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Abstract

Over recent years, an increasing amount of com-
pute and data has been poured into training large
language models (LLMs), usually by doing one-
pass learning on as many tokens as possible ran-
domly selected from large-scale web corpora.
While training on ever-larger portions of the in-
ternet leads to consistent performance improve-
ments, the size of these improvements diminishes
with scale, and there has been little work explor-
ing the effect of data selection on pre-training
and downstream performance beyond simple de-
duplication methods such as MinHash. Here, we
show that careful data selection (on top of de-
duplicated data) via pre-trained model embed-
dings can speed up training (20% efficiency gains)
and improves average downstream accuracy on
16 NLP tasks (up to 2%) at the 6.7B model scale.
Furthermore, we show that repeating data intelli-
gently consistently outperforms baseline training
(while repeating random data performs worse than
baseline training). Our results indicate that clever
data selection can significantly improve LLM pre-
training, calls into question the common practice
of training for a single epoch on as much data
as possible, and demonstrates a path to keep im-
proving our models past the limits of randomly
sampling web data.

1. Introduction
Due to computational limits, initial work on language model
pre-training focused on training models on small, high-
quality text datasets such as BookCorpus (Zhu et al., 2015)
and Wikipedia (Merity et al., 2016). More recently, however,
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catalyzed by works like (Radford et al., 2019), advance-
ments in large language models (LLMs) have been driven
by leveraging large collections of unlabeled, uncurated data
derived from snapshots of the internet (CommonCrawl (Raf-
fel et al., 2020; Gao et al., 2020; Penedo et al.)), trading off
small quantities of heavily-curated data for huge quantities
of less-curated data. Because of the dramatic increase in
data quantity, these strategies have resulted in higher perfor-
mance models and have sparked a new paradigm wherein
massive, largely unfiltered datasets are utilized for training
(Chowdhery et al., 2022; Touvron et al., 2023; Smith et al.,
2022).

Despite the essential role that large-scale web data now play
in LM pre-training, data curation and selection for large-
scale web data have not been thoroughly explored. This is
primarily due to the universality of compute and data scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022) which
give practitioners a low-risk way to reliably improve LM
performance by merely adding “more” data, not necessarily
the “right” data. Indeed, the data selection method used to
model scaling laws (along with the data selection methods
used in most LLM pre-training pipelines) involves simply
randomly sampling tokens from web data dumps that have
been put through a combination of simple heuristic filtering
(e.g., to eliminate very short strings) and very near match
de-duplication (Lee et al., 2021).

If we continue relying on scaling laws to improve LLMs,
we will quickly hit diminishing returns due to the power-law
nature of scaling laws. We will therefore need exponentially
more data to maintain a consistent marginal improvement,
which may prove especially challenging as we are fast ap-
proaching the limits of available human-generated text data
(Villalobos et al., 2022). Encouragingly, in the context of
vision, Sorscher et al. (2022) demonstrated that we could
leverage simple data selection strategies to overcome costly
power-law scaling. They compare numerous data selection
methods and find that clustering data points in a pre-trained
embedding space and ranking according to the distance
to the cluster centroid (”SSL Prototypes”) significantly im-
proves the data efficiency of vision models. Recently, Abbas
et al. (2023) demonstrated that using a pre-trained embed-
ding space to de-duplicate data (”SemDeDup”) improves
both efficiency and performance of vision-language models
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Figure 1. Learning curves for 6.7B OPT model pretraining on 100B tokens, with data selected with D4 (pink line) and randomly (gray
line). D4 significantly outperforms baseline training, getting between 18-20% efficiency gains on validation perplexity and 2% increase in
average 0-shot downstream accuracy across 16 NLP tasks. See Section A.2 for full learning curves.

such as CLIP. However, there has been little exploration
of these or related approaches in training LLMs at scale.
Motivated by this, we argue that by combining these ap-
proaches and applying them to LLMs, relatively simple
data selection strategies leveraging pre-trained embeddings
can significantly improve LLM training. Specifically, our
contributions are as follows:

• We investigate different data selection strategies for
standard LLM pre-training setups where data has al-
ready been manually filtered / de-duplicated (e.g., Min-
Hash), and where we do not know the target distribu-
tion for which we optimize performance. We argue
that the performance of current methods such as SSL
Prototypes and SemDeDup are affected by duplicate-
driven clusters in the embedding space. In Section 2.4
we propose a new data selection strategy D4 to avoid
getting impacted by such clusters.

• In Section 3.1, we show that in the compute-limited
regime where we have “infinite” source data and train
models with fixed token budgets, we can achieve better
pre-training perplexity and downstream accuracy than
random iid data selection and previously established
methods. Furthermore, we show that our method D4
can achieve around 20% efficiency gains at the 6.7b
model scale, and that the magnitude of efficiency gains
increases with model scale.

• In the data-limited regime, where we run out of data
and must epoch over data, cleverly choosing what data
to repeat can beat training on randomly selected new
data, whereas randomly choosing data to repeat under-
performs adding new data (Section 3.2). This calls into
question the standard practice of single epoch LLM

training, and suggests that epoching over intelligently
subselected data might be a better approach.

2. Experimental Setup
Notation Given a source dataset, Dsource, of documents
and model architecture, M , we aim to find a data selec-
tion strategy S that maximizes some evaluation metric
E(M(DS,R)). R indicates the proportion of remaining
documents from the source dataset Dsource after select-
ing data with strategy S. For this reason, we refer to R
throughout this work as the selection ratio: for example,
if R = 0.25 and |Dsource| = 100 million, then we select
25% of documents from a source dataset of size 100M doc-
uments to arrive at a a training dataset with 25M documents.
Throughout the paper, we use random selection as the base-
line for S, as it is the most common method for selecting
data for language model pre-training. In the rest of this sec-
tion, we describe our choices of source dataset (Dsource),
model (M ), evaluation metric (E), and, most importantly,
our suggestions for the selection strategy (S).

2.1. Training Dataset (choice for Dsource)

We perform all of our training runs on a version of Common-
Crawl pre-processed with a CCNet (Wenzek et al., 2019)
pipeline identical to the one used by Touvron et al. (2023).
We add an additional step of MinHash-based de-duplication
(see more details in Section A.1). Applying this common
step before our experiments guarantees that any effects ob-
served in our experiments complement the currently preva-
lent approach of MinHash-based data de-duplication strate-
gies. Throughout the rest of this work, we refer to this
dataset as CC-dedup.
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2.2. Model Training (choices for M and Ttarget)

To evaluate different configurations of data selection strate-
gies, we train OPT (Zhang et al., 2022) models from scratch
on the pruned versions of datasets. We use the standard
model architectures and settings of Zhang et al. (2022) and
use MetaSeq (Zhang et al., 2022) to train all our mod-
els. For 125M models, we train to Ttarget = 3B to-
kens. For 1.3B OPT models, we train to target token count
of Ttarget = 40B. For 6.7B OPT models, we train to
Ttarget = 100B tokens. We choose these trimming down
the token budgets suggested by Hoffmann et al. (2022) to
meet our compute limitations. We provide full details of our
training setup in Section A.1.

2.3. Evaluation Metrics (choices for E)

We keep most of our evaluation consistent with the setup
from Zhang et al. (2022).

