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Abstract

Missing data is common in practice, and standard
statistical inference can be biased when missing-
ness is related to the outcome of interest. We
present a frequentist approach using a graphical
model and fractional imputation, which can han-
dle missing data for multivariate categorical vari-
ables under missing at random assumption. To
avoid the problem due to the curse of dimension-
ality in multivariate data, we adopt the idea of
a random forest to fit multiple reduced models
and then combine multiple models using model
weights. The model weights are computed from
the novel method, double projection, where the
observed likelihood is projected to the class of
a graphical mixture model. The performance of
the proposed method is investigated through an
extensive simulation study.

1. Introduction
Missing data are encountered in many scientific areas, in-
cluding survey sampling, social science, and clinical re-
search. It is widely known that improper handling of miss-
ing values may cause biased estimates or efficiency loss and
hinder rigorous statistical analysis. Imputation is a popular
approach to handle item nonresponse. When the data are
released to the public, by filling in the missing values using
imputation, different data users can obtain the same results.
Such consistency is particularly important for government
agencies that produce official statistics.

Different types of imputation methods have been developed,
including multiple imputation (MI) and fractional imputa-
tion (FI). MI, initially proposed by Rubin (2004), replaces
missing data with multiple plausible values to create sev-
eral datasets and has become a popular tool for addressing
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missing data. FI, originally proposed by Kalton & Kish
(1984), on the other hand, creates a single completed dataset
with additional information called fractional weights that
reflect the probabilities of the candidate imputed values. FI
has been developed further by Kim & Fuller (2004), Kim
(2011), She & Wu (2019) and Sang et al. (2022).

Early efforts in MI include using parametric models such
as multivariate normal distribution (Honaker et al., 2011).
MICE is a popular algorithm for imputing incomplete
datasets using chained equations with various regression
methods (Van Buuren & Groothuis-Oudshoorn, 2011).
More recently, state-of-the-art machine learning methods
have been proposed to address missing data based on genera-
tive adversarial networks (GAN, Yoon et al. (2018)) or deep
latent variable models (DLVM, Mattei & Frellsen (2019)).
While MI is a common practice for dealing with item nonre-
sponse, existing MI methods can be computationally inten-
sive, especially when the dataset is high-dimensional.

In this article, we are mainly interested in developing frac-
tional imputation with multivariate categorical data. In prac-
tice, many datasets contain various types of categorical
variables, and continuous variables can also be summarized
as categorical variables. For example, annual income can
be reported into several categories of income groups. In
developing fractional imputation for categorical data, the
main difficulty is to handle the curse of dimensionality prob-
lems associated with high-dimensional categorical variables.
Since the number of parameters increases exponentially
with increasing dimension, imputation of high-dimensional
categorical data remains challenging.

One remedy for such a problem is bagging, or ensemble
learning method, where multiple bootstrap samples are ex-
tracted from the data, and each sample is used to train a
separate model. The predictions from all fitted models are
then averaged to obtain the bagged prediction. Stekhoven &
Bühlmann (2012) proposed a seminal algorithm to employ
random forests for single imputation: missForest. Although
missForest can be applied to high-dimensional categorical
data, experimental studies show that missForest may yield
biased results when the missing pattern is nonmonotone,
where there is no nested missing pattern of missingness,
since the algorithm depends on the initial guess of missing
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values and incorporates sorting of the features according to
the missing proportions.

Unlike ordinary unweighted random forests, model averag-
ing combines predictions from multiple models by assigning
higher weights to the more reliable models. Recently, Xie
et al. (2021) applied multiple imputation sure independence
screening to the model averaging, particularly in the context
of high-dimensional data. Following Zhang et al. (2015)
and Rigollet (2012), our approach involves selecting model
weights by utilizing the Kullback-Leibler loss of the aggre-
gated estimator.

In this paper, we wish to fill this important research gap
by proposing the so-called ensemble fractional imputation
(EFI), where the “ensemble” means that we combine many
imputation models. In order to overcome the challenge as-
sociated with high dimensional data, we propose a novel
use of random forest where each tree uses a small subset
of the variables, and the selected subset of variables is con-
sidered to build the relationship in the tree. To combine the
multiple models efficiently, we apply information projection
innovatively and develop a double projection method.

