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Abstract
Following step-by-step procedures is an essen-
tial component of various activities carried out
by individuals in their everyday lives. These pro-
cedures serve as a guiding framework that helps
achieve goals efficiently, whether assembling fur-
niture or preparing a recipe. However, the com-
plexity and duration of procedural activities in-
herently increase the likelihood of making errors.
Understanding such procedural activities from a
sequence of frames is a challenging task that de-
mands an accurate interpretation of visual infor-
mation and an ability to reason about the structure
of the activity. To this end, we collected a new
ego-centric 4D dataset comprising 380 recordings
(90 hrs) of people performing recipes in kitchen
environments. This dataset consists of two dis-
tinct activity types: one in which participants ad-
here to the provided recipe instructions and an-
other where they deviate and induce errors. We
provide 5K step annotations and 10K fine-grained
action annotations for 20% of the collected data
and benchmark it on two tasks: error detection
and procedure learning. Our code and data can be
accessed from our website

1. Introduction
Remember when you prepared your favorite meal after a
long day and missed adding that crucial ingredient and then
lost your appetite after a few bites?

Such scenarios are quite common because performing long-
horizon step-by-step procedural activities increases the like-
lihood of making errors. These errors can be harmless, pro-
vided they can be rectified with little consequence. Nonethe-
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less, when the procedures in question pertain to the medical
field or complex chemical experiments, the cost of errors
can be substantial. Therefore, there is a pressing need for
building AI systems that can guide users in performing pro-
cedural activities (Draper, 2021).

A key problem that we need to solve in order to build such
AI systems is procedural activity understanding, a challeng-
ing and multi-faceted task that demands interpreting what
is happening, anticipating what will happen, and planning
the course of action to accomplish the goal. For a system to
interpret what is happening, the system needs to recognize
and segment actions while assessing the current state of the
environment. In order to anticipate future events, the sys-
tem should be able to predict actions at the beginning of an
interaction or even beforehand. On the other hand, planning
a sequence of actions requires the system to understand the
possible outcomes of these interactions.

We introduce a large-scale dataset to aid the learning of AI
systems capable of recognizing an error and anticipating
it before making an error during the performance of pro-
cedural activities. We selected cooking as a domain that
is sufficiently complex and encompasses different kinds of
errors that are compounding in nature and completely alter
the current state of the environment with no point of return.
We decided to capture data from an ego-centric view despite
ego motions because it helps minimize occlusions more
effectively than third-person videos.

This paper makes the following contributions:

1. We collected an ego-centric 4D dataset that features
individuals following recipes in kitchen settings. This
dataset includes two distinct types of activities: one
where the participants precisely follow the given recipe
guidelines, and another where they deviate, making
errors.

2. We provide annotations for (1) Start/End times for
each step of the recipe, (2) Start/End times for each
action/interaction for 20% of the collected data, (3)
Categorize and provide a detailed description of the
error performed by a participant (see figure 3, which
illustrates the key steps for a recording and the corre-
sponding step and action annotations).
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3. We provide baselines for two tasks, namely, error de-
tection and procedure learning.

2. Preliminaries
We describe the terms used in the subsequent sections. Fol-
lowing the terminology used in scientific disciplines such as
neuroscience (Chevignard et al., 2010) and chemistry, we
will refer to deviations from procedures as errors. Note that
the term “errors” used here are equivalent to what is com-
monly called “mistakes” in the AI community (c.f. (Fadime
Sener et al., 2022)). Following (Chevignard et al., 2010;
Finnanger et al., 2021; Fogel et al., 2020), we classified
common errors performed during a cooking activity into the
following categories (1) Preparation Error, (2) Measurement
Error, (3) Technique Error, (4) Timing Error, (5) Temper-
ature Error, (6) Missing Steps, and (7) Ordering Errors.
Figure 1 displays frames taken from different recipes in our
dataset, each corresponding to a distinct type of error as de-
scribed above. Further, the annotations in our dataset have
enabled us to gather a comprehensive overview of different
error types and their concise explanations, as depicted in
figure 2.