Validation Set Perplexity. Our validation sets mainly come
from from (Zhang et al., 2022), which includes validation
sets derived from subsets of the Pile (Gao et al., 2020)
such as CommonCrawl, DM Mathematics, HackerNews,
OpenSubtitles, OpenWebText2, Project Gutenberg, USPTO,
Wikipedia, and PushShift.io Reddit (Baumgartner et al.,
2020) (which we refer to as redditflattened). In addition,
we measure perplexity on a validation set obtained from a
train-validation split of our source dataset CC-dedup, and a
validation set from C4 (Raffel et al., 2020).

We notice that the effects of data selection vary significantly
on individual validation sets depending on whether the vali-
dation set was derived from a web data corpus or not (see
more details and analysis in Section 3.4.1). Motivated by
this, we split validation sets into Web-snapshots (C4, Com-
monCrawl, and CC-dedup) and Non-web snapshots, and
report average perplexity within these sets.

Downstream Task Accuracy. To evaluate downstream per-
formance of our trained models, we report average 0-shot
accuracy across the 16 NLP tasks from Zhang et al. (2022),
and use a prompting methodology consistent with Zhang
et al. (2022). These set of 16 NLP tasks include Arc Chal-
lenge and ArcEasy (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA
(Bisk et al., 2020), StoryCloze (Mostafazadeh et al., 2016),
Winograd (Levesque et al., 2012), Winogrande (Sakaguchi
et al., 2021), as well as tasks from SuperGLUE (Wang et al.,
2019). We refer the reader to Zhang et al. (2022) for more
information about this evaluation setup.

Instruction Tuning Perplexity. The evaluation mentioned
above metrics presents an inherent trade-off. Though ac-
curacy on downstream tasks is typically viewed as a more
concrete representation of a language model’s real-world
value, its variance tends to be higher due to the limited num-

ber of examples in these tasks and the step-wise behavior
of accuracy as a metric. In contrast, perplexity, as a met-
ric, is smoother while still exhibiting a strong correlation
with performance (Schaeffer et al., 2023). Therefore as
a middle ground between the two evaluation metrics, we
propose evaluating the perplexity on a sample drawn from
the instruction-tuning dataset used for fine-tuning OPT-IML
(Iyer et al., 2022). This dataset spans over 1500 unique
NLP tasks and comprises a wide array of prompt-answer
pairs and therefore is representative of the average NLP
task. It has been carefully crafted by merging extensive
task collections such as Super-NaturalInstructions (Wang
et al., 2022) and PromptSource (Bach et al., 2022). We refer
the reader to Table 2.1 in (Iyer et al., 2022) for a compre-
hensive breakdown. This approach allows us to balance
practical performance measures and statistical consistency
in evaluation.

2.4. Data Selection Strategies (choices for S)

We focus our efforts on data selection strategies that use
pre-trained model embeddings to select data due to their
recent success in data pruning in vision and vision-language
models (Abbas et al., 2023; Sorscher et al., 2022). We
embed each document by feeding it into a 125M OPT model
and use the last-layer embedding of the last token. All
methods described below manipulate data points based on
these embeddings.

SemDeDup: Abbas et al. (2023) proposed de-duplicating
in both text and image domains by first using K-Means to
cluster the embedding space, and removing points in each
cluster that are within epsilon-balls of one another. We
use this algorithm without any modifications and refer the
reader to Abbas et al. (2023) for implementation details of
this algorithm.

Prototypicality: Sorscher et al. (2022) investigated a large
variety of data pruning strategies to improve the data effi-
ciency of training image classification models, including a
newly introduced ”SSL Prototypes” metric that proved to be
one of their best methods. This strategy involves first clus-
tering the embedding space using k-means clustering and
discarding data points in increasing order of their distance to
the nearest cluster centroid, such that the most ”prototypical”
data points are discarded, enriching the much higher vari-
ance outliers. We refer the reader to Sorscher et al. (2022)
for a more detailed description of this algorithm.

Both methods heavily rely on the quality of the clustering of
the embedding space. Upon qualitatively analyzing our em-
bedding space, we find many instances of duplicate-driven
clusters: clusters of templated text or extremely semanti-
cally redundant information (see Section A.5 for examples)
that were not removed by MinHash. These regions of em-
bedding space tend to be very dense and cause k-means to
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waste valuable cluster assignments on duplicated text. This
biased clustering is also likely to impact the effectiveness of
SSL Prototypes since many clusters will be entirely driven
by duplicates. This insight leads us to the motivation behind
our proposed strategy:

1. Apply SemDeDup with an overhead ratio Rdedup, pro-
ducing a dataset D′

2. Re-cluster points in D′ with K-Means

3. Apply SSL Prototypes on D′, with an overhead ratio
Rproto

The above-described strategy has an overall ratio of R =
Rdedup ∗Rproto and intends to diversify the distribution of
our data locally and globally. For brevity we refer to this
method as D4, a shorthand for Document De-Duplication
and Diversification. Throughout this work, we choose
Rdedup = 0.75 and vary Rproto (we discuss this choice
in detail in Section A.1). In Section 3, we compare the
performance of D4 to baseline training and other methods,
and in Section 3.4 we analyze D4 and show that reclustering
after semantic de-duplication indeed reduces the impact of
duplicate-driven clusters (see Figure 7).

3. Results
3.1. Fixed compute regime: can data selection help on

fixed token budgets?

In this section, we consider the fixed compute setting, where
we curate and train on a fixed token budget by jointly increas-
ing the size of the source dataset Dsource and decreasing R
(the fraction of the Dsource which is selected), such that the
target token budget remains constant. This setting is analo-
gous to the most common paradigm for LLM training. As
Dsource grows and R decreases, we select from larger and
larger initial datasets, resulting in a larger set of high-quality
data points to select from and increasing the overall quality
of the selected set. For clarity, we plot performance as a
function of the ratio of the Dsource to Dtarget. For each set-
ting, we evaluate the performance of a baseline, SemDeDup
alone, SSL Prototypes alone, and our proposed method D4.

Validation Perplexity. In Figure 2, we show that a rela-
tively small amount of data selection using any of the three
methods (small R) brings consistent improvements on all
validation sets. However, as we increase R, we observe
opposing effects on web snapshot and non-web-snapshots
validation sets. We analyze this discrepancy in-depth in Sec-
tion 3.4. However, on the Instruct OPT validation set, which
corresponds much more closely to the the high-quality gen-
erations we want our LLMs to achieve, we found that all
three methods led to consistent and clear perplexity im-
provements. Notably, we found that while all three methods

provided benefits, D4 outperformed using both SemDeDup
and SSL Prototypes independently, with the most notable
gains exhibited when the source dataset is around 4x the
target dataset size. Given that D4 consistently improves
with source dataset size, we estimate this gap to grow with
source dataset size.

Downstream Task Accuracy. In Figure 2, we also re-
port 0-shot downstream accuracy averaged across a suite
of NLP tasks. While the high variance of downstream ac-
curacy makes it challenging to identify clear trends in the
performance of various models, we again observe that 0-
shot downstream accuracy generally increases with source
dataset size.

