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Abstract

Preserving relationships and interactions between
columns(or variables) is crucial for any synthetic
tabular data generation approach. Despite their
effectiveness, existing generative adversarial net-
work (GAN)-based approaches place little em-
phasis on this aspect. In this work, we propose
VSA+GAN, a framework that augments with the
existing GANSs to capture and learn inter-variable
interactions with a self-supervised autoencoder
trained on a pretext task. We show that the method
is versatile and is applicable to any variation of
Tabular Generative Adversarial Network imple-
mentations, and empirically show that our frame-
work significantly improves their performance in
terms of data similarity, pair-wise correlation and
machine-learning utility metrics.

1. Introduction

Raw tabular data collected from multiple sources tends to be
incomplete, noisy, under-balanced (Sdnchez-Morales et al.,
2020) and often carry the privacy risks (Wang et al., 2017).
As a solution, recent approaches propose to leverage syn-
thetic data (Song et al., 2020), which statistically resembles
real data and can comply with data privacy laws. In addition,
this also reduces data preparation costs and improves data
quality.

The existing synthetic tabular data generators typically de-
ploy Generative Adversarial Networks (GANs) to model
the tabular distribution (Bourou et al., 2021). While these
methods optimize well for single variable distributions, they
have the potential to further enhance their capabilities by
explicitly accounting for inter-variable interactions, which
is crucial for learning latent representations from datasets
where we know a priori correlations exist. Preserving inter-
variable correlations is crucial to use the generated synthetic
data as a proxy of the original data for training ML mod-
els, which becomes challenging as these dependencies are
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rather complex and irregular (Bahri et al., 2022). This is in
contrast to images and text, which either hold spatial cor-
relations between pixels or sequential correlations between
words. The aforementioned motivates us to ask if designing
specialized tasks and networks that capture the correlations
among features has significant advantages.

In this work, we propose VSA+GAN, a new approach which
supplements the existing generative models for an impro-
vised synthesis of tabular data. Our training procedure in-
volves two key steps and commences with a self-supervised
pretraining phase of an autoencoder. The autoencoder is
trained on the pretext task of recovering the original samples
from their corrupted counterparts. By learning to reconstruct
the original samples, the denoising autoencoder captures the
inter-variable relationships in the data. We then train a gen-
erative network using a reconstruction loss in conjunction
with the standard adversarial principle. For each mini-batch
sampled from the generator, we construct a corrupted ver-
sion using the same scheme and feed it to the pretrained
autoencoder.

Since the pretrained autoencoder has already learnt the inter-
column correlations from the original data distribution, it
reconstructs the data, filling in the corrupted variables with
values that would correlate with the un-corrupted values in
the original data. This reconstruction error is passed onto
the generator which inherits the learnt implicit inter-variable
relations from the autoencoder. This helps to preserve inter-
feature correlation, providing additional supervision to im-
prove its utility by penalizing synthesized samples where
the combination of values are semantically incorrect.

The proposed method is versatile enough to be applied to
any tabular generative model and significantly improves the
utility of the synthesized data. Our experiments over widely
used tabular datasets and metrics demonstrate that combin-
ing the pretrained autoencoder framework with the exist-
ing tabular generative adversarial models improves them in
terms of data similarity and utility.

2. Proposed Method

Self-supervised learning for tabular data. In this step, we
train an autoencoder (encoder F, decoder D), which learns
to recover an input data point & from its corrupted version
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x’. To create an «’ for each x, we randomly sample an T
from the current batch, and then use a binary mask vector
m = [my,--- ,mg) € {0,1}¢ as:

T =pp@)=moz+(1—m)OT (1)

where m; is sampled from a Bernoulli distribution with
probability p;. In contrast to the standard corruption meth-
ods like zeroing features, or adding gaussian noise, Eq.1
ensures that the corrupted sample &’ is syntactically sim-
ilar to other samples in the dataset. We provide a similar
ablation in the appendix.

Now, we learn our autoencoder to reconstruct , by which
it implicitly learns the inter-variable relations between dif-
ferent features. Formally, we reconstruct the original input
from the corrupted ’ as D(E(x’)) and minimize the loss:

Lr=) Y [L}(D(E@)); ) 2

i=1 j=1

L is cross-entropy loss or mean squared error depending
on the j*" feature being categorical or continuous.

GAN Objective. In general, GANs consist of two neural
networks: a generator GG and a discriminator D which pro-
vides feedback on the quality of the generation. Among
many GAN variants, WGANs and in particular WGAN-GP
are one of the most successful models.

The generator is trained with a reconstruction loss from the
pretrained autoencoder alongside the standard adversarial
loss. For each mini-batch sample = from the generator, we
generate a corrupted version z’ using the scheme described
in 1 and reconstructed by the autoencoder, leveraging its
knowledge of inter-column correlations. The reconstruction
error guides the generator, preserving inter-feature correla-
tion and penalizing semantically incorrect value combina-
tions. Combined with the self-supervised loss L from the
generated data, the generator then minimizes the final loss

ming maxp E;[log D(z)] + E.[1 — log D(G(2))]+

LID(E(pn(G(2)))), G(2))
3)
The reconstruction error guides the generator, preserving
inter-feature correlation and penalizing semantically incor-
rect feature combinations. Note that, the weights of the
autoencoder are frozen when the generator is being trained
to keep the learnt correlations intact.

3. Experimental Analysis

Datasets and Models. We evaluate our approach of syn-
thetic data generation on five commonly used datasets:
Adult (Kohavi et al., 1996), Credit (Dal Pozzolo et al.,
2014), Cabs (Poongodi et al., 2022), Online News Popu-
larity (Hensinger et al., 2013), Kings (Wang & Zhao, 2022).