The term recording refers to the comprehensive 4D dataset
collected while a participant performs a cooking activity. A
recording is classified as a normal recording when obtained
while the participant precisely follows the recipe’s proce-
dure. Conversely, a recording is called an error recording
when it is captured while the individual deviates from the
recipe’s procedure, thereby inducing errors.

3. Related Work
Temporal Action Segmentation A video understanding
task where an untrimmed video sequence is segmented
and given a label from a predetermined set of action la-
bels. Procedural activity datasets, encompassing both
recorded datasets (such as Breakfast (Kuehne et al., 2014),
GTEA(Fathi et al., 2011), and 50Salads(Stein & McKenna,
2013)) and curated datasets (such as CrossTask(Zhukov
et al., 2019) and COIN(Tang et al., 2019), YouTubeInstruc-
tional()), have been instrumental in driving progress in the
field of temporal action segmentation.

Unfortunately, the datasets currently used for this task have
various shortcomings. For instance, apart from Assembly-
101, the other core datasets for the task, like Breakfast,
GTEA, and 50Salads, are relatively smaller and are char-
acterized by limited variations in the temporal order of the
steps performed to complete the procedure. Additionally, all
the datasets have shorter average lengths for the segments
related to each step in the procedure. Our dataset, with its
notable scale, combined with a wide range of temporal varia-
tions in the steps taken, effectively addresses the limitations

observed in existing datasets.

3D activity analysis On the other hand, the NTU RGB+D
(Shahroudy et al., 2016) dataset serves as a valuable bench-
mark for 3D action recognition, but its usage for procedural
activity understanding is limited. The Ego4D(Grauman
et al., 2021) dataset is a notable exception, offering a large-
scale 3D dataset with diverse variations. However, it is
constrained by a fixed camera position that captures depth
information, resulting in occlusions that hinder fine-grained
activity understanding. Multi-view datasets like Assembly-
101 (Fadime Sener et al., 2022) offer a compelling choice
but lack a depth component, thus limiting their usage here.

While several 3D activity analysis datasets are accessible,
it’s crucial to understand that they all possess constraints
when interpreting activities, specifically procedural activi-
ties. For instance, the MSR-Daily Activity dataset (Wang
et al., 2012) contains 320 samples of 16 daily activities and
has a limited sample size and fixed camera viewpoints. Sim-
ilarly, the RGBD HuDaAct dataset (Ni et al., 2011) includes
1189 videos and 12 daily human actions but lacks variety
in its scenarios. As for the G3D (Bloom et al., 2012) and
PKUMMD (Liu et al., 2017) datasets provide continuous
sequences but are limited to videos captured in a single
environment.

Our dataset stands unparalleled in its ability to surmount the
challenges presented by other 3D datasets when it comes
to procedural tasks. It’s worth mentioning that our dataset
features recordings that average 32 seconds per segment,
and we firmly believe that the 3D insights offered by this
dataset will catalyze remarkable progress in 3D activity
analysis as well as 3D action recognition.

Procedure Learning Procedure Learning is a two-part
process where all video frames are first segregated into
K significant steps. Then a logical sequence of the steps
necessary to complete the task is identified. Action segmen-
tation differs from procedure learning, which focuses on
segmenting actions without considering their relevance to
task completion; on the contrary, procedure learning aims to
find commonalities among the key steps needed to complete
the task captured in multiple videos. Existing procedu-
ral activity datasets like CrossTask (Zhukov et al., 2019),
COIN (Tang et al., 2019) are predominantly third-person
videos; in this light, (Bansal, Siddhant et al., 2022) com-
piled videos from CMU-MMAC (De la Torre et al., 2008),
EGTEA (Fathi et al., 2011), EPIC-Tents (Jang et al., 2019),
MECCANO (Ragusa et al., 2020) and curated EgoProceL
dataset.