Our findings also hold at larger model scales. We pick our
best-performing configuration from 1.3B OPT experiments
(e.g., R = 0.25) and train 6.7B OPT models on 100B to-
kens. Figure 1 shows the positive effects of applying D4
with R = 0.25 for a 6.7B model. The model trained on
the pruned data reaches the same perplexity as the base-
line model using 20% fewer update steps on average and
achieves a 2% improvement in accuracy on our suite of
downstream tasks at the end of the training - about as much
difference as was reported by Zhang et al. (2022) between
the OPT and GPT-3 family of models on the same set of
tasks (See Figure 3 of Zhang et al. (2022)).
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Figure 2. Comparison of data selection methods on validation per-
plexity. Each point denotes a 1.3B OPT model trained on 40B
tokens. The x-axis denotes the size of the source dataset from
which data is selected to achieve 40B tokens. The y-axis for
the top 2 and right bottom graph depicts perplexity; the bottom
left graph is average downstream on 16 NLP tasks from Zhang
et al. (2022). The grey line denotes the value for baseline training.
Shaded error is standard error across 3 seeds.
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3.2. Fixed data regime: what happens when we run out
of data?

The results in Section 3.1 indicate that, given a fixed amount
of compute for training, selecting data from larger and larger
source datasets is a promising method to improve language
model performance. However, there is a practical limit to
how much data can be curated from the web and, therefore, a
natural limit to the size of the source dataset. What happens
when we run out of data? Hernandez et al. (2022) found
and analyzed disproportionately adverse effects of repeated
data points in the training data. Similarly, concurrently to
our work Muennighoff et al. (2023) shows that test loss
deteriorates when epoching over a random subset of C4
more than four times. In this section, we investigate how
the use of D4 affects model performance in this limited data,
multi-epoch setting.

To test this, we assume a fixed token budget and a fixed data
size which matches the token budget. We evaluate training
on all the data as well as for two epochs on subsets of the
data selected either randomly or using D4. We trained 1.3B
parameter OPT models on these configurations and report
average perplexity in Table 1. Unsurprisingly, epoching over
a randomly selected subset of the data instead of using all
the available data once leads to a slight degradation in model
perplexity. In contrast, repeating data selected by D4 leads
to an improvement in perplexity and downstream accuracy
over randomly sampling new tokens. In other words, it is
beneficial to select data via D4 and epoch 2 times, instead
of doing one-pass learning on all available data. As seen in
Figure 3, this finding generally holds across training as well.
We refer to Section A.7 for results across model scale and
data selection ratio.

To the best of our knowledge, this is the first result to demon-
strate the benefits of repeating data for LLMs over randomly
sampling new tokens via a principled data selection tech-
nique. We argue that the optimal way of using large-scale
web data to pre-train LLMs could be: strategically choose a
significantly smaller but better-distributed subset of the data
and epoch over it multiple times.

3.3. Cost of data selection

In Section 3.1, we find that by training a 6.7B parameter
model on data selected by D4, we reach the final perplexity
of a baseline model using 20% fewer model updates. In our
particular setup, this translates to saving approximately
4300 GPU hours. To demonstrate our method’s practicality,
we must ensure the cost of selecting data is significantly less
than this. As described in Section 2.4, selecting data via
D4 involves: first, embedding documents via a 125M OPT
model; second, computing K-Means indices + distance to
indices.
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OPT perplexity. The blue line denotes the raw efficiency gain. The
orange line denotes the overall efficiency gain, considering the
compute necessary to apply D4 at R = 0.25.

The first step is completed on a single machine with 96 CPU
cores in approximately one day. Given the two orders of
magnitude difference between the prices of CPU and GPU
cores 1, we consider this cost negligible. For the second step,
embedding 400B tokens with a 125M parameter model takes
approximately 888 GPU hours, using the same A100 GPUs.
Comparing this with the 4300 GPU hours savings, we can
conclude that D4 saves thousands of GPU-hours for models
at the 6.7B scale. In Figure 4, we redo this calculation
for different model sizes and we see that demonstrate that
overall efficiency gain increases with model size. Based on
this, we can conservatively 2 estimate that D4 would have
overall efficiency gains of 20% for LLama-65B (Touvron

1Source: https://aws.amazon.com/ec2/pricing/
on-demand/

2e.g. assuming 20% naive efficiency gains continue, although
this is an underestimate since naive efficiency gains increase with
model size as seen in Figure 4
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S Ttotal Tselected Epochs Non-Web Snapshot PPL Instruct PPL

Random 40B 40B 1 16.27± 0.012 14.19± 0.003
40B 20B 2 16.39± 0.011 (+0.12) 14.37± 0.015 (+0.18)

D4 40B 20B 2 16.10 ± 0.024 (-0.17) 13.85 ± 0.016 (−0.34)

Table 1. For fixed data selection method and source dataset size, we compare the effects of choosing new tokens or repeating token.. All
models are 1.3B OPT models trained on 40B tokens. Tselected denotes the number of tokens selected from the source dataset. The top
row denotes baseline training. Mean and standard error across 3 seeds are shown. Surprisingly, cleverly choosing tokens to repeat via D4
outperforms randomly selecting new tokens.

et al., 2023) and 22% for OPT-175B (Zhang et al., 2022).

3.4. Analysis of D4

3.4.1. WHY DOES DATA SELECTION HURT
PERFORMANCE ON WEB SNAPSHOTS?

While we observe consistent average perplexity improve-
ments, Section A.3 demonstrates that this perplexity im-
provement varies greatly across validation sets. More impor-
tantly, data selection always impairs performance on web
snapshot validation sets such as CC-dedup, CommonCrawl,
and C4. To investigate why this occurs, we embed each
validation set into the same embedding space as the training
set and search for the nearest neighbors to validation points
in the training set for our 1.3B baseline model. In the left
plot of Figure 5, we show that validation sets derived from
the web are substantially closer to training set compared to
validation sets derived independently of the web. The right
plot of Figure 5 shows that data selection disproportion-
ately affects web-derived validation sets. In the top-right
plot, we see that web validation sets reside in regions of the
embedding space which are sparsified as a result of data
selection (e.g. regions of space close to cluster centroids in
the training set), and in the bottom-right plot we see that
these points are also the most affected by data selection,
since their perplexity after data selection significantly in-
creases. Moreover, the middle-right plot shows that these
validation points have the lowest perplexity before pruning
indicating that these points are ”easy” points, perhaps due
to their proximity to the training set.

Given that some of our validation sets are extremely close
to the training set, we question whether they are still strong
indicators of generalization. In fact, in Figure 6, we find
evidence of a slight inverse relationship between perplexity
on web snapshots and more robust indicators of LM ability,
such as perplexity on instruction-tuned datasets and down-
stream accuracy. In contrast, we observe that perplexity on
Instruct-OPT is positively correlated with downstream ac-
curacy, suggesting that validation perplexity on instruction
tuned data is a better measure of model quality. For this
reason, we group most of our results in Section 3 into Web
Snapshots and Non-web Snapshots.

3.4.2. IMPORTANCE OF RE-CLUSTERING BETWEEN
SEMDEDUP AND SSL PROTOTYPES

As mentioned in Section 2.4, we hypothesize that sparsify-
ing dense regions of space containing excessive semantic
duplicates improves the clustering quality and is, therefore,
critical to the performance of D4. To isolate the effect of
re-clustering on D4, we run experiments with a version of
D4 where we remove the re-clustering step (e.g. we keep
the original clustering). As shown in Figure 7, omitting the
re-clustering step significantly worsens performance, and
we observe in the rightmost plot of Figure 7 that SemDeDup
indeed removes extremely dense clusters surrounding cen-
troids (e.g. duplicate-driven clusters). We analyze this in
more depth in Section A.5.