2. Basic Setup
Let Y = (Y1, · · · , Yp) be a p-dimensional categorical ran-
dom vector with support Y . Define πy = P(Y = y) for
y ∈ Y such that

∑
y∈Y πy = 1. Random variables Y are

subject to missingness, and we assume an arbitrary pattern
of missing data so that the missing pattern can be nonmono-
tone. Let yi be the identical and independent i-th realization
of Y . Instead of observing yi, we only observe a subset
of yi = (yi,obs,yi,mis), where yi,obs and yi,mis are the ob-
served part and the missing part of yi, respectively. We
define the response indicator functions δi = (δi1, · · · , δip)
by

δij =

{
1 Yij is observed
0 otherwise

for i = 1, · · · , n. Since yi,mis is not observed, we can
develop fractional imputation using the conditional distri-
bution of yi,mis given yi,obs and δi. We assume that the
response mechanism is missing at random (MAR) in the
sense that the missing mechanism does not depend on the
missing variables after conditioning on the observed ones:
Ymis ⊥ δ | Yobs.

Define G(Y , δ) to be the mapping from Y to Yobs based
on δ. For each unit i with observed yi,obs = G(yi, δi),
fractional weights wiy are assigned to each possible value
of y ∈ Y . For categorical data, under MAR, the fractional
weight of unit i assigned to the imputed value of y is con-

structed by

wiy = P(Y = y | G(Y , δi) = yi,obs) (1)

where

P(Y = y | G(Y , δi) = yi,obs)

=
P(Y = y)I

{
G(Y , δi) = yi,obs

}∑
y∈Y P(Y = y)I

{
G(Y , δi) = yi,obs

}
for each i = 1, · · · , n and y ∈ Y , following Ibrahim (1990)
and Kim (2011). The fractional weight is the conditional
probability of missing part yi,mis, given the observed part
yi,obs. The fractional weights (1) satisfy∑

y∈Y
wiy = 1, i = 1, · · · , n,

and∑
y∈Y

wiyI
{
yj = k

}
= P

[
Yj = k | G(Y , δi) = yi,obs

]
for i = 1, · · · , n, δij = 0, and k ∈ Yj .

To compute the conditional probability in (1), we need to
estimate the joint probabilities πy = P(Y = y) from the
partial observations, where y ∈ Y . Suppose that the joint
probability under modelMk, k = 1, · · · ,K can be written
as

πy = πy(θk)

where θk is the model parameter for modelMk. The di-
mension of θk determines the level of sparsity in the model.
The observed log-likelihood function can be written as

lobs(θk) =

n∑
i=1

∑
d∈D(δi)

I(yi,obs = d) log{πd(θk)} (2)

where πd(θk) = P
{
G(Y , δi) = d;θk

}
=∑

{y∈Y} πy(θk)I{G(y, δi) = d} and D(δi) is the
support of yi,obs = G(Y , δi). To find the maximizer
of lobs(θk) in (2), we can use the EM algorithm of
Dempster et al. (1977). The details of the EM algorithm for
categorical data under the parametric model are elucidated
in the Appendix.

In practice, the true model is unknown. To find the best
model, we may use

AIC(k) = −2lobs(θ̂k) + 2pk (3)

to choose the best model, where θ̂k is the maximum like-
lihood estimator (MLE) of θk and pk is the dimension of
θk. The model with the smallest value of AIC(k) will be
chosen.
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Figure 1. Graphical Forest for Ensemble Fractional Imputation

If the dimension p of Y is large, then the computational
burden associated with the AIC can be huge. One cannot
compute the MLEs for all possible models and compare the
AIC for all possible models. It is a fundamental problem
associated with high-dimensional data.

To overcome the aforementioned issues, we propose an en-
semble model-averaging approach that attempts to integrate
multiple individual models under general missing mecha-
nisms that lead to improved prediction accuracy. The basic
idea of the proposed method is illustrated in Figure 1.

