due to their dependence on data
augmentation, these methods are mostly utilized
in computer vision. In this paper, we investigate
the adaptation of the recent contrastive cluster-
ing approach in the case of tabular data. Our
experiments show that it outperforms typical clus-
tering methods applicable to tabular data in most
cases. Our findings affirm the potential adaptabil-
ity of successful contrastive clustering techniques
from other fields, such as image processing, to the
realm of tabular data.

1. Introduction

Contrastive self-supervised models have emerged as one
of the most significant topics in the field of deep learning.
They have demonstrated remarkable performance in various
computer vision tasks, ranging from representation learning
to clustering. However, the efficacy of these models relies
heavily on data augmentation, i.e., applying transformations
that do not alter the class labels in the target task.

The task of data augmentation can be trivial if we have a
good understanding of the domain we are traversing - real-
world images can utilize a set of operations such as cropping,
rotation, adding Gaussian noise, or changing the contrast.
Text data makes use of transformations such as the intro-
duction of typos, or artificial mistranslations (Dhole et al.,
2021), and metagenomic data can benefit from introducing
simulated errors in reads (Sayyari et al., 2019).

However, applying contrastive methods to domain-agnostic
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tabular data presents unique challenges due to the lack of a
regular internal structure and pre-defined relationships such
as spatial dependencies. Consequently, defining suitable
augmentations for contrastive methods can be difficult in
the context of tabular datasets. In prior research, approaches
such as SubTab (Ucar et al., 2021) and LoCL (Gharibshah
& Zhu, 2022) have attempted to address this issue.

Drawing on new ideas of contrastive learning in computer
vision, we present the application of contrastive clustering
methods for tabular data. Specifically, we examine three
types of augmentation techniques and assess their perfor-
mance on four different datasets. Our findings contribute to
the development of more efficient and versatile contrastive
learning methods for a wider variety of data types.

2. Method

Our approach combines the elements of the “Contrastive
Clustering” framework (Li et al., 2021) with data augmen-
tation techniques inspired by the ”SubTab” method. These
modifications are designed to address the unique challenges
posed by tabular data.

Contrastive Clustering Base The fundamental structure
of our model is built on the Contrastive Clustering technique,
utilizing all of its three main components - the backbone
network, the instance-level contrastive head, and the cluster-
level contrastive head.

A feature extractor f : RP? — RY, represented by back-
bone component, returns the representation h = f(x) for a
given input x. This latent vector, h, is subsequently passed
through two projection heads. NTX-ent loss applied to em-
beddings generated by the instance-level projection head g;
encourages the feature extractor to generate representation
invariant to data augmentations (Sohn, 2016). On the other
hand, the cluster-level projection head, g, yields an output
vector y with dimensions equivalent to the number of clus-
ters, as outcome of the softmax activation function. Similar
to the instance-level, the NTXent loss function is used to
calculate the distances between the clusters.

The instance-level contrastive head distinguishes between
feature vectors (row-wise perspective) of different instances
of data, while the cluster-level contrastive head identifies
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and differentiates between different clusters (column-wise
perspective) in the dataset. This approach enables the model
to both recognize individual instances and understand the
broader context of clusters within the dataset.

Data Augmentation for Tabular Data To adapt con-
trastive clustering to the case of tabular data, we propose to
use the following augmentations:

¢ Gaussian noise, generated from a standard normal dis-
tribution, is incorporated into the original data. This
method involves the addition of randomly selected val-
ues derived from this distribution. Standard deviation
is set through a process of hyperparameter tuning.

* Swap introduces permutations within the dataset’s fea-
tures. Specifically, values from one data instance are in-
terchanged with values from another instance, thereby
changing their original arrangement in a given feature
column

e Zero is introduced by applying a dropout operation to
the initial layer of the backbone network. This tech-
nique involves zeroing out a fraction of the input fea-
tures.

The degree of data perturbation introduced through the noise
is determined through a hyperparameter tuning process.
This augmentation strategy allows us to create a ”corrupted”
version of our dataset for the training phase.

3. Experiments

Datasets
datasets:

For our experimental evaluation, we utilized four

* MNIST dataset includes 70,000 images of handwritten
digits, transformed into 784-dimensional vectors.

¢ BreastCancer dataset contains health data from 569
patients, with 30 factors indicating breast cancer diag-
noses.

¢ Reuters-10k dataset consists of 10,000 news stories,
each described using the 2000 most frequent words,
grouped into four distinct classes.

¢ Letter holds data on 20,000 handwritten letters, cate-
gorized into 26 classes using 16 features.

Architecture A framework consists of three components:
instance-level head, cluster-level head, and backbone. The
backbone architectures were individually optimized for each
dataset. Each contains up to three fully connected layers
with a maximum of 512 neurons. The architecture for both
the instance-level and cluster-level heads remained consis-
tent across all experiments.

Hyperparameters including the masking ratio, projection
size, batch size, and learning rate were identified through

Table 1. Comparison of our methods (swap, Gauss, zero) with
baseline models.
DATASET

KMEANS SUBTAB IDEC SWAP GAUSs ZERO

ACC 54.6 42.0 88.1 80.3+4.4 79.54£7.8 85.5+2.2

MNIST NMI 50.9 45.7 86.7 80.1+3.7 78.74+5.2 82.84+24
BREAST ACC 90.2 89.5 92.6 88.6£1.2 92.3+1.8 92.14+0.6

. NMI 56.2 50.6 63.8 53.6+£2.7 78.74£5.2 59.14+2.3
RI10K ACC 72.9 71.4 75.6 72.8£3.3 66.94+3.9 63.01+4.6

NMI 48.8 46.9 49.8 55.9+4.6 42.64+2.4 450472

ACC 25.9 19.4
NMI 35.7 29.1

21.8+1.1 28.2+1.9 18.4%1.1

LETTER 30.14+1.5 42,1409 26.6+1.6

grid search. AdamW optimizer and LeakyReLU activation
function were used throughout the entire model.

Baseline models To evaluate the efficacy of our proposed
method, we selected three benchmark models as comparison
baselines. The first baseline is the classic k-means cluster-
ing algorithm applied directly on the raw data, thus repre-
senting a traditional unsupervised learning method. The
second baseline utilizes the SubTab framework; however,
to maintain consistency with our self-supervised learning,
we conducted an evaluation using k-means on the latent
representations derived from SubTab. The final baseline
employs the IDEC methodology (Guo et al., 2017).

Metrics For evaluating our methods, we used two widely
used metrics in unsupervised learning settings: Accuracy
(ACC) and Normalized Mutual Information (NMI). Higher
values of these metrics indicate better clustering perfor-
mance.

Results The results obtained by our model are presented
in Table 1. The proposed model demonstrates superior per-
formance compared to k-means and SubTab with k-means.
The effectiveness of our model parallels that of the IDEC ap-
proach and provides better results in terms of NMI in 2 out
of 3 datasets. It is noteworthy that the SubTab demonstrated
inferior performance compared to the k-means approach,
despite its use of contrastive learning. This observation
highlights the efficacy of our proposed method, suggesting
a potential for constructing meaningful representations. An-
other important observation is that there is no universally
superior data augmentation technique. The performance is
significantly influenced by the nature of the dataset.

Conclusion and future work Our research initiates the
use of contrastive clustering for tabular data, underlining the
necessity of dataset-specific data augmentation strategies
and hyperparameter tuning. Drawing inspiration from the
achievements of similar techniques in computer vision, we
demonstrate that this approach holds promising potential
for other domains, including tabular data, and encourages
further advancements.
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