4. Related Work
Data selection in non-text domains: Numerous works have
successfully used data selection techniques in vision models
(Paul et al., 2021; Meding et al., 2021; Chitta et al., 2021;
Toneva et al., 2018; Birodkar et al., 2019; Mindermann et al.,
2022; Jiang et al., 2019), though these have largely been at
sub-ImageNet scale. Some of these works develop pruning
metrics that score individual data points (for example, EL2N
from Paul et al. (2021)), while some focus on data-efficiency
and attempt to find groups of points that allow models to
reach baseline performance with less data points, e.g., core-
sets (Sener & Savarese, 2017; Cazenavette et al., 2022; Zhao
et al., 2020; Mirzasoleiman et al., 2020). Sorscher et al.
(2022) compares many of the existing individual-score meth-
ods at ImageNet scale, finding that their SSL prototypes met-
rics and the (prohibitively expensive) memorization metric
from Feldman & Zhang (2020) generally outperforms other
methods. More recently, Abbas et al. (2023) demonstrated
very encouraging results on vision-language models (CLIP
models) using SemDeDup — a similar method to SSL pro-
totypes but focused on semantic deduplication. Our work
combines these approaches and applies them to large-scale
LLMs.

Effect of pre-training data on LM performance: Gao
et al. (2020) trains variants of GPT-2 (Radford et al.,
2019) models from scratch to compare the ”Pile” dataset
to CommonCrawl-derived corpora. Radford et al. (2019)
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Figure 5. Left: Train-test similarity across validation sets. X-axis denotes the name of the validation set (refer to Section 2.4 for more
information about each validation set), and y-axis denotes the cosine distance to the nearest neighbor in the training set for the 1.3B OPT
40B baseline. We observe that web-derived validation sets are closer to points in the training set than web-independent validation sets and
are disproportionately affected by data selection. Right: Analysis of C4 validation set. (Top): Histogram of cosine distance to nearest
neighbor in train. For each bin, we show the mean original perplexity (middle) and mean difference in perplexity after data selection
(bottom). ”Easy” (low original ppl) points close to the training set are generally the points most affected by data selection.

demonstrates the positive impact of the quality filters and
data de-duplication methods used to curate MassiveWeb
by training 1.4B parameter models from scratch. Hernan-
dez et al. (2022) quantifies the effect of various amounts of
artificially created data duplication and provides analysis
on interpreting the changes in the behaviour of the models
trained on duplicated data. Concurrently to our work, Xie
et al. (2023b) propose using importance resampling to align
the distribution of web data to high-quality reference cor-
pora such as Wikipedia. Similarly, Gururangan et al. (2020)
explores data selection strategies for adapting LMs to a task-
specific corpus. Another line of recent work explores how
data mixture affects pre-training, with Xie et al. (2023a)
demonstrating impressive improvements in downstream ac-
curacy and perplexity across all datasets for 8B parameter
models trained on the Pile. Similarly, Longpre et al. (2023)
explores the role of text quality, toxicity, age, and domain
distribution of training data on LLM performance. Outside
of data curation, there has been a recent surge of work ex-
ploring the impact of repeating data (Muennighoff et al.,
2023; Xue et al., 2023; Biderman et al., 2023), generally
concluding that repeating tokens is worse than training on
new tokens (which we question in Section 3.2).

5. Summary and Limitations
We introduced D4, a method for data curation on LLMs
that improves training efficiency by roughly 20% across
multiple model scales, with larger gains at increased model
scale. We also demonstrated that, in contrast to comon
practice, repeating data via epoching can be beneficial for
LLM training, but only if the data subset is intelligently
selected. While we have shown encouraging efficiency
gains and performance improvements via D4, our work has
several limitations and many future directions.

Choice of Embedding Space: The quality of the embed-
ding space and clustering is crucial to the performance of
our data selection methods. Due to compute restrictions,
we cannot comprehensively investigate the effect of embed-
ding space on data selection. We encourage future work
to explore using a different model architecture to gener-
ate embeddings: we use OPT models, which are trained
on next-word prediction, but we imagine that bidirectional
models (e.g., BERT-style models) will give higher quality
embeddings. We also primarily work with document em-
beddings throughout this work and do not explore different
document chunking approaches (e.g., selecting data at a
paragraph or even sentence level). Most importantly, we
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Figure 6. Correlation between (left): negative Instruct-OPT perplexity and negative web snapshot perplexity, (middle): Downstream
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qualitatively observe that our clustering over-emphasized
the last tokens in the document. This makes sense given our
choice of embedding (we use the last-token embedding for
each document), but it has clear downsides, as clustering
with a bias towards the end of document will most likely
miss clusters of conceptually-related documents.

Mixing different training distributions: While we chose
one data distribution to both select data and train on, modern
LLM setups usually mix different data sources. Our method
is likely complimentary to such pipelines: practitioners may
use D4 to diversify and de-duplicate individual data sources
and then mix data sources to provide additional diversity in
their training dataset. We leave exploring the efficacy of D4
on a mix of training distributions as future work, but expect
that this will yield further gains by reducing redundancy
across datasets as well as within datasets.

Model scale: Due to compute limitations, the largest mod-
els we evaluated were 6.7B parameters trained on 100B
tokens. While, to our knowledge, this is the largest to date
application of embedding based data curation approaches,

further investigation at model scales exceeding 100B would
be very interesting, particularly in light of our observation
that the efficiency gain grows with model scale.
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A. Appendix
A.1. Experimental Setup Details

A.1.1. HYPERPARAMETERS FOR MODEL TRAINING

As mentioned in Section 2.4, we use the same hyperparameters and configurations as the original OPT model architecture
from Zhang et al. (2022). We describe these hyperparameters briefly in Table A1. We chose these configurations because
they are openly available and have been used as the standard in many previous works (Zhang et al., 2022; Liu et al., 2023;
Tirumala et al., 2022; Dettmers et al., 2022; Abbas et al., 2023). All models use GELU activation (Hendrycks & Gimpel,
2016), Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.95, ϵ = 10−8, weight decay set to 0.1, and we
clip gradient norms at 1.0. We use a polynomial learning rate schedule, where learning rate warms up from 0.0 to peak
learning rate over the first 375 million tokens, and is then annealed to (0.1 * Peak LR) over the remaining (Ttarget − 375)
M tokens. We train all our models in fully sharded data parallel mode (Artetxe et al., 2021) using Megatron-LM Tensor
Parallelism (Shoeybi et al., 2019) with fp16 precision. For reproducibility (and perhaps the only difference from the original
configuration in Zhang et al. (2022)) is that we do not use dropout.

Table A1. Model architecture details. Most of the parameter configurations are the same as in Table 1 of Zhang et al. (2022). Batch size
denotes the total tokens that the model sees during one gradient descent update.