We note that our dataset not only has a higher average step
length but also is significantly larger than the currently avail-
able datasets for Egocentric Procedure Learning. Through
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Figure 1. Each row displays frames captured from different recordings of recipes, highlighting both correct and erroneous executions,
with a focus on specific types of errors. The first row pertains to the recipe cucumber raita. The two frames on the left depict the outcome
when the instruction chop into pieces is correctly followed, while the three frames on the right show the results when the cucumber is cut
improperly, sliced vertically, and sliced horizontally, respectively. The second row corresponds to the recipe mug cake, where the two
frames on the left demonstrate the proper execution of the instruction Whisk batter, while the remaining frames depict incorrect usage of
utensils such as a spoon, tablespoon, and hand to perform the same task. The third row corresponds to the recipe scrambled eggs. The
left two frames exhibit the outcome of correctly following the instruction Peel 2 garlic cloves, whereas the subsequent frames display
the result when a different number of garlic cloves (4, 1, and 1 respectively) are peeled instead of the intended 2 cloves. The fourth row
represents the recipe blender banana pancakes, with the two frames on the left showing the result of following the instruction blitz for
20 seconds, while the remaining frames showcase the output when the blender is operated for a shorter duration. Finally, the fifth row
corresponds to the recipe tomato chutney, where the first two frames depict the outcome of the instruction pan over medium/low heat,
while the subsequent frames demonstrate the result when an incorrect temperature setting is used.

experimental evaluation, we show in 5.1 that average step
length indeed significantly hinders the performance of cur-
rently proposed approaches.

Error Recognition Given a video clip, error recognition
involves identifying errors present in the clip. This task
was initially introduced as mistake detection by Assembly-
101 (Fadime Sener et al., 2022) and proposed a 3-class
classification on the performed procedure to classify the
clip as either correct, mistake or correction. We also note
that (Soran et al., 2015) is one of the early works in similar
lines, where they send a notification every time they miss a
step when performing an activity. Anomaly detection, while
closely related to error recognition, differentiates itself by
utilizing static cameras and backgrounds to identify unusual
or abnormal behaviour.

By incorporating a wide range of error types, such as timing,
preparation, temperature, technique, and measurement er-
rors (please see figure. 2), our dataset allows researchers to
gain insights into error patterns across diverse contexts. This
analysis fosters the development of robust error recognition
systems and contributes to advancing the field of activity

analysis and performance improvement.

Error Anticipation Inspired by the action anticipation
proposed by (Damen et al., 2020), we propose a novel error
anticipation task that involves proactively identifying and
predicting errors before they occur during an activity. The
process of error anticipation entails recognizing the indica-
tive patterns that precede errors. Such early recognition
provides the opportunity for prompt intervention and cor-
rection, ultimately resulting in improved performance and
significantly fewer errors.

Error anticipation in activity analysis involves utilizing con-
textual cues, temporal patterns, and task-specific knowledge
to forecast potential errors accurately. Our dataset, which en-
compasses both normal and error recordings for each recipe,
enables researchers to design and develop algorithms that
can understand the current state of the environment and ana-
lyze implications for action with common-sense knowledge
leading to effective error anticipation techniques.
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Figure 2. A structured synopsis of different types of errors and their short descriptions compiled from the annotations.

4. Data Collection
Sensors In order to gather activity data, we employed
a combination of the GoPro Hero 11 camera, which was
mounted on the user’s head, and the Hololens2 device. To
facilitate data collection from the HoloLens2, including
its depth sensor, IMU (Inertial Measurement Unit), front
RGB camera, and microphone, we utilized a custom tool
developed by Dibene, Juan C. & Dunn, Enrique (2022).
Furthermore, we captured the processed head and hand
tracking information provided by the HoloLens2 device.

Recipes We curated a selection of 24 cooking recipes
sourced from WikiHow, specifically focusing on recipes
with a preparation time of 30 minutes or less. These recipes
encompassed a wide range of culinary traditions (see X-axis
of the chart in Fig. 3), showcasing the diversity of cooking

styles across various cuisines. Our primary objective was
to explore potential errors that may arise when utilizing
different cooking tools while preparing various types of
cuisine.