3. Double projection
In this study, we focus our attention on tree models. An
undirected graphical model, T = (V,E) with nodes V and
edges E, is a tree if it is connected and has no cycles. If a
probability measure P is Markov with respect to the tree T ,
P can be factorized as

P(y) =
∏
i∈V

P(yi)
∏

(i,j)∈E

P(yi, yj)
P(yi)P(yj)

. (4)

Expression (4) can be seen as a special case of the exponen-
tial graphical model or log-linear model (Loh & Wainwright,
2013). Given a finite set of samples, the maximum likeli-
hood estimator of a tree is the maximum weight spanning
tree that maximizes the sum of empirical mutual information
of the edges, as described by Chow & Liu (1968).

Consider a discrete probability measure P and a set of can-
didate tree models Tk : (V,Ek) characterized by an edge
Ek such that Ek ̸= Eℓ, ∀k ̸= ℓ. We define the mixture
graphical modelsM(P ) for a given distribution P :

M(P ) := Π
(
P | T1

)
+Π

(
P | T2

)
+ · · ·+Π

(
P | Tk

)
:=

{
ω1Π

(
P | T1

)
+ · · ·+ ωkΠ

(
P | Tk

)
: ωk ∈ Ω+

}

where Ω+ =
{
ωk :

∑K
k=1 ωk = 1, ωk ≥ 0

}
,

Π
(
P | Tk

)
= argmin

Q∈Tk

DKL(P | Q), (5)

and

DKL(P | Q) =
∑
y∈Y

P (y) log
P (y)

Q(y)

= EP

{
logP (Y )

}
− EP

{
logQ(Y )

}
is the Kullback-Leibler divergence which is the expectation
of the logarithmic difference between the probabilities P
and Q evaulated at P . Note that Qk = Π

(
P | Tk

)
is a

projection of P onto Tk in the sense that the KL divergence
of Q ∈ Tk evaluated at P is minimized at Qk. That is, Qk is
an element in Tk that approximates P as closely as possible
in terms of KL divergence.

Now, we are interested in finding an element inM(P ) that
approximate P as closely as possible. To achieve this goal,
we apply the projection of P ontoM(P ) indexed by ω. We
define the double-projection of P onto the mixture model
M(P ) as follows:

Π
(
P | M(P )

)
= argmin∑K

k=1 ωkQk∈M(P )

DKL

P |
K∑

k=1

ωkQk


(6)

= ω∗
1Q1 + · · ·+ ω∗

KQK ∈M(P )

Note that

f(ω) := −DKL

P |
K∑

k=1

ωkQk


=

∑
y∈Y

P (y) log

 K∑
k=1

ωkQk(y)

+ const (7)
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is a strictly convex function of ω and Ω+ ={
ω :

∑K
k=1 ωk = 1, ωk ≥ 0

}
is compact. Therefore, the

solution to (6) always exists and is unique. The choice of
weights via a Kullback-Leibler distance was first proposed
by Rigollet (2012). They aggregated a collection of fixed
components of function to achieve the performance of the
best model under a given class.
Lemma 3.1 (Hardy–Littlewood inequality). Suppose that
H(P,Q1) ≥ · · · ≥ H(P,Qk) where H(·, ·) is a cross
entropy defined by H(P,Q) := −

∑
y∈Y P (y) logQ(y). If

ω1 ≤ · · · ≤ ωk, the following rearrangement inequality
holds:

H

P,

K∑
k=1

ωkQk

 ≤ H

P,

K∑
k=1

ωkQσ(k)

 (8)

where σ(k) is a permutation of {1, · · · ,K}.

Lemma 3.1 implies that the solution to (6) preserves the
order of H(P,Qk). That is,

ω∗
1 ≤ ω∗

2 ≤ · · · ≤ ω∗
K

⇐⇒ H(P,Q1)≥H(P,Q2)≥ · · ·≥H(P,QK).