Scale Num Layers Num Heads Embedding Dim Peak Learning Rate (LR) Batch Size

8M 4 2 128 1.0e-3 0.5M
125M 12 12 768 6.0e-4 0.5M
1.3B 24 32 2048 2.0e-4 1M
6.7B 32 32 4096 1.2e-4 2M

A.1.2. DATASET CURATION DETAILS

In this subsection, we describe how we curate CC-dedup, the starting source dataset used throughout the paper. We start with
5 CommonCrawl dumps 3 which range from 2017 to 2020. We then use CC-net (Wenzek et al., 2019), to de-duplicate data at
the paragraph level, remove non-English web pages, and filter out low-quality pages. The pipeline we use is identical to the
pipeline used in Touvron et al. (2023) (see the section after the subtitle ”English CommonCrawl [67%]”, within Section 2).

On top of this, we add an additional step of MinHash (Broder, 1997) de-duplication at the document-level. The parameters
for MinHash are 20 hashes per signature, 20 buckets, and 1 row per bucket. These parameters are the default parameters
in the spark implementation of MinHashLSH, and we did not do a hyperparameter sweep on these parameters due to
compute limitations. Previous work has attempted running MinHash with much more aggressive parameters: Lee et al.
(2021) and Penedo et al. use 20 buckets, 450 hashes per bucket, and 9000 signatures per hash. We conjecture that more
aggressive MinHash would remove more templates, resulting in a higher-quality starting dataset, potentially making the
SemDeDup step of D4 less necessary. Abbas et al. (2023) did find that the performance of MinHash from Lee et al. (2021)
and SemDeDup are comparable at a fixed data selection ratio of 3.9% on C4, indicating that SemDeDup filters out similar
data to aggressive MinHash does. We leave sweeping over these hyperparameters as future work.

We note that since our dataset is curated from CommonCrawl dumps, there is risk that our training set contains offensive or
PII content. We note, however, that this risk is no more than that of standard language modeling curation such as Touvron
et al. (2023), since we use the same pipeline to filter CommonCrawl dumps.

A.1.3. PARAMETERS FOR DATA SELECTION

All methods introduced in Section 2.4 involve clustering embeddings using K-Means. Our starting training dataset CC-dedup
contains roughly 600 million documents in total. Running K-Means clustering on all 600 million 768-sized vectors would
take a considerable amount of compute. Instead, we follow previous work (Sorscher et al., 2022; Abbas et al., 2023) and
randomly sample roughly 100M documents with which to calculate centroids. We normalize the embeddings for these
100M documents to have L2-norm of 1.0, and then use faiss (Johnson et al., 2019) with the following parameters:

3https://commoncrawl.org/the-data/get-started/
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faiss.Kmeans(
768 # 125M OPT model embedding size,
11000 # 11K clusters,
niter=20 # 20 iterations,
verbose=True,
seed=0,
gpu=False,
spherical=True,
min_points_per_centroid=1,
max_points_per_centroid=100000000

)

We choose 11000 clusters following previous work (Abbas et al., 2023) and we note that this choice sticks to the heuristic
that the number of clusters should roughly be the square root of the number of total points being clustered. We also note
that in initial experiments for data selection at the 125M OPT model scale, we did not find a significant effect of number
of clusters on the performance of our data selection methods (see Figure A1) this finding agrees with Abbas et al. (2023)
who notice significant overlap between datasets selected by SemDeDup with different number of clusters (see Figure A2 in
Abbas et al. (2023)).
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Figure A1. Effect of number of clusters in K-Means on data selection performance. All models are 125M OPT models, where the training
set (and starting source dataset) is C4 and we select data with SSL prototypes. The y-axis is the change in perplexity compared to baseline
training, meaning that baseline training is at 0.0, and going down on the graphs indicates better performance. The x-axis is the source
dataset size. We show results for average perplexity on Non-web snapshot validation sets (left) and Instruct-OPT (right). We notice that
there is not a significant difference when changing number of clusters (e.g. if we drew error bars around each line, they would all be
overlapping), but 11K clusters is generally among the top-3 best performing methods.

We deliberately set min points per centroids low and max points per centroid high so that faiss does not attempt to manually
balance the clusters while doing K-Means. Sorscher et al. (2022) found that explicitly class-balancing is important: they
introduce the ”class balance score” (see Section H of Sorscher et al. (2022)) which is the expectation of the quantity
size of majority class
size of minority class over all pairs of classes. They then set a hard limit for the class balance score of 0.5, meaning that ”every
class has at least 50% of the images that it would have when pruning all classes equally” (Sorscher et al., 2022). We consider
the unsupervised-learning analog of the class-balance score, which we refer to as the ”cluster balance” score. The cluster
balance score is the expectation of the quantity size of bigger cluster

size of smaller cluster over all pairs of clusters. Across all of our data selection
methods (and choices for R) we find that this value is generally equal to or bigger than 0.5 without any explicit intervention.
For this reason, we do not explicitly cluster balance, although we note that changing how many points are sampled from
each cluster (based on properties of the cluster) is very interesting future work.
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D4 parameters: The choice of parameters Rproto and Rdedup while using D4 will have impact on the performance of
D4. Given limited compute, we are not able to sweep over these hyperparameters. Instead, we strategically choose these
parameters: we first look at the highest value of R in SemDeDup that results in perplexity improvement across validation
sets. We choose the ”highest value” because the purpose of SemDeDup is to remove duplicate-driven clusters and low R
with SemDeDup generally removes more than just templates/semantic duplicates. As seen in Section A.3, this generally
occured with Rdedup = 0.75. Thus, we chose Rdedup = 0.75 and varied Rproto to obtain different data selection ratios for
D4.

A.1.4. WHICH VALIDATION SETS GO INTO THE AVERAGES?

For clarity, we explicitly state the validation sets which we consider ”Web Snapshots”, ”Non Web Snapshots”, and ”Instruct
OPT” when reporting averages:

Web Snapshots: perplexity on validation set of C4, CC-dedup, CommonCrawl (from the Pile)

Non-web Snapshots: perplexity other validation sets from the Pile, comprising of OpenWebText2, HackerNews, Wikipedia
(en), BookCorpusFair, DM Mathematics, Gutenberg PG-19, OpenSubtitles, and USPTO. Also included in this average
is ”redditflattened” (validation set from Pusshift.io Reddit (Baumgartner et al., 2020)), ”stories”, ”prompts with answers”
(which is described below) and ”prompts” (which is the same as ”prompts with answers” but where each sample is just the
instruction-tuning prompt without the answer).

Instruct-OPT: perplexity on instruction-tuning data from OPT-IML (Iyer et al., 2022), where each sample contains both the
instruction-tuning prompt and the answer (in Figure A4 this is referred to as ”prompts with answers.”

A.2. Efficiency gains across model scales and training

In this section, we investigate the relationship between model scale, and performance gain obtained by selecting data via D4.
Specifically, we train three groups of models: 125M OPT models trained on Ttarget = 3B tokens, 1.3B OPT models trained
on Ttarget = 40B tokens, and 6.7B OPT models trained on Ttarget = 100B tokens. We notice in Figure A2 that D4 results
in efficiency gains across the board in terms of perplexity. Surprisingly, these efficiency gains seem to increase with scale,
indicating that at bigger model scales, D4 might lead to even more efficiency gains. We also see efficiency gains in 0-shot
downstream accuracy for 1.3B and 6.7B model scales on the order of 30% for both 1.3B and 6.7B models, but we note
that evaluation downstream performance on intermediate checkpoints is not completely fair due to unfinished learning rate
schedule. Nonetheless, we see that downstream accuracy efficiency gains are not decreasing with scale.
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A.3. Individual Breakdowns of Downstream Accuracy and PPL

In Section 3, we see that D4, SSL prototypes, and SemDeDup achieves significant gains on perplexity (averaged across
different validation sets) and downstream accuracy (averaged across different NLP tasks) compared to baseline training.
Further, we generally see that D4 outperforms SSL prototypes and SemDeDup. In this section, we provide a more
fine-grained analysis of these claims across individual tasks.