Task Graphs A task graph is a visual representation of
the sequential steps required to accomplish a given recipe.
Each node in the task graph (for a recipe) corresponds to a
step in a recipe and a directed edge between a node x and
a node y in the graph indicates that x must be performed
before y. Thus, a task graph is a directed acyclic graph,
and a topological sort over it represents a valid completion
of the recipe. In order to construct task graphs for our col-
lection of 24 WikiHow recipes, we meticulously identified
all the essential steps involved and established their inter-
dependencies, thereby establishing a topological order of
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Table 1. Comparing the datasets relevant for the respective tasks considered above
Ego Multi modal Year #Videos Hours Participants

GTEA Gaze+ (Fathi et al., 2011) ✓ RGB 2012 37 26
50 Salads (Stein & McKenna, 2013) × RGB-D 2013 50 4.5 25

Breakfast (Kuehne et al., 2014) × RGB 2014 1,712 77.0 52
MPII Cooking 2 (Rohrbach et al., 2015) × RGB 2015 273 27 30

YouCook2 (Zhou et al., 2017) × RGB 2017 2000 176 N.A.
EGTEA Gaze+ (egt, 2018) ✓ RGB 2018 86 29 32

CrossTask (Zhukov et al., 2019) × RGB 2019 4700 376 N.A.
COIN (Tang et al., 2019) × RGB 2019 11,827 476 N.A.

Assembly101 (Fadime Sener et al., 2022) ✓ RGB 2022 447 53.0 53

Ours ✓ RGB-D 2023 380 90 8

Figure 3. Figure describes key steps for a recording and the corresponding step and action annotations

tasks.

4.1. Protocol

Our dataset was compiled by eight participants across ten
distinct kitchens in the United States. Each participant se-
lected ten recipes and recorded, on average, 48 videos across
5 different kitchens. During filming, all participants were
required to ensure that they were alone in the kitchen and
remove any items that could potentially identify them, such
as personal portraits, mirrors, and smartwatches with por-
traits. The participants used a GoPro and a HoloLens2 to
record and monitor their footage.

Each participant was provided with a tablet-based recording
interface accessible through a web browser. This interface
facilitated the sorting of their recipe recordings into two
categories: standard and error. Furthermore, the recordings
were organized based on the specific kitchen setup. To
ensure optimal video quality, we asked the participants to
configure the GoPro camera such that it captures videos
in 4K resolution at 30 frames per second. Additionally,

the HoloLens2 device was programmed to stream RGB
frames at a resolution of 360p and depth frames using the
depth_ahat (Articulated Hand Tracking) mode.

4.1.1. NORMAL RECORDINGS

Each participant in the study is tasked with selecting a recipe
from the available options, which are scheduled within a
kitchen setup using the recording interface. Subsequently,
they are presented with one of the pre-established topolog-
ical orders of the recipe, as determined by the previously
constructed task graphs. Participants then proceed to follow
the provided task graph, commencing from the beginning
and progressing through each step in accordance with its
dependencies and designated timing.

4.1.2. ERROR RECORDINGS

We devised and implemented three strategies for the par-
ticipants to follow. Each participant was asked to pick his
recording strategy for a particular environment and was
accordingly guided in preparing for his recording. We
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Recipe # Steps # Normal
Recordings

Normal Rec
Duration(Hr)

# Error
Recordings

Error Rec
Duration(Hr)