Furthermore, if Qk has a tree structure, as described by
(Chow & Liu, 1968),

DKL(P | Qk) = −
∑

(i,j)∈Ek

I(Yi, Yj)+
∑
i∈V

H(Yi)−H(Y )

(9)
where I(Yi, Yj) is the mutual information between Yi and
Yj , and H(Yi) and H(Y ) and the marginal and joint en-
tropies under P .

(8) and (9) imply that the followings are equivalent

ω∗
1 ≤ ω̂2 ≤ · · · ≤ ω∗

K

(8)⇐⇒ KL
(
P | Q1

)
≥ · · · ≥ KL

(
P | QK

)
(9)⇐⇒

∑
(i,j)∈E1

I(Yi, Yj) ≤ · · · ≤
∑

(i,j)∈EK

I(Yi, Yj)

In fact, by Jensen’s inequality, we have

KL

P |
K∑

k=1

ωkQk

 ≤ K∑
k=1

ωkKL(P | Qk) (10)

and the RHS of (10) is minimized when the probability mass
of ω is concentrated on the minimum KL(P | Qk).
Proposition 3.2. Let Ek ⊂ V × V be a singleton so that
|Ek| = 1. If P is a distribution of a tree model associated
with a tree T = (V,E), and ω∗ is the solution to (6), then

ω∗
k = 0 (11)

if Ek ̸⊂ E.

The proposition above states that the model weights are
sparse and can be nonzero only if the corresponding nodes
of the underlying tree model are connected. Indeed, as sup-
ported by simulation studies in Appendix, edges recovered
from double projection can be much sparser than the true
tree model T = (V,E).

Algorithm 1 Ensemble Fractional Imputation
Input: data yi and response indicator δi, i = 1, · · · , n.
1. EM algorithm
for k = 1 to K do

Construct a sparse tree model Tk.
Estimate θ̂k using the EM algorithm.

end for
2. Double projection
Estimate ω̂ = (ω̂1, · · · , ω̂K) by the Kullback-Leibler
aggregation. The estimated probability is

P̂(y) =
K∑

k=1

ω̂kP(y; θ̂k)

3. Fractional Imputation
for i = 1 to n do

for z = possible values of yi,mis do
wiz ← P̂

(
yi,mis = z | yi,obs

)
end for

end for

4. Proposed method
Our proposed method involves (1) preparing candidate mod-
els and estimating parameters from candidate models, (2)
computing model weights assigned to candidate models,
and (3) implementing fractional imputation from the aggre-
gated model. We first construct K different models, each of
which is a sparse tree model Tk = (V,Ek) whose parameter
estimation is computationally efficient. For example, Tk
can be constructed by selecting a fixed number of edges Ẽk

from all possible sets of edges and rejecting Ẽk if (V, Ẽk)
does not form a tree structure. We repeat random selection
until (V, Ẽk) is a tree and set Tk = (V, Ẽk). Let θk be the
parameter associated with the tree model Tk. Then θk can
be estimated by applying the EM algorithm independently
within each model Tk.

Once the estimators θ̂k are estimated from the EM algo-
rithm, we construct the model weights using double projec-
tion (6). If y1, · · · ,yn are fully observed, and P̂ denotes its
empirical distribution without missing values, we approxi-
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Figure 2. RMSE under nonmonotone MAR

Figure 3. Classification accuracy under nonmonotone MAR

mate (4) by double projection (6):

min
ω∈Ω+

D(P̂ | M(P̂ )) = max
ω∈Ω+

n∑
i=1

log

 K∑
k=1

ωkQ̂k(yi; θ̂k)

 ,

(12)
where Q̂k = Π

(
P̂ | Tk

)
and

Ω+ =

(ω1, · · · , ωK)
T :

K∑
k=1

ωk = 1, ωk ≥ 0

 .

(12) is related to the synthetic control method (Abadie et al.,
2010). (12) can be regarded as a special case of the maxi-
mum likelihood aggregate suggested by (Rigollet, 2012) if
Qk’s are fixed distributions.

When missing data are present, we first estimate θ̂k and
Q̂k = Π

(
P̂obs | Tk

)
using the EM algorithm. Then the

optimal model weights are computed by solving

ω̂ = argmax
ω∈Ω+

n∑
i=1

log

 K∑
k=1

ωkQ̂k(yi,obs; θ̂k)

 . (13)

The joint probability of Y is now approximated by Q̂ as
follows

Q̂(·) =
K∑

k=1

ω̂kQ̂k(·;θk).