For perplexity, we notice in Figure A4 that the claims in Section 3 generally hold across validation sets: for web snapshots
validation sets such C4, CC-dedup, and CommonCrawl, we see performance worsens with data selection compared to
baseline training, and that D4 generally has the slowest rate of performance degradation. We note that, across all non
web-snapshot validation sets, there is no clear winner among data selection methods. We emphasize however that we observe
consistent improvement over baseline training on most validation sets we use — for example in Figure A4 we observe that,
when selecting tokens from a 1.25x source dataset, all data selection methods improve over baseline across all validation
sets except C4 and CC-dedup (however, as we explain in Section 3.4, this decrease in performance on C4 and CC-dedup is
expected).

For downstream accuracy, we chose to match the exact downstream evaluation done in Zhang et al. (2022) since we use
OPT architecture and hyperparameters. Similar to Zhang et al. (2022), we notice considerable variability across the 16 NLP
tasks in Figure A3, motivating us to look at the mean downstream accuracy across tasks.

A.4. SSL prototypes and SemDeDup overlap

Figure A5 shows the overlap between datasets selected by SemDeDup and SSL Prototypes. While the two methods do
not arrive at the same set of data points, there is a significant overlap between the datasets curated by the two methods.
We hypothesize that this is because both SSL prototypes and SemDeDup prune away dense regions of space surrounding
cluster centroids: by definition, SemDeDup sparsifies dense regions of space within a cluster; similarly, by definition, SSL
prototypes will prune away datapoints close to the cluster centroids. Since K-means clustering places centroids in dense
regions of space (see Figure A6 where we observe that the distribution of cosine distances to cluster centroid is skewed right),
we know that the regions of space surroundings centroids will be dense, and expect SSL prototypes and SemDedup to have
significant overlap. Qualitatively, we inspect a few examples of points close to cluster centroids in Figure A2, Figure A3,
Figure A4, and see that examples close to cluster centroids can be semantically redundant (e.g. templates). Therefore, it
makes sense that any reasonable data selection strategy would prioritize sparsifying these dense regions of space surrounding
cluster centroids. As mentioned in Section 2.4, sparsifying these dense regions of space containing excessive semantic
duplicates is the original motiviation behind D4. As shown in Figure 7, omitting the re-clustering step significantly worsens
performance, and we observe in the rightmost plot of Figure 7 that SemDeDup indeed removes duplicate-driven clusters.

Figure A6. Distribution of cosine distance to cluster centroids for 50M randomly selected documents from the training set of CC-dedup.
We notice that the distribution is skewed right, implying that datapoints are generally close to centroids.
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Table A2. Nearest Neighbors to Cluster Centroid 682

Cosine Distance to Centroid Raw Text

0.03581655 The USGS (U.S. Geological Survey) publishes a set of the most com-
monly used topographic maps of the U.S. called US ......... may have
differences in elevation and topography, the historic weather at the two
separate locations may be different as well.

0.03584063 The USGS (U.S. Geological Survey) publishes a set of the most com-
monly used topographic maps of the U.S. called US ......... may have
differences in elevation and topography, the historic weather at the two
separate locations may be different as well.

0.036803484 The USGS (U.S. Geological Survey) publishes a set of the most com-
monly used topographic maps of the U.S. called US ......... may have
differences in elevation and topography, the historic weather at the two
separate locations may be different as well.

0.037270606 Search Near Clinton County, OH: Trails National and State Parks City
Parks Lakes Lookouts Marinas Historical Sites The USGS (U.S. Geolog-
ical ......... may have differences in elevation and topography, the historic
weather at the two separate locations may be different as well.

Table A3. Nearest Neighbors to Cluster Centroid 975

Cosine Distance to Centroid Raw Text

0.011662006 The American Way, Inc. The American Way, Inc. is a suspended
Californian business entity incorporated 19th August 1949. is listed as
......... for bulk data downloadsI want to request the removal of a page on
your websiteI want to contact California Explore

0.012483656 John St-Amour, Inc. John St-Amour, Inc. is a suspended Californian
business entity incorporated 5th October 1962. is listed as the agent
......... for bulk data downloadsI want to request the removal of a page on
your websiteI want to contact California Explore

0.012564898 Joseph E. Barbour, Inc. Joseph E. Barbour, Inc. is a suspended Califor-
nian business entity incorporated 27th January 1959. is listed as .........
for bulk data downloadsI want to request the removal of a page on your
websiteI want to contact California Explore

0.012756169 The Jolly Boys, Inc. The Jolly Boys, Inc. is a suspended Californian
business entity incorporated 4th March 1955. is listed as ......... for bulk
data downloadsI want to request the removal of a page on your websiteI
want to contact California Explore
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Table A4. Nearest Neighbors to Cluster Centroid 10715

Cosine Distance to Centroid Raw Text

0.035506427 Search hundreds of travel sites at once for hotel deals at Hotel Olympic
Kornarou Square 44, Heraklion, Greece 34 m Bembo Fountain 262 .........
hundreds of travel sites to help you find and book the hotel deal at Hotel
Olympic that suits you best.

0.036230028 Search hundreds of travel sites at once for hotel deals at Hotel Estrella
del Norte Juan Hormaechea, s/n, 39195 Isla, Cantabria, ......... travel
sites to help you find and book the hotel deal at Hotel Estrella del Norte
that suits you best.

0.036280274 Search hundreds of travel sites at once for hotel deals at H10 Costa Adeje
Palace Provided by H10 Costa Adeje Palace Provided ......... travel sites
to help you find and book the hotel deal at H10 Costa Adeje Palace that
suits you best.

0.036827266 Search hundreds of travel sites at once for hotel deals at Hotel Miguel
Angel by BlueBay Calle Miguel Angel 29-31, 28010 ......... sites to help
you find and book the hotel deal at Hotel Miguel Angel by BlueBay that
suits you best.

A.5. Investigating Duplicate-Driven Clusters

In this subsection, we present a few examples of duplicate-driven clusters, which are clusters that are very dense and near
centroids. We find that these clusters tend to be filled with semantic duplicates and/or duplicated text. We generally can find
such extreme duplicate-driven clusters by looking at clusters whose standard deviation of cosine distance to cluster centroid
is less than 0.03. This is essentially looking at clusters in the lower tail of the empirical CDF in Figure 7 (brown line). We
present a few examples of such clusters below:
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Table A5. Random Examples from Cluster 695

Cosine Distance to Cluster Centroid Raw Text

0.044178426 Eastern Florida State College nutritional sciences Learn about Eastern
Florida State College nutritional sciences, and registering for electives.
Which college degrees ......... System (IPEDS). If any stats on Hager-
stown Community College career planning are incorrect, please contact
us with the right data.

0.056984067 Albany State University introduction to business Find info concerning
Albany State University introduction to business, and registering for
elective discussion sections ......... If any stats on Warren County Com-
munity College plant science major are incorrect, please contact us with
the right data.