Pinwheels 19 4 0.73 8 1.19
Tomato Mozzarella Salad 9 10 1.21 6 0.53
Butter Corn Cup 12 6 1.63 8 1.51
Tomato Chutney 19 7 3.34 8 2.01
Scrambled Eggs 23 6 1.99 10 3.13
Cucumber Raita 11 13 3.11 8 1.98
Zoodles 13 5 0.74 10 2.19
Microwave Egg Sandwich 12 7 0.88 12 1.67
Sauted Mushrooms 18 6 2.73 8 2.21
Blender Banana Pancakes 14 7 1.78 11 2.42
Herb Omelet with Fried Tomatoes 15 6 1.73 9 1.79
Broccoli Stir Fry 25 11 5.74 6 2.15
Pan Fried Tofu 19 8 3.38 7 2.31
Mug Cake 20 7 2.09 11 2.54
Cheese Pimiento 11 6 1.47 8 1.57
Spicy Tuna Avocado Wraps 17 7 1.70 11 2.66
Caprese Bruschetta 11 7 0.98 11 2.42
Dressed Up Meatballs 16 6 1.63 10 3.10
Microwave Mug Pizza 14 7 1.47 6 1.14
Ramen 15 9 2.10 7 1.45
Coffee 16 7 1.75 7 1.58
Breakfast Burritos 11 6 0.71 10 1.51
Spiced Hot Chocolate 7 6 0.70 10 1.01
Microwave French Toast 11 9 1.94 5 0.66

Ours (Total) 380 173 45.53 207 44.73

Table 2. Statistics for each recipe describe (1) the number of steps present, (2) the number of normal recordings present, (3) the total
duration of all the normal recordings, (4) the number of error recordings present, (5) the total duration of all the error recordings present

list the formulated strategies here (1) Pre-prepared error
scripts: The participants were given pre-prepared error
scripts with missing steps and ordering errors. (2) Prepare
error scripts: Once participants chose this strategy, they
were given a web-based interface to create an error script for
each error recipe recording and displayed the modified error
script on a tablet enabling participants to perform accord-
ing to their modified error scripts (3) Impromptu: During
the later stages of the recording process, we implemented
a strategy where participants were asked to induce errors
intentionally. Following the completion of each recording,
participants were given access to a web-based interface to
update any errors they made during each step. Figure 4
describes the counts of types of errors in each recipe.

4.2. Data Annotation

We have meticulously annotated the collected data with the
following annotations: (1) Annotations for coarse-grained
actions or steps, providing the start and end times for each
step within the recorded videos. (2) To support learning
semi/weakly supervised approaches for action recognition
and action anticipation, we have provided fine-grained ac-
tion annotations for 20% of the recorded data. These anno-
tations include the start and end times for each fine-grained
action. (3) We have also categorized and provided error

descriptions for the induced errors. These error descriptions
are associated with the corresponding step in the provided
annotations, allowing for a comprehensive understanding
of the errors. Figure 3 describes the granularity of different
categories of annotations provided.

To ensure high-quality annotations for our data, we used the
following approach. We ensured that each recording was
annotated by the person who recorded the video and then
reviewed by another. The reviewer was asked to double-
check that all errors made by the participant in the recording
are included in their corresponding step annotations.

4.2.1. COARSE-GRAINED ACTION/STEP ANNOTATIONS

We designed an interface for performing step annotations
in Label Studio 1. Each annotator is presented with this
interface to mark the start and end times for each step. Our
steps are significantly longer than a single fine-grained ac-
tion and encompass multiple fine-grained actions necessary
for performing the described step. For example, in order
to accomplish the step {Chop a tomato}, we include the
following (1) Pre-conditional actions of {opening refrigera-
tor, grabbing a polythene bag of tomatoes, taking a tomato,
placing the tomato on cutting board, close fridge} (2) Post-

1https://labelstud.io/
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Dataset Total Hours # Videos Avg Video Length (min) # Segments Avg # Segments Avg # Segments Length (sec)

50Salads 4.5 50 6.4 899 18 36.8
Breakfast 77 1712 2.3 11,300 6.6 15.1
Assembly 101 513 4321 7.1 104,759 24 16.5

Ours (Total) 90 380 15 5000 13.15 32.00

Table 3. Comparison of coarse-grained action/step annotations with relevant datasets

Figure 4. Distribution of error types and counts of different types
of errors performed for each recipe

conditional actions of {placing down the knife, grabbing
the polythene bag of tomatoes, open fridge and place the
bag in the fridge}. Table 4.1.2 summarizes and compares
coarse-grained action/step annotations for our dataset as
well as other popular datasets.