One of the great advantages of the proposed method is that
the missing data pattern does not need to be MCAR and can
be MAR. The following theorem explains why the ensemble
method works in the MAR setup if the underlying tree model
is sparse. According to the theorem, the MAR condition
under the full model can imply the MAR condition under
the reduced model when the reduced model is true.
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Theorem 4.1. [MAR under the reduced model (Lemma 7.2.
in (Kim & Shao, 2021))] Suppose E ⊂ Ek(M⊂Mk) for
some k and the MAR condition holds in the sense that

Ymis ⊥ δ | Yobs

andMk selects Ak variables. That is,

Mk : P(Y ) = P(Y (Ak))
∏
j ̸∈Ak

P(Yj).

Then MAR condition holds underMk in the sense that

Ymis(Ak) ⊥ δ(Ak) | Yobs(Ak)

The idea of bootstrapping in random forests can still be
applied in the double projection. To control the estimation
error related to the double use of data when estimating θ̂k
and ω̂k, Chernozhukov et al. (2018) suggested the idea of
cross-fitting, where the sample is randomly divided into
two, and each of them is used to estimate different sets of
models to avoid the bias due to nonparameteric estimation
of the model parameters. Building on this idea, we first
take bootstrap samples and use them to estimate the model
parameters θ̂k. Then the model weights ω̂k are estimated
using the double projection, where its observed entropy is
estimated with the out-of-bag samples.

Ultimately, the parameter of interest, say p = P(Y (A) =
y0) for a subvector Y (A) := {Ya}a∈A, can be estimated
using the estimated model parameters θ̂ = (θ̂1, · · · θ̂K) and
the estimated mixture weights ω̂ = (ω̂1, · · · , ω̂K). We can
estimate p by

p̂ =
1

n

n∑
i=1

wiyI(y(A) = y0) (14)

where the fractional weights wiy are defined by

wiy =
Q̂(y)I{G(Y , δi) = yi,obs}∑

y∈Y Q̂(y)I{G(Y , δi) = yi,obs}
(15)

The entire algorithm of the Ensemble Fractional Imputation
is presented in Algorithm 1.

5. Real data experiments
5.1. Downstream tasks

The performance of the EFI method in downstream
tasks is assessed together with various machine learn-
ing algorithms. We consider the imputation of cat-
egorical datasets from the UCI Machine Learning
Repository: breast cancer, credit, car, and
congressional (voting record) datasets. Miss-
ing values are generated in the datasets by missing at ran-
dom(MAR). The results for MCAR case is available on the
Appendix. The missing rate varies from 5% to 45%.

For each realized sample, we apply the following methods
to estimate the parameters and impute missing values:

• (EFI) The proposed Ensemble Fractional Imputation
method. In each tree, [

√
p] number of variables(or

nodes) are randomly selected.

• (mode) mode imputation in which the missing values
are replaced with the sample mode

• (polyreg, pmm, cart, lda) MICE using the correspond-
ing regression methods. The imputation size is set to
M = 5.

• (missFst) missForest algorithm proposed by Stekhoven
& Bühlmann (2012).

The parameter of interest is the probability of a variable
equal to its mode and is computed from the population data
without missing values. The root mean squared error for the
parameter of interest and the classification accuracy of the
imputed values are evaluated.

5.2. Imputation performance

Figure 2 and Figure 3 demonstrate the influence of the
selected imputation method on the performance of down-
stream tasks. Each method is evaluated using various data
sets and across varying degrees of missing data. It can
be seen from the summarized figure that our proposed
Ensemble Fractional Imputation method gives better re-
sults when it comes to both estimation(RMSE) and predic-
tion(classification error). Table 5.1 and Table 5.1 show that
our proposed method provides the lowest RMSE and the
highest accuracy in many datasets. It is worth noticing that
mode imputation can perform as well as, or even better than,
other imputation methods for some categorical datasets.