0.0534693 Baldwin Wallace University cost per unit Learn about Baldwin Wallace
University cost per unit, submitting required application forms, and
follow-up scheduling. ......... (IPEDS). If any stats on San Jose State
nursing degree programs are incorrect, please contact us with the right
data.

0.06892538 Niagara University managerial accounting Information about Niagara
University managerial accounting, and registering for elective lectures.
Which college degrees give you the ......... System (IPEDS). If any stats
on Midwestern University pharmacy tech program are incorrect, please
contact us with the right data.

0.07246786 Fanshawe College app download Learn about Fanshawe College app
download, and registering for elective discussion sections and seminars.
Which college degrees ......... Data System (IPEDS). If any stats on
Stratford University cell biology are incorrect, please contact us with the
right data.

0.07147932 Standish Maine Licensed Vocational Nurse LVN Jobs Find out about
Standish, ME licensed vocational nurse LVN jobs options. It’s a smart
......... (IPEDS). If any stats on William Jewell College medical insurance
coding are incorrect, please contact us with the right data.
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Table A6. Random Examples from Cluster 8342

Cosine Distance to Cluster Centroid Raw Text

0.027729392 Seenti - Bundi Seenti Population - Bundi, Rajasthan Seenti is a medium
size village located in Bundi Tehsil of Bundi district, Rajasthan .........
6 months. Of 186 workers engaged in Main Work, 63 were cultivators
(owner or co-owner) while 0 were Agricultural labourer.

0.036407113 Kodunaickenpatty pudur - Salem Kodunaickenpatty pudur Population -
Salem, Tamil Nadu Kodunaickenpatty pudur is a large village located
in Omalur Taluka of ......... 6 months. Of 3523 workers engaged in
Main Work, 1500 were cultivators (owner or co-owner) while 1533 were
Agricultural labourer.

0.017463684 Chhotepur - Gurdaspur Chhotepur Population - Gurdaspur, Punjab
Chhotepur is a medium size village located in Gurdaspur Tehsil of
Gurdaspur district, Punjab ......... 6 months. Of 677 workers engaged in
Main Work, 123 were cultivators (owner or co-owner) while 142 were
Agricultural labourer.

0.02616191 Maksudanpur - Azamgarh Maksudanpur Population - Azamgarh, Uttar
Pradesh Maksudanpur is a small village located in Sagri Tehsil of Aza-
mgarh district, Uttar ......... 6 months. Of 22 workers engaged in Main
Work, 14 were cultivators (owner or co-owner) while 0 were Agricultural
labourer.

0.028420448 Karambavane - Ratnagiri Karambavane Population - Ratnagiri, Maha-
rashtra Karambavane is a medium size village located in Chiplun Taluka
of Ratnagiri district, Maharashtra ......... 6 months. Of 444 workers
engaged in Main Work, 116 were cultivators (owner or co-owner) while
214 were Agricultural labourer.

0.037917078 Barda - Purba Medinipur Barda Population - Purba Medinipur, West
Bengal Barda is a large village located in Egra - I Block ......... 6 months.
Of 1182 workers engaged in Main Work, 278 were cultivators (owner or
co-owner) while 252 were Agricultural labourer.

A.6. Investigating Train-Validation overlap

As briefly described in Section 3.4, we observe that many of our validation sets are close (in cosine distance) to our training
sets, and the impact of data selection is varies across individual validation sets. Individual validation sets live in different
regions of the embedding space, and as such they are affected differently by data selection. For example, one could imagine
that web-snapshot validation sets such as C4 is close to CC-dedup in the embedding space, while esoteric validation sets
(such as Gutenberg PG 19 or DM Mathematics) might be far. To quantify this, we first find the nearest neighbors in the
training set to each validation point in all of our validation sets. We then qualitatively check (see Table A7 and Table A8 for
examples) that nearest-neighbors in the training set truly convey information about validation points. we observe significant
overlap between training points and validation points. We then quanitatively analyze how close each validation set is to the
training set: in Figure A8, we show the breakdown of this distribution for each validation set. We see a general trend, that
web-snapshots validation sets are closest to the training set as they are skewed to the right, while more esoteric validation
sets (Gutenberg, or Wikipedia (en)) are more centered or even slightly left-skewed.

Motivated by this, we compare validation sets side-by-side (in terms of distance to training set) in Figure 5, and we see a
similar trend. To further understand why different validation sets are affected differently by data selection, we loop through
each data point in the validation set and record:

• distance to the training set e.g. how close is the validation point to the training set

• perplexity difference before and after data selection with D4 e.g. how much was this validation point affected by data
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selection

• original perplexity e.g. how easy was this data point originally

In Figure A7, we observe an interesting trend: for web-snapshot validation sets such as C4, the validation points closest to
the training set are both (1) the easiest (lowest perplexity) points before data selection and (2) the points most affected by
data selection. This seems to indicate that these validation points are ”easy” due to their proximity to training points, and
when these training points are removed from the training set due to data selection, the close-by validation points become
difficult for the model. We do not see this trend on non-web snapshot validation sets such as DM Mathematics and Open
Subtitles; in fact, we see an opposite trend where points furthest from the training set are generally most affected by data
selection.
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Figure A8. Distribution of cosine distance to nearest neighbor in the training set, for each individual validation set.
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Table A7. Nearest Neighbors to random validation point in C4

Cosine Distance Raw Text

0.0(original validation text) Offers two child care opportunities to Charles County citizens— the Port
Tobacco Onsite Child Care Program and the Before and After School
Child Care Program (BASCC). Supports parents through home visits
to first time parents and by helping them search for child care, find
resources for a child with social, emotional . . . . . . . . Special needs
kids. Free to look, a fee to contact the providers. Hotline is staffed by
highly-trained and friendly Child Care Consumer Education Specialists
who offer both parents and providers invaluable information about child
care, and referrals to local Child Care Resource and Referral agencies
where they can receive individualized assistance.

0.12867724895477295 Child Care Options is a program of Options Community Services , a
non-profit registered charity dedicated to making a difference in the
South Fraser Region. Options is committed to empowering individuals,
supporting families and promoting community health. Funding for
Child Care Options is provided through British Columbia’s Ministry of
Children . . . . . . . . Rock. Child Care Options links families and child
care providers in the communities of Delta, Surrey and White Rock by
offering free consultation, support and child care referral services and
subsidy support to parents seeking child care. Child care providers are
supported through information, outreach, resource library, networking,
and learning opportunities.

0.15080827474594116 Below are links to child development resources, both from within the
department and from external sources. Child Development Division
Publications Publications that can help you will help you follow your
child’s development (from birth to age five) so you can identify and
address any issues early on. Resources to help you understand children’s
. . . . . . . . families to local resources and services. Specialists are
available from 9 AM to 6 PM Monday – Friday. Services are confidential.
Caregivers can also visit http://www.helpmegrowvt.org/families.html to
learn more about child development, discover developmental tips, and
watch videos demonstrating children’s developmental milestones (click
a button to choose your child’s age).

