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Abstract
Label efficiency has become an increasingly im-
portant objective in deep learning applications.
Active learning aims to reduce the number of la-
beled examples needed to train deep networks,
but the empirical performance of active learning
algorithms can vary dramatically across datasets
and applications. It is difficult to know in ad-
vance which active learning strategy will perform
well or best in a given application. To address
this, we propose the first adaptive algorithm se-
lection strategy for deep active learning. For any
unlabeled dataset, our (meta) algorithm TAILOR
(Thompson ActIve Learning algORithm selec-
tion) iteratively and adaptively chooses among
a set of candidate active learning algorithms.
TAILOR uses novel reward functions aimed at
gathering class-balanced examples. Extensive
experiments in multi-class and multi-label appli-
cations demonstrate TAILOR ’s effectiveness in
achieving accuracy comparable or better than that
of the best of the candidate algorithms.

1. Introduction
Active learning (AL) aims to reduce data labeling cost by
iteratively and adaptively finding informative unlabeled ex-
amples for annotation. Label-efficiency is increasingly cru-
cial as deep learning models require large amount of la-
beled training data. In recent years, numerous new algo-
rithms have been proposed for deep active learning (Sener
and Savarese, 2017; Gal et al., 2017; Ash et al., 2019;
Kothawade et al., 2021; Citovsky et al., 2021; Zhang et al.,
2022). Relative label efficiencies among algorithms, how-
ever, vary significantly across datasets and applications
(Beck et al., 2021; Zhan et al., 2022). When it comes to
choosing the best algorithm for a novel dataset or appli-
cation, practitioners have mostly been relying on educated
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guesses and subjective preferences. Prior work (Baram et al.,
2004; Hsu and Lin, 2015; Pang et al., 2018) have studied the
online choice of active learning algorithms for linear mod-
els, but these methods become ineffective in deep learning
settings (see Section 2). In this paper, we present the first
principled approach for automatically selecting effective
deep AL algorithms for novel, unlabeled datasets.

We reduce the algorithm selection task to a multi-armed ban-
dit problem. As shown in Figure 1, the idea may be viewed
as a meta algorithm adaptively choosing among a set of
candidate AL algorithms (arms). The objective of the meta
algorithm is to maximize the cumulative reward incurred
from running the chosen candidate algorithms. In Section 4,
we propose reward functions that encourage the collection
of class-balanced labeled set. As mentioned above, deep
AL algorithms are generally proposed to maximize different
notions of informativeness. As a result, by utilizing our al-
gorithm selection strategy TAILOR , we annotate examples
that are both informative and class-diverse.

To highlight some of our results, as shown in Figure ??
for the CelebA dataset, TAILOR outperforms all candidate
deep AL algorithms and collects the least amount of labels
while reaching the same accuracy level. TAILOR achieves
this by running a combination of candidate algorithms (see
Appendix F) to yield an informative and class-diverse set of
labeled examples (see Figure 3(c)).

Our key contributions are as follows:

• To our knowledge, we propose the first adaptive al-
gorithm selection strategy for deep active learning.
Our algorithm TAILOR works particularly well on
the challenging and prevalent class-imbalance settings
(Kothawade et al., 2021; Emam et al., 2021; Zhang
et al., 2022).

• Our framework is general purpose for both multi-label
and multi-class classification. Active learning is espe-
cially helpful for multi-label classification due to the
high annotation cost of obtaining multiple labels for
each example.

• TAILOR can choose among large number (e.g. hun-
dreds) of candidate deep AL algorithms even under
limited (10 or 20) rounds of interaction. This is partic-
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Figure 1. Adaptive active learning algorithm selection framework for batch size 1. Our framework proposed in Section 3.2 is a batched
version that chooses multiple candidate algorithms and unlabeled examples in every iteration. Labels and rewards are revealed all at once
at the end of the iteration.
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ularly important since limiting the number of model
retraining steps and training batches is essential in
large-scale deep active learning (Citovsky et al., 2021).

• In Section 5, we provide regret analysis of TAILOR
. Although TAILOR can be viewed as a sort of con-
textual bandit problem, our regret bound is better than
that obtained by a naive reduction to a linear contextual
bandit reduction (Russo and Van Roy, 2014).

• We provide extensive experiments on four multi-label
and six multi-class image classification datasets (Sec-
tion 6). Our results show that TAILOR obtains accura-
cies comparable or better than the best candidate strat-
egy for nine out of the ten datasets. On all of the ten
datasets, TAILOR succeeds in collecting datasets as
class-balanced as the best candidate algorithm. More-
over, with a slightly different reward function designed
for active search, TAILOR performs the best in find-
ing the highest number of positive class labels on all
multi-label datasets.

2. Related Work
Adaptive Algorithm Selection in Active Learning. Sev-
eral past works have studied the adaptive selection of active
learning algorithms for linear models. Donmez et al. (2007)
studied the limited setting of switching between two spe-
cific strategies to balance between uncertainty and diversity.
To choose among off-the-shelf AL algorithms, Baram et al.
(2004) first proposed a framework that reduced the AL algo-
rithm selectino task to a multi-armed bandit problem. That
approach aims to maximize the cumulative reward in a Clas-
sification Entropy Maximization score, which measures the
class-balancedness of predictions on unlabeled examples,
after training on each newly labeled example. However, this
becomes computationally intractable for large datasets with
computationally expensive models. To remedy this problem,
Hsu and Lin (2015) and Pang et al. (2018) proposed the
use of importance weighted training accuracy scores for
each newly labeled example. The training accuracy, how-
ever, is almost always 100% for deep learning models due
to their universal approximation capability, which makes
the reward signals less effective. Moreover, Hsu and Lin
(2015) reduced their problem to an adversarial multi-armed
bandit problem while Pang et al. (2018) also studied the
non-stationarity of rewards over time.

Lastly, we would like to distinguish the goal of our pa-
per from the line of Learning Active Learning literature
(Konyushkova et al., 2017; Shao et al., 2019; Zhang et al.,
2020; Gonsior et al., 2021; Löffler and Mutschler, 2022),
where they learn a single paramtereized policy model from
offline datasets. These policies can nonetheless serve as in-
dividual candidate algorithms, while TAILOR aims to select
the best subsets that are adapted for novel dataset instances.