4.2.2. FINE-GRAINED ACTION ANNOTATIONS

Inspired by the pause-and-talk narrator (Damen et al., 2020),
we have designed and developed a web-based tool for fine-
grained action annotation that utilizes OpenAI’s Whisper
APIs for speech-to-text translation. Even though we have
built this system around the Whisper API, it’s flexible
enough to accommodate any automatic speech recognition
(ASR) system that can serve transcription requests. We will
release the developed web-based annotation tool as part of
our codebase.

4.3. Sources of bias

While this represents our first attempt at building a compre-
hensive 4D dataset to study mistakes in procedural tasks,

we acknowledge the dataset’s inherent biases. The num-
ber of participants contributing to this dataset is noticeably
smaller than conventional, large-scale action or activity un-
derstanding datasets. Yet, it’s important to mention that each
participant is asked to perform and record the same recipe
four times, and each time, the recording script changes, thus
making each recording unique. Finally, note that because
the participants followed a script, many errors were inten-
tional. However, they also made unintentional errors in the
process which they annotated later.

5. Baselines
5.1. Error Detection

As a baseline, we formulate the task of frame-level error
detection as anomaly detection. More specifically, we use
anomaly detection methods to classify each frame in each
video as either normal or abnormal, where the latter is de-
fined as an instance that deviates from the expected be-
havior (frame where participants made errors). We used
two self-supervised anomaly detection methods from lit-
erature, self-supervised masked convolutional transformer
block (SSMCTB) (Madan et al., 2022) and self-supervised
predictive convolutional attentive block (SSPCAB) (Ristea
et al., 2022), and trained them on top of ResNet-50 (He
et al., 2015), where the latter serves as a neural, image-
based feature extractor. Both models were trained using
reconstruction loss (Madan et al., 2022). We evaluated the
benchmark models using frame-level area under the curve
(AUC) and Equal Error Rate (EER) scores. Table 5.1 shows
the results. We observe that SSMCTB is slightly better than
SSPCAB.

Method AUC EER

SSMCTB(Madan et al., 2022) 50.86 % 49.43 %
SSPCAB(Ristea et al., 2022) 47.94 % 51.12 %

Table 4. Zero-Shot Error Detection using Anomaly Detection
Methods.

5.2. Procedure Learning

We chose recently proposed (Bansal, Siddhant et al., 2022)
for evaluating on our dataset. This approach uses a self-
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RECIPE CRL CRL+ CIDM0.1 CRL+ CIDM0.3 CRL+ CIDM0.5