0.15738284587860107 National Domestic Violence Hotlines Programs that provide immedi-
ate assistance for women and men who have experienced domestic
abuse which may include steps to ensure the person’s safety; short-
term emotional support; assistance with shelter; legal information and
advocacy; referrals for medical treatment; ongoing counseling and/or
group support; and other related services. Hotline . . . . . . . . RP-
1500.1400-200) www.thehotline.org/ Toll Free Phone: 800-799-SAFE
URL: https://www.thehotline.org/ Eligibility: Anyone affected by rela-
tionship abuse. Services Provided: Available 24/7/365 via phone, TTY,
and chat. Provides lifesaving tools and immediate support to enable
victims to find safety and live lives free of abuse. Highly trained, ex-
perienced advocates offer support, crisis intervention, education, safety
planning, and referral services.
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Table A8. Nearest Neighbors to random validation point in USPTO

Cosine Distance Raw Text

0.0(original validation text) SONET (Synchronous Optical NETwork) is a North American transmis-
sion standard for optical communication systems. SDH (Synchronous
Digital Hierarchy), a European transmission standard, is a minor variant
of SONET. SONET defines a hierarchy of electrical signals referred to as
Synchronous Transport Signals (STS). The STS hierarchy is built upon a
basic signal . . . . . . . . the corresponding row and column numbers may
include up to 18 comparison operations, which are onerous to implement,
for example, in terms of the required logic circuitry. This problem is
exacerbated at the upper levels of the STS hierarchy, where processing
of multiple pointer values per data frame is performed.

0.1998944878578186 US20080109728A1 - Methods and Systems for Effecting Video Transi-
tions Represented By Bitmaps - Google Patents Methods and Systems
for Effecting Video Transitions Represented By Bitmaps Download PDF
David Maymudes Multi-media project editing methods and systems are
described. In one embodiment, a project editing system comprises a
multi-media editing application that is configured to . . . . . . . .
synchronization models for multimedia data US20120206653A1 (en)
2012-08-16 Efficient Media Processing US6658477B1 (en) 2003-12-02
Improving the control of streaming data through multiple processing
modules US6212574B1 (en) 2001-04-03 User mode proxy of kernel
mode operations in a computer operating system US7752548B2 (en)
2010-07-06 Features such as titles, transitions, and/or effects which vary
according to positions

0.21122217178344727 Both the Ethernet II and IEEE 802.3 standards define the minimum
frame size as 64 bytes and the maximum as 1518 bytes. This includes
all bytes from the Destination MAC Address field through the Frame
Check Sequence (FCS) field. The Preamble and Start Frame Delimiter
fields are not included when . . . . . . . . frame. Dropped frames are
likely to be the result of collisions or other unwanted signals and are
therefore considered invalid. At the data link layer the frame structure is
nearly identical. At the physical layer different versions of Ethernet vary
in their method for detecting and placing data on the media.

0.2133803367614746 A byte is a group of bits, usually eight. As memory capacities increase,
the capacity of chip cards is often quoted in bytes rather than in bits as
in the past.

A.7. Further investigation of repeating tokens

In this section, we investigate whether the findings from Section 3.2 hold across model scale, data selection ratio (e.g.
number of epochs), and data selection method.

Across data selection methods: We first take the same configuration as Section 3.2, where we have a starting source
dataset of 40B tokens, use each of our data selection methods with R = 0.25 to select a subset of documents, and repeat
over these documents until we reach the target token budget of 40B tokens. Note that this is at the 1.3B model scale. In
Figure A9 we see that repeating data selected by both SemDeDup and SSL prototypes also outperforms randomly selecting
new data. However, we quickly notice that for fixed data selection strategy (e.g. fixed column in Figure A9), repeating tokens
either outperforms or matched selecting new tokens. In other words: cleverly repeating tokens can outperform randomly
selecting new tokens, but if we fix the data selection strategy (random, SemDeDup, SSL prototypes, or D4) then it is usually
preferable to select new tokens.
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Across model scale and data selection ratio: We fix our data selection strategy as D4 as done in Section 3.2, but attempt
repeating tokens across 3 model scales (125M, 1.3B, and 6.7B), and across data selection ratios (R = 0.5 and R = 0.25).
We see in Figure A11 that repeating data with D4 outperforms randomly selecting new tokens across all model scales and
choice of R.

We note that for fixed R, different data selection methods will choose subsets of the source dataset that contain different
amounts of tokens. This means that different data selection methods will epoch a different number of times. For example,
for a 1.3B OPT model 40B token budget training run, if randomly repeating data with R = 0.25 chooses a subset with 10B
tokens and D4 with R = 0.25 chooses a subset with 15B tokens, then the random run will epoch 4 times while the D4 run
will epoch 2.67 times. To show this more clearly, we plot 1.3B and 6.7B repeated data runs with the x-axis changed to
number of epochs in Figure A10. We see that up to roughly 2 epochs of data chosen with D4 significantly outperforms
randomly selected new data; however, close to 5 epochs leads to worse performance.
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Figure A2. Training trajectory of OPT models trained on raw data (gray line) and data selected via D4 (pink line). Across model scales
(1st row: 8M OPT models trained on 2B tokens, 2nd row: 125M OPT models trained on 3B tokens, 3rd row: 1.3B OPT models trained on
40B tokens, 4th row: 6.7B OPT models trained on 100B tokens), we see significant efficiency gains in both perplexity (left two columns)
and 0-shot downstream accuracy on 16 NLP tasks (right column). Importantly, we see that increasing model scale does not decrease
efficiency gains. All plots show mean and standard error across three seeds, except for the last row. We do not evaluate downstream
accuracy for models smaller than 1.3B because they are likely too close to random performance to indicate whether a particular data
selection method is better.
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Figure A3. Per-task breakdown of 0-shot downstream accuracy comparison across data selection methods, for 1.3B, 40B OPT model.
For a description of the 16 NLP tasks shown above, see Section 2.4. We note that there is considerable variability across individual
downstream tasks.
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Figure A4. Perplexity as a function of source dataset size for 1.3B OPT model 40B token training runs, across data selection runs. Each
plot above represents perplexity on an individual validation set (see Section 2.4 for more information). Mean and standard error across 3
seeds is shown (standard error is denoted by shaded regions).
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Figure A7. (Top): Histogram of cosine distance to nearest neighbor in train. Within each bin, we show the mean original perplexity
(middle) and mean difference in perplexity after data selection (bottom), for DM Mathematics (left), OpenSubtitles(middle), and C4
(right). We note that points in the C4 validation set closest to the training set are both ”easy” (perhaps because of proximity to training
points) and are affected the most by data selection. We do not see this trend for non-web snapshot validation sets such as DM Mathematics
and OpenSubtitles.
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Figure A9. Effect of repeating tokens across data selection methods over training. X-axis denotes the number of updates, and the y-axis
denotes average perplexity across non-web-snapshot validation sets (top row) and Instruct OPT (bottom row). Each column in the plot
above denotes a different data selection method. Within each column: (1) the gray line denotes baseline training, (2) the colored-dashed
line denotes repeating tokens via the specified data selection method, and (3) the colored-solid line denotes selecting new tokens via the
specified data selection method. Repeating data is generally worse than selecting new data for a fixed data selection method (e.g., fixed
column).
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epochs.
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Figure A11. Comparison of repeating tokens with D4 (pink line), randomly selecting new tokens (horizontal dashed gray line), and
randomly repeating data (gray line). We see across model scales (top: 125M trained on 3B tokens; middle: 1.3B trained on 40B tokens;
bottom: 6.7B trained on 100B tokens) and data selection ratios, repeating data selected by D4 outperforms randomly selecting new data.
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