Multi-label Deep Active Learning. Many active learn-
ing algorithms for multi-label classification based on lin-
ear models have been proposed (Wu et al., 2020), but few
for deep learning. Multi-label active learning algorithms
are proposed for two types of annotation, example-based
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where all associated labels for an example are annotated, and
example-label-based where annotator assigns a binary label
indicating whether the example is positive for the specific
label class.

While Citovsky et al. (2021); Min et al. (2022) both propose
deep active learning algorithms for example-label-based la-
bels, we focus on example-based annotation in this paper.
To this end, Ranganathan et al. (2018) propose an uncer-
tainty sampling algorithm that chooses examples with the
lowest class-average cross entropy losses after trained with
weak supervision. We find the EMAL algorithm by Wu et al.
(2014) effective on several datasets, despite being proposed
for linear models. EMAL is based on simple uncertainty
metric where one averages over binary margin scores for
each class. Lastly, a multi-label task can be seen as indi-
vidual single-label binary classification tasks for each class
(Boutell et al., 2004). By adopting this view, one can ran-
domly interleave the above-mentioned AL algorithms for
every class. In this paper, we include baselines derived from
least confidence sampling (Settles, 2009), GALAXY (Zhang
et al., 2022) and most likely positive sampling (Warmuth
et al., 2001; 2003; Jiang et al., 2018).

Balanced Multi-class Deep Active Learning. Traditional
uncertainty sampling algorithms have been adopted for deep
active learning. These algorithms select uncertain examples
based on scores derived from likelihood softmax scores,
such as margin, least confidence and entropy (Tong and
Koller, 2001; Settles, 2009; Balcan et al., 2006; Kremer
et al., 2014). The latter approaches leverage properties spe-
cific to neural networks by measuring uncertainty through
dropout (Gal et al., 2017), adversarial examples (Ducoffe
and Precioso, 2018) and neural network ensembles (Beluch
et al., 2018). Diversity sampling algorithms label examples
that are most different from each other, based on similarity
metrics such as distances in penultimate layer representa-
tions (Sener and Savarese, 2017; Geifman and El-Yaniv,
2017; Citovsky et al., 2021) or discriminator networks
(Gissin and Shalev-Shwartz, 2019). Lastly, gradient em-
beddings, which encode both softmax likelihood and penul-
timate layer representation, have become widely adopted in
recent approaches (Ash et al., 2019; 2021; Wang et al., 2021;
Elenter et al., 2022; Mohamadi et al., 2022). As an example,
Ash et al. (2019) uses k-means++ to query a diverse set of
examples in the gradient embedding space.

Unbalanced Multi-class Deep Active Learning. More
general and prevalent scenarios, such as unbalanced deep
active classification, have received increasing attention in
recent years (Kothawade et al., 2021; Emam et al., 2021;
Zhang et al., 2022; Coleman et al., 2022; Jin et al., 2022;
Aggarwal et al., 2020; Cai, 2022). For instance, Kothawade
et al. (2021) label examples with gradient embeddings
that are most similar to previously collected rare examples

while most dissimilar to out-of-distribution ones. Zhang
et al. (2022) create linear one-vs-rest graphs based on mar-
gin scores. To collect a more class-diverse labeled set,
GALAXY discovers and labels around the optimal uncer-
tainty thresholds through a bisection procedure on shortest
shortest paths.

3. Problem Statement
3.1. Notation

In pool based active learning, one starts with a large pool
of N unlabeled examples X = {x1, x2, ..., xN} with corre-
sponding ground truth labels Y = {y1, y2, ..., yN} initially
unknown to the learner. Let K denote the total number
of classes. In multi-label classification, each label yi is
denoted as yi ∈ {0, 1}K with each element yi,j represent-
ing the binary association between class j and example xi.
On the other hand, in a multi-class problem, each label
yi ∈ {ej}j∈[K] is denoted by a canonical one-hot vector,
where ej is the j-th canonical vector representing the j-th
class. Furthermore, at any time, we denote labeled and
unlabeled examples by L,U ⊂ X correspondingly, where
L ∩ U = ∅. We let L0 ⊂ X denote a small seed set of
labeled examples and U0 = X\L0 denote the initial unla-
beled set. Lastly, an active learning algorithm A takes as
input a pair of labeled and unlabeled sets (L,U) and returns
an unlabeled example A(L,U) ∈ U .

3.2. Adaptive Algorithm Selection Framework

In this section, we describe a generic framework that en-
compasses the online algorithm selection settings in Baram
et al. (2004), Hsu and Lin (2015) and Pang et al. (2018). As
shown in Algorithm 1, the meta algorithm has access to M
candidate algorithms. At the beginning of any round t, a
multi-set of B algorithms are chosen, where the same algo-
rithm can be chosen multiple times. One example is selected
by each algorithm in the multiset sequentially, resulting in
a total of B unique examples. The batch of examples are
then labeled all at once. At the end of the round, their
corresponding rewards are observed based on the newly
annotated examples {(xt,j , yt,j)}Bj=1 selected by the algo-
rithms. The model is also retrained on labeled examples
before proceeding to the next round.

Overall, the meta algorithm aims to maximize the future
cumulative reward based on noisy past reward observa-
tions of each candidate algorithm. Th reward function
r : X × Y → R is measured based on an algorithm’s
selected examples and corresponding labels. There are two
key components to this framework: the choice of reward
function and a bandit strategy that optimizes future rewards.
Our particular design will be presented in Section 4.