P R IOU P R IOU P R IOU P R IOU
BlenderBananaPancakes 12.65 9.50 5.16 15.54 9.96 5.72 18.51 10.51 6.38 15.13 10.37 5.75
BreakfastBurritos 18.72 11.46 6.77 16.58 10.77 5.87 16.23 11.21 6.57 20.46 13.16 7.60
BroccoliStirFry 9.92 9.11 3.93 8.20 8.10 3.85 6.98 7.06 3.34 10.03 8.29 3.93
ButterCornCup 13.82 11.85 5.79 15.07 12.30 5.82 16.13 12.52 5.99 14.47 11.11 5.36
CapreseBruschetta 25.55 12.89 7.52 20.53 9.09 5.59 17.46 10.33 5.94 13.07 9.00 4.93
CheesePimiento 19.74 10.48 6.44 17.49 10.32 6.26 14.69 8.88 5.42 17.41 10.43 6.01
Coffee 13.68 9.91 5.49 15.76 10.25 5.63 16.80 11.12 5.92 16.33 11.05 6.03
CucumberRaita 13.58 7.92 5.14 16.15 9.97 6.09 10.44 7.17 4.17 15.85 8.82 5.53
DressedUpMeatballs 15.20 10.80 6.05 17.59 10.27 5.81 16.77 9.71 5.64 17.42 11.62 6.80
HerbOmelet 14.66 14.98 5.50 14.64 11.34 6.29 14.40 10.52 5.21 16.01 15.80 6.27
MicrowaveEggSandwich 16.25 10.44 6.16 19.16 11.29 6.99 15.93 11.00 6.34 21.43 12.31 7.37
MicrowaveFrenchToast 16.82 7.90 5.07 17.31 8.82 5.66 15.91 8.84 5.65 14.06 8.49 5.24
MicrowaveMugPizza 12.82 9.78 5.27 12.69 9.18 5.18 15.65 9.43 5.55 14.50 9.94 5.54
MugCake 16.12 12.95 6.87 10.32 8.85 4.40 10.86 9.63 4.83 13.69 10.80 5.70
PanFriedTofu 8.86 10.39 3.75 9.34 12.44 3.87 9.59 10.20 3.59 8.98 10.58 3.68
Pinwheels 13.58 11.96 5.92 16.08 13.06 7.05 11.72 10.22 4.76 17.07 11.89 6.32
Ramen 11.09 9.97 4.48 12.90 10.92 5.07 12.59 10.77 4.66 12.23 9.74 4.38
SautedMushrooms 15.06 12.22 6.16 19.54 13.83 7.42 19.08 11.61 6.25 19.54 13.82 7.42
ScrambledEggs 11.11 11.08 5.27 11.70 10.96 5.27 14.91 14.17 7.07 15.61 13.82 6.43
SpicedHotChocolate 29.82 10.58 8.49 29.79 11.04 8.74 28.57 13.61 9.95 29.56 9.79 7.87
SpicyTunaAvocadoWraps 15.62 10.52 5.67 12.47 9.61 5.25 18.95 10.18 5.55 14.81 10.38 5.58
TomatoChutney 12.25 10.68 5.42 12.25 10.68 5.42 14.69 11.44 5.71 13.64 10.17 5.23
TomatoMozzarellaSalad 19.77 10.21 6.01 19.20 10.48 5.96 16.01 9.22 5.26 20.80 9.01 5.43
Zoodles 18.32 12.80 6.37 18.32 12.80 6.37 19.60 15.70 7.34 15.54 13.48 5.41

Average 15.62 10.85 5.78 15.78 10.68 5.82 15.52 10.63 5.71 16.15 10.99 5.83

Table 5. Procedure Learning using CNC framework by (Bansal, Siddhant et al., 2022)

supervised Correspond and Cut (CnC) framework for pro-
cedure learning. We trained an embedder network using an
A-40 GPU and it took us 3 hours to complete the training
process. In Table 5.1, We present results on data corre-
sponding to three recipes sampled from our dataset. From
the obtained evaluation metrics of precision, recall and IoU
scores we did observe a significant drop in performance
compared to the results observed for all the other datasets
considered for evaluation in the paper.

6. Discussion
6.1. Summary

In this paper, we have introduced a large ego-centric dataset
for procedural activities. Our dataset consists of synchro-
nized egocentric views, audio and depth information specifi-
cally designed for tasks such as Temporal Action Segmenta-
tion, 3D activity analysis, Procedure Learning, Error Recog-
nition, Error Anticipation, and more. Additionally, we have
provided benchmarks for Error Detection and Procedure
Learning. Although existing methods have shown encour-

aging results, they still fail to effectively address these chal-
lenges with high precision, as evident from the oracle exper-
iments. This indicates the need for further exploration and
future research in this domain.

6.2. Limitations & Future Work

This research opens up several promising avenues for further
exploration and expansion in the field of error recognition
and activity analysis. First, an exciting direction for future
work is the extension of the dataset to include activities from
other domains. By incorporating tasks such as performing
chemical experiments or executing hardware-related activi-
ties (e.g., working with cars or computer parts), the dataset
can encompass a wider range of activities and provide in-
sights into error patterns in diverse real-world scenarios.
Second, the dataset can be used to compare and develop
methods for solving various tasks such as transfer learning
(e.g., training on Ego4D, Kinetics 101 and EPIC-Kitchens
and testing on our dataset), semantic role labeling, video
question answering, long video understanding, procedure
planning, improving task performance, reducing errors, etc.
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