5.3. Graphical Structure

We also considered the graphical interpretation after double
projection using congressional voting record
data, assuming that all values are observed. As we noticed
in Proposition 3.2, the aggregated forests are sparse, as the
estimated model weights are also sparse. Fine gray edges
are the collection of all edges of candidate trees, whereas the
colored edges are selected edges after the double projection.
Edges of identical colors represent that they are built from
the same tree. A variable of interest, party, is connected to
five nodes by eight edges.

6. Conclusion
We propose ensemble fractional imputation as a tool for
general-purpose estimation for multivariate categorical data
under item nonresponse. The basic idea is to use a weighted
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breast cancer credit car congressional
EFI 1.247(1.018) 0.724(0.685) 0.388(0.336) 1.235(0.880)

mode 0.987(0.990) 2.112(1.024) 0.416(0.397) 3.232(1.700)
polyreg 1.243(1.162) 0.804(0.788) 0.477(0.346) 0.982(0.747)

pmm 1.206(1.164) 0.774(0.776) 0.365(0.348) 0.885(0.885)
cart 1.202(1.134) 0.717(0.718) 0.332(0.319) 1.081(0.960)
lda 1.115(1.118) 1.939(0.619) 0.649(0.337) 0.909(0.852)

missF 1.810(1.689) 1.387(0.848) 1.957(1.463) 0.996(0.803)

Table 1. RMSE (and its standard error) of the imputation estimators over four datasets multiplied by 100 when the missing rate is 20%.

breast cancer credit car congressional
EFI 0.736(0.062) 0.835(0.029) 0.739(0.027) 0.904(0.044)

mode 0.712(0.053) 0.481(0.036) 0.708(0.024) 0.433(0.061)
polyreg 0.640(0.073) 0.783(0.033) 0.718(0.026) 0.901(0.039)

pmm 0.642(0.072) 0.785(0.031) 0.709(0.029) 0.897(0.046)
cart 0.643(0.068) 0.775(0.034) 0.726(0.030) 0.832(0.056)
lda 0.664(0.070) 0.819(0.027) 0.690(0.027) 0.894(0.044)

missF 0.661(0.079) 0.831(0.024) 0.754(0.035) 0.928(0.035)

Table 2. Classification accuracy (and its standard error) of the imputation estimators over four datasets when the missing rate is 20%.

Figure 4. Selected edges of congressional voting record data example.

random forest for prediction, and the model weights are
computed by the double projection. In each tree, the usual
EM algorithm and fractional imputation can be developed
easily using the selected variables only. The model weights
can be included to be a part of fractional weights in frac-
tional imputation. Once the ensemble fractional imputation
is established, users can use the fractionally imputed data
and estimate various parameters of interest without wor-
rying about the missingness mechanism. Unlike multiple
imputation, fractional imputation creates a single imputed
data file, and the resulting analysis is relatively simple.
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A. Appendix
A.1. EM algorithm

In the E-step, we compute

Q
(
θk | θ(t)

k

)
≡ E{lcom(θk) | yobs;θ

(t)
k },

where

lcom(θk) =

n∑
i=1

∑
y∈Y

I(yi = y) log{πy(θk)}.

Note that the E-step in the categorical data is simply computing

p
(t)
i (y) ≡ E{I(Y = y) | G(y, δi) = yi,obs;θ

(t)
k } (16)

= I
{
yobs,i = G(y, δi)

}
· P(Y = y | G(y, δi) = yi,obs;θ

(t)
k ),

where

P(Y = y | G(y, δi) = yi,obs;θ
(t)
k ) =

 πy(θ
(t)
k )∑

y∈Y πy(θ
(t)
k )I{G(y,δi)=yi,obs} if yi,obs = G(y, δi)

0 otherwise.