We make the following two crucial assumptions for our
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Algorithm 1 General Meta Active Learning Framework for
Baram et al. (2004); Hsu and Lin (2015); Pang et al. (2018)

Define: M candidate algorithms A = {Ai}i∈[M ], pool
X , total number of rounds T , batch size B.
Initialize: Labeled seed set L0 ⊂ X , unlabeled set U0 =
X\L0 and initial policy Π1.
for t = 1, ..., T do

Meta algorithm Πt chooses multiset of algo-
rithms Aαt,1

,Aαt,2
, ...,Aαt,B

, where indexes
αt,1, ..., αt,B ∈ [M ]. Initialize selection set St ← ∅.
for j = 1, ..., B do

Run algorithm to select unlabeled example xt,j :=
Aαt,j (Lt−1, Ut−1\St) that is unselected.
Insert the example xt,j : St ← St ∪ {xt,j}.

end for
Annotate {xt,j}Bj=1 and observe labels {yt,j}Bj=1.
Update sets Lt ← Lt−1 ∪ St, Ut ← Ut−1\St.
Observe reward rt,j = r(xt,j , yt,j) for each algorithm
Aαt,j , where j ∈ [B].
Update policy statistics based on xt,j , yt,j and rt,j to
obtain Πt+1.
Retrain model on Lt to inform next round.

end for
Objective: Maximize cumulative reward∑T

t=1

∑B
j=1 r

t,j .

framework:
Assumption 3.1. Any candidate batch active learning al-
gorithm Ā can be decomposed into an iterative selection
procedure A that returns one unlabeled example at a time.

The assumption has been inherently made by our frame-
work above where an deep active learning algorithm returns
one unlabeled example at a time. It entails that running Ā
once to collect a batch of B examples is equivalent with
running the iterative algorithm A for B times. As noted
in Appendix A.1, most existing deep active learning algo-
rithms can be decomposed into iterative procedures and thus
can serve as candidate algorithms in our framework.
Assumption 3.2. For each round t ∈ [T ], we assume there
exist ground truth reward distributions Pt,1, ...,Pt,M for
each candidate algorithm. Furthermore, for each element
j ∈ [B] in the batch, we make the iid assumption that
reward rt,j

iid∼ Pt,αt,j
is sampled from the distribution of

the corresponding selected algorithm.

The iid assumption is made for theoretical simplicity by
all of Baram et al. (2004); Hsu and Lin (2015); Pang et al.
(2018). We say the distributions are non-stationary if for
any i ∈ [M ], Pt,i varies with respect to time t. Both this
paper and Pang et al. (2018) study non-stationary scenarios,
whereas Baram et al. (2004) and Hsu and Lin (2015) assume
the distributions are stationary across time.

4. Thompson Active Learning Algorithm
Selection

In this section, we present the two key components of our
design, reward function and bandit strategy. In Section 4.1,
we first present a class of reward functions designed for
deep active learning under class imbalance. In Section 4.2,
by leveraging the structure of such reward functions, we
reduce the adaptive algorithm selection framework from
Section 3.2 into a novel bandit setting. In Section 4.3, we
then propose our algorithm TAILOR which is specifically
designed for this setting. When using TAILOR on top of
deep AL algorithms, the annotated examples are informative
and class-diverse.

4.1. Reward Function

We propose reward functions that encourage selecting ex-
amples so that every class is well represented in the labeled
dataset, ideally equally represented or “class-balanced”. Our
reward function works well even under practical scenarios
such as limited number of rounds and large batch sizes
(Citovsky et al., 2021). The rewards we propose can be
efficiently computed example-wise as opposed to Baram
et al. (2004) and are more informative and generalizable
than Hsu and Lin (2015) and Pang et al. (2018). Our class-
balance-based rewards are especially effective for datasets
with underlying class imbalance. Recall y ∈ {0, 1}K for
multi-label classification and y ∈ {ei}Ki=1 for multi-class
classification. We define the following types of reward func-
tions.

• Class Diversity: To encourage better class diversity,
we propose a reward that inversely weights each class
by the number of examples already collected. For each
round t ∈ [T ],

rtdiv(x, y) =
1

K

K∑
i=1

1

1 ∨ COUNTt(i)
y:i =: ⟨vtdiv, y⟩

where COUNTt(i) denotes the number of examples
in class i after t − 1 rounds and y:i denotes the i-th
element of y. We let vtdiv denote the inverse weighting
vector.

• Multi-label Search: As shown in Table 1, multi-label
classification datasets naturally tend to have sparse
labels (more 0’s than 1’s in y). Therefore, it is often
important to search for positive labels. To encourage
this, we define a stationary reward function for multi-
label classification:

rsearch(x, y) =
1

K

K∑
i=1

y:i =: ⟨vpos, y⟩

where vpos =
1
K 1⃗.
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• Domain Specific: Lastly, we would like to note that
domain experts can define specialized weighting vec-
tors of different classes vtdom ∈ [− 1

K , 1
K ]K that are

adjusted over time t. The reward function simply takes
the form rtdom(x, y) = ⟨vtdom, y⟩. As an example of
multi-label classification of car information, one may
prioritize classes of car brands over classes of car types,
thus weighting each class differently. They can also
adjust the weights over time based on needs.

4.2. Novel Bandit Setting

We now present a novel bandit reduction that mirrors the
adaptive algorithm selection framework under this novel
class of rewards. In this setup, vt ∈ [− 1

K , 1
K ]K is arbitrar-

ily chosen and non-stationary. On the other hand, for each
candidate algorithm Ai ∈ A, we assume the labels y are
sampled iid from a stationary 1-sub-Gaussian distribution
Pθi with mean θi. Both the stationary assumption in Pθi and
the iid assumption are made for simplicity of our theoretical
analysis only. We will describe our implementation to over-
come the non-stationarity in Pθi in Section 6.1. Although
we make the iid assumption analogous to Assumption 3.2,
we demonstrate the effectiveness of our algorithm in Sec-
tion 6 through extensive experiments. Additionally, note that
θi ∈ [0, 1]K for multi-label classification and θi ∈ ∆(K−1)

takes value in the K dimensional probability simplex for
multi-class classification. In our bandit reduction, at each
round t,

1. Nature reveals weighting vector vt;
2. Meta algorithm chooses algorithms αt,1, ..., αt,B , which

sequentially select unlabeled examples;
3. Observe batch of labels yt,1, ..., yt,B all at once, where

yt,j
iid∼ Pθαt,j ;