Besides, we augment our technique with four GAN-based
tabular data generators: CTGAN, TableGAN, CWGAN and
MedGAN. Baseline implementations follow their original
description, while our autoencoder is trained for 300 epochs
on a batch size of 100.

Evaluation Metrics and Results. We evaluate our method
on four aspects ! to check if the synthetic data can be a good
proxy of the real data: (1) statistical similarity (2) detec-
tion (3) machine learning (ML) utility and (4) correlation-
preserving metrics. Entries in the table are average across
the datasets, and for each metric higher values mean better
performance.

Statistical similarity metrics use a Chi-squared (CS) test
and a two-sample Kolmogorov-Smirnov (KS) test to mea-
sure statistical similarity between the real and synthetic data
across all columns (see Table 1). We report 1 minus the KS
Test D statistic for continuous columns and CS Test p-value
for discrete columns.

Detection metrics use two standard classifier models: Lo-
gistic Regression and Support Vector Classifier to evaluate
how hard it is to distinguish synthetic data from real. We
report 1 minus the ROC AUC score of the classifier, whose
higher value indicates hardness to distinguish between syn-
thetic and real samples.

Method CS Test KS Test
GAN VSA+GAN GAN VSA+GAN
CTGAN | 0.840231  0.851344 | 0.812384  0.823283
TableGAN | 0.80629 0.810704 | 0.782935  0.793258
MedGAN | 0.524561  0.782258 | 0.471983  0.739212
CW-GAN | 0.583926  0.785138 | 0.545365  0.748275
Method Logistic Detection SVC Detection
GAN VSA+GAN GAN VSA+GAN
CTGAN | 0.569730  0.681714 | 0.653683  0.774174
TableGAN | 0.500629  0.610704 | 0.522935  0.726287
MedGAN | 0.367297  0.476116 | 0.469691  0.683701
CW-GAN | 0.403902  0.515739 | 0.425532  0.640632

Table 1: (i) Statistical Metrics (ii) Detection Metrics

We consistently improve the quality of synthesized data
across the models and datasets, often significantly in many
cases. Thus we conclude that our proposed framework
VSA+GAN, a simple and versatile method for tabular data
generative model that leverages self-supervised pretext tasks
demonstrated ability to capture and preserve inter-variable
correlations.

"ML Utility and Correlation Preserving Metrics are attached in
appendix
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Al. Additional Results: ML Utility

ML utility measures how well the synthetic data can be the
proxy of the target data in the machine learning tasks. It
is measured as the performance on original test datasets
of machine learning models which are trained on the gen-
erated data. The original and synthetic data are evaluated
by 5 widely used machine learning algorithms: decision
tree classifier, linear support-vector-machine (SVM), ran-
dom forest classifier, multinomial logistic regression and
multi-layerperceptron (MLP). The value of the metric is
determined not only by the quality of our synthetic data, but
also by the difficulty of the machine learning problem that
we are attempting to solve. Synthetic data generated from
our method does 14.52% better than that of the baseline

A2. Additoinal Results : Correlation Metrics

Correlation metrics evaluate how well inter-feature inter-
actions are preserved in the generated records. Pair-wise
correlation matrices for columns within real and synthetic
datasets are first computed individually. Pearson and Theil
uncertainty coefficients are used to measure the correlation
between numerical and categorical columns respectively.
The Lo-norm of the difference between these correlation
matrices for the real and synthetic datasets is considered the
final metric. Our method captures correlations a lot better
in both numerical and categorical columns.

Table A1: ML Utility

Method Continuous Categorical
GAN VSA+GAN GAN VSA+GAN
CTGAN | 0.677608 0.743092 0.472855  0.506979
TableGAN | 0.396333  0.435885 0.350966  0.327833
MedGAN | 0.424052  0.458852 0.346336  0.482111
CW-GAN | 0.652449 0.697192 0.427002  0.633291

Table A2: Correlation Difference Metrics

Pearson Correlation Theil Correlation
Method

GAN VSA+GAN | GAN VSA+GAN
CTGAN 243 2.26 2.30 2.12
TableGAN | 2.26 1.99 2.32 1.95
MedGAN | 5.52 4.37 4.72 4.66
CW-GAN | 6.24 5.83 5.89 5.83

A3. Ablation Study

To understand the efficiency of each component in
VSA+GAN, we implement an ablation study with machine

learning utility metrics. Table 3 shows the results from the
ablation study. We try to understand VSA+GAN by ablating
the masking and corruption technique we proposed, replac-
ing it with the following promising strategies, while keeping
all else fixed.

Settings Performance
No corruption -53.26%
Feature Dropout | -32.12%
Mean corruption | -12.56%
Gaussian Noise | -48.21%

Table A3: Ablation study results on different masking and
corruption schemes. The performance (measured as ML
utility) changes on real-world datasets are reported.

1. No corruption. We do not apply any corruption - i.e.
a’ = x, in Equation 1. In this case, the autoencoder is
not imputing missing values but simply reconstructing
data samples. It ends up learning weaker correlation
structures between features and we see that with no
corruption the performance of the generator is not im-
proved.

2. Feature dropout. The features selected to corrupt are
zeroed-out.

3. Mean corruption. The selected features are replaced
with the empirical marginal distribution’s mean.

4. Additive Gaussian noise. We add i.i.d N (0, 0.25) noise
to features

Our masking and feature resampling method outperforms
the other standard corruption strategies. We also observed
that our corruption strategy is fairly insensitive to the cor-
ruption rate, seeing a stable performance when the rate is in
the range 30-60%. The pretext task is also not sensitive to
batch-size
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