Using p
(t)
i (y) in (16), we obtain

Q
(
θk | θ(t)

k

)
=

∑
y∈Y

n∑
i=1

p
(t)
i (y) log{πy(θk)} =

∑
y∈Y

n(t)
c log{πy(θk)},

where n
(t)
c =

∑n
i=1 p

(t)
i (y). In the M-step, we update parameters by

θ
(t+1)
k ← argmax

θM
Q
(
θk | θ(t)

k

)
. (17)

Thus, in the M-step, we have only to replace nc by n
(t)
c in the formula for MLE of θk. We iterate the E-step and M-step

until convergence.

A.2. Proof of Theorem 4.1

Proof. Let Ac
k = {1, · · · , p} \Ak. The independence assumption(

Ymis(Ak),Yobs(Ak)
)
⊥

(
Ymis(A

c
k),Yobs(A

c
k)
)

implies

Ymis(Ak) ⊥ Yobs(A
c
k) | Yobs(Ak)

by weak union of CI (conditional independence). Furthermore, the MAR condition

Ymis(Ak) ⊥ δ(Ak) |
(
Yobs(Ak),Yobs(A

c
k)
)

implies

Ymis(Ak) ⊥ δ(Ak) | Yobs(Ak)

by contraction of CI.
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A.3. Extension to High-dimensional data

When Y is high-dimensional, aggregating different models to predict each component of Y can be unstable. If X is fully
observed and we are only interested in estimating Y whose dimension is relatively small, we can use the KL divergence
between the conditional distributions. Suppose that the joint probability of P(Z) = P(X,Y ) is known. We try to find the
model weights ω̂ that minimizes

E

KL

P(Y |X),

K∑
k=1

ωkP(Y |X(k))


 =

∑
X∈X

∑
Y ∈Y

P(X)P(Y |X) log
P(Y |X)∑K

k=1 ωkP(Y |X(k))
.

It follows that

ω̂ = argmax
ω∈Ω+

∑
X∈X

∑
Y ∈Y

P(X,Y ) log

 K∑
k=1

ωkP(Y |X(k))

 (18)

(18) motivates

ω̂ = argmax
ω∈Ω+

n∑
i=1

log

 K∑
k=1

ωkP(Yobs = yi,obs |Xobs = x
(k)
i,obs)

 (19)

As noted by Kirshner et al. (2004), we can write

E
[
KL

(
P(Y |X),P(Y |X(k))

)]
= −

∑
(i,j)∈Ek

I(Yi, Yj)−
∑

(i,j)∈Ek

I(Yi, Xj) +
∑
i∈V

H(Yi)−H(Y |X(k))

and develop a similar double projection as in the low-dimensional case.

A.4. Experiments under MCAR

breast cancer credit car congressional
EFI 1.246(1.213) 0.562(0.561) 0.691(0.380) 1.061(0.860)

mode 1.332(1.335) 1.025(1.029) 0.559(0.561) 1.448(1.455)
polyreg 1.493(1.402) 0.676(0.644) 0.424(0.348) 0.906(0.724)

pmm 1.435(1.402) 0.664(0.667) 0.427(0.424) 0.831(0.833)
cart 1.345(1.340) 0.664(0.663) 0.402(0.381) 0.941(0.945)
lda 1.349(1.354) 1.280(0.569) 0.874(0.377) 0.856(0.745)

missF 1.751(1.676) 1.158(0.970) 1.536(1.521) 0.796(0.742)

Table 3. RMSE (and its standard error) of the imputation estimators over four datasets multiplied by 100 when the missing rate is 20%.

breast cancer credit car congressional
EFI 0.728(0.060) 0.833(0.033) 0.760(0.025) 0.927(0.040)

mode 0.712(0.053) 0.550(0.041) 0.699(0.022) 0.533(0.063)
polyreg 0.627(0.069) 0.776(0.035) 0.746(0.023) 0.919(0.044)

pmm 0.629(0.053) 0.780(0.031) 0.726(0.024) 0.920(0.052)
cart 0.622(0.059) 0.769(0.037) 0.752(0.027) 0.891(0.043)
lda 0.659(0.060) 0.812(0.035) 0.719(0.025) 0.930(0.043)

missF 0.658(0.055) 0.833(0.031) 0.791(0.026) 0.951(0.032)