4. Objective: maximize rewards defined as rt,j = ⟨vt, yt,j⟩.

This setting bears resemblance to a linear contextual ban-
dit problem. Indeed, one can formulate such a problem
close to our setting by constructing arms ϕt

i = vec(vte⊤i ) ∈
[− 1

K , 1
K ]KM . Here, vec(·) vectorizes the outer product be-

tween vt and the i-th canonical vector ei. A contextual ban-
dit algorithm observes reward r = ⟨ϕt

i, θ
⋆⟩+ ε after pulling

arm i, where θ⋆ = vec(
[
θ1, θ2, ..., θM

]
) ∈ [0, 1]KM and ε

is some sub-Gaussian random noise. However, this contex-
tual bandit formulation does not take into account the obser-
vations of {yt,j}Bj=1 at each round, which are direct realiza-
tions of θ1, ..., θM . In fact, standard contextual bandit algo-
rithms usually rely on least squares estimates of θ1, ..., θM

based on the reward signals (Russo and Van Roy, 2014).
As will be shown in Proposition 5.1, a standard Bayesian
regret upper bound from Russo and Van Roy (2014) is of
order Õ(BM

3
4K

3
4

√
T ). Our algorithm TAILOR , on the

other hand, leverages the observations of yt,j ∼ Pθαt,j and
has regret upper bounded by Õ(B

√
MT ) (Theorem 5.2),

similar to a stochastic multi-armed bandit.

Algorithm 2 TAILOR : Thompson Active Learning Algo-
rithm Selection

Input: M candidate algorithms A = {Ai}i∈[M ], pool
X , total number of rounds T , batch size B.
Initialize: For each i ∈ [M ], ai = bi = 1⃗ ∈ R+K

.
for t = 1, ..., T do

Nature reveals vt ∈ [− 1
K , 1

K ]K .
Choose candidate algorithms:
for j = 1, ..., B do

if Multi-class Classification then
For each i ∈ [M ], θ̂i ∼ Dir(ai).

else if Multi-label Classification then
For each i ∈ [M ], θ̂i ∼ Beta(ai, bi).

end if
Choose αt,j ← argmaxi∈[M ]⟨vt, θ̂i⟩.

end for
Run chosen algorithms to collect batch:
for j = 1, ..., B do

Run algorithm Aαt,j to select unlabeled example
xt,j and insert into St.

end for
Annotate examples in St to observe yt,j for each j ∈
[B].
Update posterior distributions:
For each algorithm i ∈ [M ]:

ai ← ai +
∑

j:αt,j=i

yt,j , bi ← bi +
∑

j:αt,j=i

(1− yt,j).

Retrain neural network to inform next round.
end for

4.3. TAILOR

We are now ready to present TAILOR , a Thompson Sam-
pling (Thompson, 1933) style meta algorithm for adaptively
selecting active learning algorithms. The key idea is to
maintain posterior distributions for θ1, ..., θM . As shown
in Algorithm 2, at the beginning we utilize uniform priors
Unif(Ω) over the support Ω, where Ω = ∆(t−1) and [0, 1]K

respectively for multi-label and multi-class classification.
We note that the choice of uniform prior is made so that it is
general purpose for any dataset. In practice, one may design
more task-specific priors.

Over time, we keep an posterior distribution over each
ground truth mean θi for each algorithm i ∈ [M ]. With
a uniform prior, the posterior distribution is an instance
of either element-wise Beta distribution1 for multi-label
classification or Dirichlet distribution for multi-class clas-

1For z ∈ [0, 1]d and a, b ∈ Z+d

, we say z ∼ Beta(a, b) if for
each i ∈ [d], zi ∼ Beta(ai, bi).
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sification. During each round t, we draw samples from the
posteriors, which are then used to choose the best action
(i.e., candidate algorithm) that has the largest predicted re-
ward. After the batch of B candidate algorithms are chosen,
we then sequentially run each algorithm to collect the batch
of unlabeled examples. Upon receiving the batch of anno-
tations, we then update the posterior distribution for each
algorithm. Lastly, the neural network model is retrained on
all labeled examples thus far.

5. Analysis
In this section, we present regret upper bound of TAILOR
and compare against a linear contextual bandit upper bound
from Russo and Van Roy (2014). Our time complexity
analysis is in Appendix C.

Given an algorithm π, the expected regret measures the
difference between the expected cumulative reward of the
optimal action and the algorithm’s action. Formally for any
fixed instance with Θ = {θ1, ..., θM}, the expected regret
is defined as

R(π,Θ) := E

 T∑
t=1

B∑
j=1

max
i∈[M ]

⟨vt, θi − θα
t,j

⟩


where the expectation is over the randomness of the algo-
rithm, e.g. posterior sampling in TAILOR .

Bayesian regret simply measures the average of expected
regret over different instances

BR(π) := Eθi∼P0(Ω),i∈[M ]

[
R(π, {θi}Mi=1)

]
where Ω denotes the support of each θi and P0(Ω) denotes
the prior. Recall Ω = [0, 1]K for multi-label classifica-
tion and Ω = ∆(K−1) for multi-class classification. While
TAILOR is proposed based on uniform priors P0(Ω) =
uniform(Ω), our analysis in this section holds for arbitrary
P0 as long as the prior and posterior updates are modified
accordingly in TAILOR .

First, we would like to mention a Bayesian regret upper
bound for the contextual bandit formulation mentioned in
4.2. This provides one upper bound for TAILOR . As men-
tioned, the reduction to a contextual bandit is valid, but is
only based on observing rewards and ignores the fact that
TAILOR observes rewards and the full realizations yt,j of
θα

t,j

that generate them. So one anticipates that this bound
may be loose.

Proposition 5.1 (Russo and Van Roy (2014)). Let πcontext

be the posterior sampling algorithm for linear contextual
bandit presented in Russo and Van Roy (2014), the Bayesian
regret is bounded by

BR(πcontext) ≤ Õ(BM
3
4K

3
4 log T

√
T )

where B is the batch size, M is the number of candidate
algorithms, K is the number of classes, and T is the number
of rounds.

We omit the proof in this paper and would like to point
the readers to section 6.2.1 in Russo and Van Roy (2014)
for the proof sketch. As mentioned in the paper, detailed
confidence ellipsoid of least squares estimate and ellipsoid
radius upper bound can be recovered from pages 14-15 of
Abbasi-Yadkori et al. (2011).

We now present an upper bound on the Bayesian regret of
TAILOR , which utilizes standard sub-Gaussian tail bounds
based on observations of yt,j instead of confidence ellip-
soids derived from only observing reward signals of rt,j .

Theorem 5.2 (Proof in Appendix B). The Bayesian regret
of TAILOR is bounded by

BR(TAILOR) ≤ O(B
√
MT (log T + logM))

where B is the batch size, M is the number of candidate
algorithms and T is total number of rounds.

We delay our complete proof to Appendix B. To highlight
the key difference of our analysis from Russo and Van Roy
(2014), their algorithm only rely on observations of rt,j for
each round t ∈ [T ] and element j ∈ [B] in a batch. To
estimate θ1, ..., θM , they use the least squares estimator to
form confidence ellipsoids. In our analysis, we utilize obser-
vations of y’s up to round t and form confidence intervals
directly around each of ⟨vt, θ1⟩, ..., ⟨vt, θM ⟩ by unbiased
estimates {⟨vt, y⟩.

6. Experiments
In this section, we present results of TAILOR in terms of
classification accuracy, class-balance of collected labels,
and total number of positive examples for multi-label active
search. Motivated by the observations, we also propose
some future directions at the end.

6.1. Setup

Datasets. Our experiments span nine datasets with class-
imbalance as shown in Table 1. For multi-label experi-
ments, we experiment on four datasets including CelebA
(Liu et al., 2018), COCO (Lin et al., 2014), VOC (Ever-
ingham et al., 2010) and Stanford Car (Krause et al., 2013)
datasets. While the Stanford Car dataset is a multi-class
classification dataset, we transform it into a multi-label
dataset as detailed in Appendix A.3. For multi-class clas-
sification datasets, Kuzushiji-49 (Clanuwat et al., 2018)
and Caltech256 (Griffin et al., 2007) are naturally unbal-
anced datasets, while CIFAR-10 with 2 classes, CIFAR-100
with 10 classes (Krizhevsky et al., 2009) and SVHN with
2 classes (Netzer et al., 2011) are derived from the original
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DATASET K N
CLASS

IMB
BINARY

IMB

CELEBA 40 162770 .0273 .2257
COCO 80 82081 .0028 .0367
VOC 20 10000 .0749 .0721
CAR 10 12948 .1572 .1200
IMAGENET 1000 1281167 .5631 —
KUZUSHIJI-49 49 23236 .0545 —
CALTECH256 256 24486 .0761 —
IMB CIFAR-10 2 50000 .1111 —
IMB CIFAR-100 10 50000 .0110 —
IMB SVHN 2 73257 .0724 —

Table 1. Details for multi-label and multi-class classification
datasets. K and N denote the number of classes and pool size
respectively. Class Imbalance Ratio represents the class imbalance
ratio between the smallest and the largest class. We also report
Binary Imbalance Ratio for multi-label datasets, which is defined
as the average positive ratio over classes, i.e., 1

K

∑
i∈[K](Ni/N)

where Ni denotes the number of examples in class i.

dataset following Zhang et al. (2022). Specifically, we keep
the first K− 1 classes from the original dataset and treat the
rest of the images as a large out-of-distribution K-th class.

Implementation Details. We conduct experiments on vary-
ing batch sizes anywhere from B = 500 to B = 10000.
To mirror a limited training budget (Citovsky et al., 2021;
Emam et al., 2021), we allow 10 or 20 batches in total for
each dataset, making it extra challenging for our adaptive
algorithm selection due to the limited rounds of interaction.

Moreover, we assumed observations of y are sampled from
stationary distributions Pθ1 , ...,PθM in our analysis. How-
ever, these distributions could be dynamically changing.
In our implementation, we use a simple trick to discount
the past observations, where we change the posterior up-
date in Algorithm 2 to ai ← γai +

∑
j:αt,j=i y

t,j and
bi ← γbi +

∑
j:αt,j=i(1 − yt,j) . We set the discounting

factor γ to be .9 across all experiments. As will be dis-
cussed in Section 6.3, we find non-stationarity in {Pθk}Mk=1

an interesting future direction to study. Lastly, we refer
the readers to Appendix A for additional implementation
details.

Baseline Algorithms. In our experiments, we choose a
representative and popular subset of the deep AL algorithms
and active search algorithms discussed in Section 2 as our
baselines. To demonstrate the ability of TAILOR , number
of candidate algorithms M ranges from tens to hundreds for
different datasets. The baselines can be divided into three
categories:

• We include off-the-shelf active learning and active
search algorithms such as EMAL (Wu et al., 2014)
and Weak Supervision (Ranganathan et al., 2018) for

multi-label classification and Confidence sampling
(Settles, 2009), BADGE (Ash et al., 2019), Modified
Submodular optimization motivated by Kothawade
et al. (2021) for multi-class classification. More imple-
mentation details can be found in Appendices A.1 and
A.2.

• We derive individual candidate algorithms based on
a per-class decomposition (Boutell et al., 2004). For
most likely positive sampling (Warmuth et al., 2001;
2003; Jiang et al., 2018), an active search strategy and
abbreviated as MLP, we obtain K algorithms where
the i-th algorithm selects examples most likely to be
in the i-th class. As detailed in Appendix A.6, we also
include K individual GALAXY algorithms (Zhang
et al., 2022) and K Uncertainty sampling algorithms
for multi-label classification. As baseline for each
type of algorithm, we simply interleave the set of K
algorithms uniformly at random.

• We compare against other adaptive meta selection al-
gorithms, including Random Meta which chooses
candidate algorithms uniform at random and ALBL
Sampling (Hsu and Lin, 2015). The candidate algo-
rithms include all of the active learning baselines. In
Appendix D, we also provide an additional study of
including active search baselines as candidate algo-
rithms.

6.2. Results

Multi-class and Multi-label Classification. For evaluation,
we focus on TAILOR’s comparisons against both existing
meta algorithms and the best baseline respectively. In all
classification experiments, TAILOR uses the class diversity
reward in Section 4.1. For accuracy metrics, we utilize mean
average precision for multi-label classification and balanced
accuracy for multi-class classification. As a class diversity
metric, we look at the size of the smallest class based on
collected labels. All experiments are measured based on
active annotation performance over the pool (Zhang et al.,
2022).