Table 4. Classification accuracy (and its standard error) of the imputation estimators over four datasets when the missing rate is 20%.
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Figure 5. RMSE under nonmonotone MCAR

Figure 6. Classification accuracy under nonmonotone MCAR

A.5. Further experiments

We conduct a further simulation study using synthetic data from the Ising model. The symmetric Ising model has the
probability mass function

fβ

(
x1, · · · , xp

)
=

1

z(β)
exp

∑
i<j

βijx
ixj

 , xi ∈ {−1, 1} (20)

where z(β) =
∑

x∈{−1,1}p exp
(∑

i<j βijx
ixj

)
. The sample size and the number of variables are chosen to be n = 500

and p = 10. The interaction βij = 1 if (i, j) = (1, 2), (1, 5), (2, 7), (3, 4), (3, 7), (3, 9), (5, 8), (5, 9), (6, 8), (6, 10) and
βij = 0 otherwise. It should be noted that (20) is not a tree model but still recovers the graphical structure after the double
projection, as can be seen in Figure 7 if all the possible models are included in the set of candidate models. Figure 8 is an
example of a recovered graph by applying EFI to a realized dataset under missingness. The missing mechanism is either
MCAR or MAR. Under MCAR, each variable Yij is missing with probability 0.5 independently. Under MAR, we randomly
choose κ from 1, 2, · · · , p = 10. If, say, κ = 7, then we observe Y7, Y8, Y9, Y10, and Y1. The missing rate δ2, δ3, δ4, δ5, δ6
of (Y2, Y3, Y4, Y5, Y6) given (Y7, Y8, Y9, Y10, Y1) is determined by

P (δ2 = 1|Y7) =

{
0 if Y7 = −1
0.5 if Y7 = 1

, · · · , P (δ6 = 1|Y1) =

{
0 if Y1 = −1
0.5 if Y1 = 1
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Figure 7. True graphical model that generates Y Figure 8. Graphical model estimated by EFI

The parameter of interest is θ1 = P(Y1 = Y2 = Y4 = Y5 = −1), θ2 = P(Y1 = −1, Y2 = 1), and θ3 = P(Y1 = 1, Y6 =
−1). The simulation results are summarized in Table 5 and Table 6.

θ1
BIAS SE RMSE

Full(Oracle) 0.0009 0.0130 0.0130
CC 0.0088 0.0481 0.0489

MICE(pmm) 0.0002 0.0170 0.0170
missFst 0.0052 0.0448 0.0451

EFI -0.0100 0.0118 0.0154

θ2
BIAS SE RMSE

Full(Oracle) 0.0011 0.0207 0.0207
CC -0.0056 0.0349 0.0353

MICE(pmm) -0.0055 0.0330 0.0334
missFst -0.0197 0.0749 0.0775

EFI 0.0175 0.0258 0.0312

θ3
BIAS SE RMSE

Full(Oracle) 0.0007 0.0172 0.0172
CC 0.0007 0.0347 0.0347

MICE(pmm) 0.0000 0.0266 0.0266
missFst -0.0173 0.0717 0.0738

EFI 0.0234 0.0234 0.0330

Table 5. MCAR, P(δ = 0) = 0.5

θ1
BIAS SE RMSE

Full(Oracle) -0.0011 0.0124 0.0124
CC -0.0083 0.0216 0.0231

MICE(pmm) -0.0020 0.0144 0.0145
missFst 0.0058 0.0238 0.0245

EFI -0.0084 0.0118 0.0144

θ2
BIAS SE RMSE

Full(Oracle) 0.0032 0.0187 0.0190
CC -0.0101 0.0245 0.0265

MICE(pmm) 0.0036 0.0223 0.0225
missFst -0.0067 0.0322 0.0329

EFI 0.0126 0.0222 0.0256

θ3
BIAS SE RMSE

Full(Oracle) -0.0037 0.0174 0.0178
CC -0.0017 0.0233 0.0233

MICE(pmm) -0.0018 0.0214 0.0215
missFst -0.0278 0.0333 0.0434

EFI 0.0124 0.0204 0.0239

Table 6. MAR, P(δ = 0) = 0.5

12