As shown in Figures ??, 3 and Appendix E, when com-
paring against existing meta algorithms, TAILOR performs
better on all datasets in terms of both accuracy and class
diversity metrics. ALBL sampling performs similar to Ran-
dom Meta in all datasets, suggesting the ineffectiveness of
training accuracy based rewards proposed in Hsu and Lin
(2015) and Pang et al. (2018). When comparing against the
best baseline algorithm, TAILOR performs on par with the
best baseline algorithm on nine out of ten datasets in terms
of accuracy and on all datasets in terms of class diversity.
On the CelebA dataset, TAILOR even outperforms the best
baseline by significant margin in accuracy. As discussed in
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Figure 3. Performance of TAILOR against baselines on selected settings. (a) and (b) shows accuracy metrics of the algorithms. (c) shows
class-balancedness of labeled examples. All performances are averaged over four trials with standard error plotted for each algorithm.
The curves are smoothed with a sliding window of size 3.

Appendix F, TAILOR achieves this by selecting a combina-
tion of other candidate algorithm instead of choosing only
the best baseline. On four out of the ten datasets, TAILOR
outperforms the best baseline in class diversity. Collectively,
this shows the power of TAILOR in identifying the best can-
didate algorithms over different dataset scenarios. Shown
in Appendix F, we also find TAILOR selects algorithms
more aggressively than existing meta algorithms. The most
frequent algorithms also align with the best baselines.

On the other hand for the Caltech256 dataset shown in
Figure 15, TAILOR under-performs confidence sampling
in terms of accuracy. We conjecture this is because the larger
classes may not have sufficient examples and have much
space for improvement before learning the smaller classes.
Nevertheless, TAILOR was able to successfully collect a
much more class-diverse dataset while staying competitive
to other baseline methods.
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Figure 4. Total positive labels for active search, CelebA

Multi-label Search. We use the multi-label search reward
proposed in Section 4.1. As shown in Figure 4 and Ap-
pendix E.3, on three of the four datasets, TAILOR performs
better than the best baseline algorithm in terms of total
collected positive labels. On the fourth dataset, TAILOR
performs second to and on par with the best baseline. This

shows TAILOR’s ability in choosing the best candidate al-
gorithms for active search.

6.3. Future Work

While our experiments focus on class-imbalanced settings,
TAILOR’s effectiveness on balanced datasets warrants fu-
ture study through further experiments and alternative re-
ward design. We also find studying non-stationarity in label
distributes {Pθi}Mi=1 an interesting next step.

7. Choosing Candidate Algorithms
Our paper proposes an adaptive selection procedure over
candidate deep AL algorithms. When judging individual
deep AL algorithms, current standards in the research com-
munity tend to focus on whether an algorithm performs well
on all dataset and application instances. However, we see
value in AL algorithms that perform well only in certain
instances. Consider, for example, an AL algorithm that
performs well on 25% of previous applications, but poorly
on the other 75%. One may wish to include this algorithm
in TAILOR because the new application might be similar
to those where it performs well. From the perspective of
TAILOR , a “good” AL algorithm need not perform well
on all or even most of a range of datasets, it just needs to
perform well on a significant number of datasets.

On the other hand, as suggested by our regret bound that
scales with M , one should not include too many algorithms.
In fact, there are exponential number of possible AL algo-
rithms, which could easily surpass our labeling budget and
overwhelm the meta selection algorithm. In practice, one
could leverage extra information such as labeling budget,
batch size and model architecture to choose proper set of
candidate algorithms to target their settings.
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A. Implementation Details
A.1. Deep Active Learning Decomposition

For any uncertainty sampling algorithm, picking the top-B most uncertain examples can be easily decomposed into an
iterative procedure that picks the next most uncertain example. Next, for diversity based deep active learning algorithms, one
usually rely on a greedy iterative procedure to collect a batch, e.g. K-means++ for BADGE (Ash et al., 2019) and greedy
K-centers for Coreset (Sener and Savarese, 2017). Lastly, deep active learning algorithms such as Cluster-Margin (Citovsky
et al., 2021) and GALAXY (Zhang et al., 2022) have already proposed their algorithms as iterative procedures that select
unlabeled examples sequentially.

A.2. Implementation of Modified Submodular

Instead of requiring access to a balanced holdout set (Kothawade et al., 2021), we construct the balanced set using training
examples. We use the Submodular Mutual Information function FLQMI as suggested by Table 1 of Kothawade et al.
(2021). The proposed greedy submodular optimization is itself an iterative procedure that selects one example at a time.
While SIMILAR usually performs well, our modification that discards the holdout set is unfortunately ineffective in our
experiments. This is primarily due to the lack of the holdout examples, which may often happen in practical scenarios.

A.3. Stanford Car Multi-label Dataset

We transform the original labels into 10 binary classes of

1. If the brand is “Audi”.

2. If the brand is “BMW”.

3. If the brand is “Chevrolet”.

4. If the brand is “Dodge”.

5. If the brand is “Ford”.

6. If the car type is “Convertible”.

7. If the car type is “Coupe”.

8. If the car type is “SUV”.

9. If the car type is “Van”.

10. If the car is made in or before 2009.

A.4. Negative Weighting for Common Classes

For multi-label classifications, for some classes, there could be more positive associations (label of 1s) than negative
associations (label of 0s). Therefore, in those classes, the rarer labels are negative. In class diverse reward ⟨vtdiv, y⟩ in
Section 4.1, we implement an additional weighting of 1t

rare ∗ vdivt , where ∗ denotes an elementwise multiplication. Here,
each element 1t

rare,i ∈ {1,−1} takes value −1 when COUNTt(i) is larger than half the size of labeled set. This negative
weighting can been seen as upsampling negative class associations when positive associations are the majority.

A.5. Model Training

All of our experiments are conducted using the ResNet-18 architecture (He et al., 2016) pretrained on ImageNet. We use the
Adam optimizer (Kingma and Ba, 2014) with learning rate of 1e-4 and weight decay of 5e-5.
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A.6. Baseline Algorithms

In the original GALAXY work by Zhang et al. (2022), their algorithm construct K one-vs-rest linear graphs, one for each
class. GALAXY requires finding the shortest shortest path among all K graphs, an operation whose computation scales
linearly in K. When K is large, this becomes computationally prohibitive to run. Therefore, we instead include K separate
GALAXY algorithms, each only bisecting on one of the one-vs-rest graphs. This is equivalent with running K GALAXY
algorithms, one for each binary classification task between class i ∈ [K] and the rest. As a baseline, we interleave these
algorithms uniformly at random.

For Uncertainty sampling in multi-label settings, we simply have K individual uncertainty sampling algorithms, where the
i-th algorithm samples the most uncertain example based only on the binary classification task of class i.

B. Proof of Theorem 5.2
Our proof follows a similar procedure from regret analysis for Thompson Sampling of the stochastic multi-armed bandit
problem (Lattimore and Szepesvári, 2020). Let αt := {αt,j}Bj=1 and yt := {yt,j}Bj=1 denote the actions and observations
from the i-th round. We define the history up to t as Ht = {α1, y1, α2, y2, ..., αt−1, yt−1}. Moreover, for each i ∈ [M ], we
define Ht,i = {yt

′,j ∈ Ht : α
t′,j = i} as the history of all observations made by choosing the i-th arm (algorithm).

Now we analyze reward estimates at each round t. When given history Ht and arm i ∈ [M ], each observation y ∈ Ht,i is
an unbiased estimate of θi as y ∼ Pθi . Therefore, for any fixed vt, ⟨vt, y⟩ is an unbiased estimate of the expected reward
⟨vt, θi⟩, which we denote by µt,i.

For each arm i, we can then obtain empirical reward estimate µ̄t,i of the true expected reward µt,i by µ̄t,i :=
1

1∨|Ht,i|
∑

y∈Ht,i
⟨vt, y⟩ where µ̄t,i = 0 if |Ht,i| = 0. Since expected rewards and reward estimates are bounded by

[−1, 1], by standard sub-Gaussian tail bounds, we can then construct confidence interval,

P
(
∀i ∈ [M ], t ∈ [T ], |µ̄t,i − µt,i| ≤ dt,i

)
≥ 1− 1

T

where dt,i :=
√

8 log(MT 2)
1∨|Ht,i| . Additionally, we define upper confidence bound as U t,i = clip[−1,1]

(
µ̄t,i + dt,i

)
.

At each iteration t, we have the posterior distribution P(Θ = ·|Ht) of the ground truth Θ = {θi}Mi=1. Θ̂ = {θ̂i}Mi=1 is
sampled from this posterior. Consider it⋆ = argmaxi∈M ⟨vt, θi⟩ and αt,j = argmaxi∈M ⟨vt, θ̂i⟩. The distribution of it⋆
is determined by the posterior P(Θ = ·|Ht). The distribution of αt,j is determined by the distribution of Θ̂, which is
also P(Θ = ·|Ht). Therefore, it⋆ and αt,j are identically distributed. Furthermore, since the upper confidence bounds are
deterministic functions of i when given Ht, we then have E[U t,αt,j |Ht] = E[U t,it⋆ |Ht].

As a result, we upper bound the Bayesian regret by

BR(TAILOR) = E

 T∑
t=1

B∑
j=1

µt,it⋆ − µt,αt,j


=E

 T∑
t=1

B∑
j=1

(µt,it⋆ − U t,it⋆) + (U t,αt,j

− µt,αt,j

)

 .

Now, note that since µ̄t,i ∈ [−1, 1] we have clip[−1,1]

(
µ̄t,i + dt,i

)
= clip[−∞,1]

(
µ̄t,i + dt,i

)
, where only the upper clip

takes effect. Based on the sub-Gaussian confidence intervals P
(
∀i ∈ [M ], t ∈ [T ], |µ̄t,i − µt,i| ≤ dt,i

)
≥ 1− 1

T , we can
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derive the following two confidence bounds:

P(∀i ∈ [M ], t ∈ [T ], µt,i > U t,i) = P(∀i ∈ [M ], t ∈ [T ], µt,i > clip[−1,1](µ̄
t,i + dt,i))

= P(∀i ∈ [M ], t ∈ [T ], µt,i > µ̄t,i + dt,i) , since µt,i ≤ 1

= P(∀i ∈ [M ], t ∈ [T ], µt,i − µ̄t,i > dt,i) ≤ 1

2T

P(∀i ∈ [M ], t ∈ [T ], U t,i − µt,i > 2dt,i) = P(∀i ∈ [M ], t ∈ [T ], clip[−1,1](µ̄
t,i + dt,i)− µt,i > 2dt,i)

≤ P(∀i ∈ [M ], t ∈ [T ], µ̄t,i + dt,i − µt,i > 2dt,i)

= P(∀i ∈ [M ], t ∈ [T ], µ̄t,i − µt,i > dt,i) ≤ 1

2T
.

Now with the decomposition,

BR(TAILOR) = E

 T∑
t=1

B∑
j=1

µt,it⋆ − µt,αt,j


=E

 T∑
t=1

B∑
j=1

µt,it⋆ − U t,it⋆

+ E

 T∑
t=1

B∑
j=1

U t,αt,j

− µt,αt,j


we can bound the two expectations individually.

First, to bound E
[∑T

t=1

∑B
j=1 µ

t,it⋆ − U t,it⋆

]
, we note that µt,it⋆ − U t,it⋆ is negative with high probability. Also, the

maximum value this can take is bounded by 2 as µt,i, U t,i ∈ [−1, 1]. Therefore, we have

E

 T∑
t=1

B∑
j=1

µt,it⋆ − U t,it⋆

 ≤
 T∑

t=1

B∑
j=1

0 · P(µt,it⋆ <= U t,it⋆) + 2 · P(µt,it⋆ > U t,it⋆)

 ≤ 2TB · 1

2T
= B.

Next, to bound E
[∑T

t=1

∑B
j=1 U

t,αt,j − µt,αt,j
]

we decompose it similar to the above:

E

 T∑
t=1

B∑
j=1

U t,αt,j

− µt,αt,j

 ≤
 T∑

t=1

B∑
j=1

2P(U t,αt,j

− µt,αt,j

> 2dt,i)

+

 T∑
t=1

B∑
j=1

2dt,i


≤ B +

 T∑
t=1

B∑
j=1

√
32 log(MT 2)

1 ∨ |Ht,αt,j |


where recall that |Ht,i| is the number of samples collected using algorithm i in rounds ≤ t.

To bound the summation, we utilize the fact that 1
1∨|Ht,i| ≤

B
k for each k ∈ [|Ht,i|, |Ht+1,i|], since |Ht+1,i| − |Ht,i| ≤ B.

As a result, we get

T∑
t=1

B∑
j=1

√
32 log(MT 2)

1 ∨ |Ht,αt,j |

≤
T∑

t=1

M∑
i=1

|HT,i|∑
k=1

√
32 log(MT 2) ·B

k

≤ O(
√
B(log T + logM)

M∑
i=1

√
|HT,i|)

≤ O(
√
B(log T + logM)) ·O(

√
BMT ) = O(B

√
MT (log T + logM))
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where last two inequalities follow from simple algebra and the fact that
∑M

i=1 |HT,i| = TB.

Finally, to combine all of the bounds above, we get BR(TAILOR) ≤ B + B + O(B
√
MT (log T + logM)) =

O(B
√

MT (log T + logM)).

C. Time Complexity
Let Ntrain denote the total neural network training. The time complexity of collecting each batch for each active learning
algorithm Ai can be separated into Pi and Qi, which are the computation complexity for preprocessing and selection of
each example respectively. As examples of preprocessing, BADGE (Ash et al., 2019) computes gradient embeddings,
SIMILAR (Kothawade et al., 2021) further also compute similarity kernels, GALAXY (Zhang et al., 2022) constructs linear
graphs, etc. The selection complexities are the complexities of each iteration of K-means++ in BADGE, greedy submodular
optimization in SIMILAR, and shortest shortest path computation in GALAXY. Therefore, for any individual algorithm A⟩,
the computation complexity is then O(Ntrain + TPi + TBQi) where T is the total number of rounds and B is the batch
size. When running TAILOR , as we do not know which algorithms are selected, we provide a worst case upper bound
of O(Ntrain + T · (

∑M
i=1 Pi) + TB ·maxi∈[M ] Qi), where the preprocessing is done for every candidate algorithm. In

practice, some of the preprocessing operations such as gradient embedding computation could be shared among multiple
algorithms, thus only need to be computed once. While the computation of rewards and Thompson sampling updates incur
some extra complexity, they are usually dominated in practice by the complexity of neural network training and running
each candidate algorithm.
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D. Study of Candidate Algorithms
We compare the performance when we use the following two sets of candidate algorithms:

1. Active learning algorithms only: Uncertainty sampling, GALAXY and EMAL for multi-label classification; Uncer-
tainty sampling, GALAXY and BADGE for multi-class classification.

2. Active learning and search algorithms: Uncertainty sampling, GALAXY, MLP, EMAL and Weak Sup for multi-label
classification; Uncertainty sampling, GALAXY, MLP, BADGE and Modified Submodular for multi-class classification.

Note Modified Submodular is classified as an active search algorithms since we are using a balanced set of training examples
as the conditioning set. We are effectively searching for examples similar to the ones that are annotated in these classes.

As shown in Figures 5 and 6, regardless of the meta algorithm, the performance is better when using active learning
algorithms as candidates only. Nonetheless, even with active search algorithms as candidates, TAILOR still outperforms
other meta active learning algorithms.
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Figure 5. SVHN, Balanced Accuracy
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E. Full Results
All of the results below are averaged from four individual trials except for Imagenet, which is the result of a single trial.

E.1. Multi-label Classification
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Figure 7. CelebA
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Figure 9. VOC
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E.2. Multi-class Classification
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Figure 11. CIFAR-10, 2 classes
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Figure 12. CIFAR-100, 10 classes
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Figure 13. SVHN, 2 classes
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E.3. Multi-label Search
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Figure 16. CelebA, Total Number of Positive Labels
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Figure 17. COCO, Total Number of Positive Labels
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Figure 18. VOC, Total Number of Positive Labels
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Figure 19. Stanford Car, Total Number of Positive Labels
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F. What Algorithms Does TAILOR Choose?
In the following two figures, we can see TAILOR chooses a non-uniform set of algorithms to focus on for each dataset. On
CelebA, TAILOR out-perform the best baseline, EMAL sampling, by a significant margin. As we can see, TAILOR rely on
selecting a combination of other candidate algorithms instead of only selecting EMAL.

On the other hand, for the Stanford car dataset, we see TAILOR ’s selection mostly align with the baselines that perform
well especially in the later phase.
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Figure 20. TAILOR Top-10 Most Selected Candidate Algorithms on CelebA Dataset
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Figure 21. TAILOR Top-10 Most Selected Candidate Algorithms on Stanford Car Dataset

In the following figures, we plot the number of times the most frequent candidate algorithm is chosen. As can be shown,
TAILOR chooses candidate algorithm much more aggressively than other meta algorithms in eight out of the ten settings.
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Figure 22. CIFAR-10, 2 Classes, Number of Pulls of The Most Frequent Selection
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Figure 23. CIFAR-100, 10 Classes, Number of Pulls of The Most Frequent Selection
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Figure 24. SVHN, 2 Classes, Number of Pulls of The Most Frequent Selection
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Figure 25. ImageNet-1k, Number of Pulls of The Most Frequent Selection
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Figure 26. Kuzushiji-49, Number of Pulls of The Most Frequent Selection
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Figure 27. Caltech256, Number of Pulls of The Most Frequent Selection
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Figure 28. CelebA, Number of Pulls of The Most Frequent Selection
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Figure 29. COCO, Number of Pulls of The Most Frequent Selection
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Figure 30. VOC, Number of Pulls of The Most Frequent Selection
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Figure 31. Stanford Car, Number of Pulls of The Most Frequent Selection


