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Abstract
Modern vision models typically rely on fine-
tuning general-purpose models pre-trained on
large, static datasets. These general-purpose mod-
els only capture the knowledge within their pre-
training datasets, which are tiny, out-of-date snap-
shots of the Internet—where billions of images
are uploaded each day. Rather than hoping our
static datasets transfer to our desired tasks after
large-scale pre-training, we propose dynamically
utilizing the Internet to quickly train a small-scale
model that excels at the task at hand. Our ap-
proach, called Internet Explorer, explores the web
in a self-supervised manner to progressively find
relevant examples that improve performance on
a desired target dataset. It cycles between search-
ing for images on the Internet with text queries,
self-supervised training on downloaded images,
determining which images were useful, and pri-
oritizing what to search for next. We evaluate In-
ternet Explorer across several datasets and show
that it outperforms or matches CLIP oracle per-
formance by using just a single GPU desktop to
actively query the Internet for 30–40 hours.

1. Introduction
Suppose you have a small dataset and need to train a model
for some task, say classification. A pipeline that has become
standard today is to download the latest pre-trained deep
network and fine-tune it on your data. The implicit goal in
large-scale pretraining of transferring well to any kind of
downstream task has led to a race to build “omniscient” mod-
els that require unparalleled amounts of parameters, data,
and compute. Although the size of the pretraining datasets
has grown from 1.2M (Deng et al., 2009) to 5B (Schuhmann
et al., 2022) images, what has not changed at all is their
nature: these datasets are curated, and, more importantly,
static. Furthermore, although a few hundred million im-
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Figure 1. Given unlabeled data for a target task, our approach,
Internet Explorer, searches the Internet to progressively find more
and more relevant training data via self-supervised exploration.

ages represent a staggering quantity of visual data, they are
minuscule compared to the entire Internet, where billions
of new photos are uploaded every day. However big static
datasets become, they will fail to capture the richness and
dynamic nature of the data available on the Internet.

We rethink the idea of generic large-scale pretraining and
propose an alternate paradigm: train a small-scale but up-to-
date model geared towards the specific downstream task of
interest. To do so, we look beyond static datasets and treat
the Internet itself as a dynamic, open-ended dataset. Unlike
conventional datasets, which are expensive to increase and
grow stale with time, the Internet is dynamic, rich, grows
automatically, and is always up to date. Its continuously
evolving nature also means we cannot hope to ever down-
load it or train a model—large or small—on all of it.

To address this challenge, we draw an analogy to reinforce-
ment learning, where even though the task is known, finding
an efficient policy is non-trivial due to the high complexity
of the state space. Hence, most approaches rely on some
form of exploration to discover high-reward states. With this
inspiration, we formulate a disembodied, online agent called
Internet Explorer, that actively queries standard search en-
gines for images that improve feature quality on a target
dataset (see Figure 1). The agent’s actions are text search
engine queries, and the observations are the search results.
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Model Birdsnap Flowers Food Pets VOC2007 FMoW

Base Model 39.9 94.6 78.3 85.3 58.0 48.8
Random exploration 39.6 (−0.3) 95.3 (+0.7) 77.0 (−1.3) 85.6 (+0.3) 70.2 (+12.2) 49.3 (+0.5)

Internet Explorer 62.8 (+22.9) 99.1(+4.5) 84.6 (+6.3) 90.8(+5.5) 79.6 (+21.6) 50.6(+1.8)

CLIP (oracle) 57.1 96.0 86.4 88.4 86.7 37.5

Table 1. Improved representation quality (linear probe accuracy) with Internet Explorer.
Internet Explorer Method

1. Sample Query
Learned concept distribution

BMW, sunflower, . . . , duck

GPT

2. Internet Image Search

3. Self-Supervised Training

encoder

contrastive 
loss

4. Update Concept Distribution
calculate 
reward

encoder

increase probability of useful concepts

BMW, sunflower, . . . , duck

target dataset

“duck”“baby”  +

Figure 2. Overview of Internet Explorer. Our goal is to learn
to find images that improve our performance on a target dataset.
Each iteration, we (1) generate text queries by combining a con-
cept sampled from a learned distribution with a GPT-generated
descriptor (§A.2, §A.7); (2) query search engines with the resulting
phrase and download the top-100 image results (§A.1, §B.5); (3)
perform self-supervised training on these images and good images
from past iterations (§A.3); (4) evaluate the quality of the new
images and increase the likelihood of making similar queries if
their images were relevant (§A.4, §A.5).

2. Method Overview
We focus on the problem of efficiently learning to find Inter-
net data that improves representations for some target task.
We make as few assumptions as possible and assume that
we have only unlabeled training data from the target dataset.
Successful representation learning in this setting would lead
to better performance on the target dataset distribution for
standard tasks like classification and detection, as well as
others where the labels are not semantic (e.g., depth pre-
diction or robotics). An overview of the Internet Explorer
method is depicted in Figure 2—it cycles between searching
for images on the Internet with text queries, self-supervised
training on downloaded images, determining which images
are relevant to the target dataset, and prioritizing what to
search for next. See Appendix A for full details.

3. Experimental Results
Internet Explorer is compatible with any text-based search
engine or even a static dataset; however, our best results use

Target dataset: Pets

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 3. Progression of downloaded images across training.
Top: sample Oxford-IIIT Pets images. Bottom: sample images
queried by Internet Explorer across iterations. As it learns, it makes
queries that are progressively more relevant to the target dataset.

Google (see Appendix B.5). We evaluate our method across
5 datasets, including 4 fine-grained datasets and PASCAL
VOC. We also show results on FMoW-WILDS (Christie
et al., 2018)—a satellite domain classification task.

We compare against several strong baselines, including
CLIP, on downstream tasks. Using only a single 3090 GPU
desktop machine that runs for 30-40 hours, Internet Ex-
plorer makes over 10K progressively improving queries
and downloads over 1M relevant Internet images for each
target dataset. Table 1 shows that our method drastically im-
proves the representation quality of the starting base model
and outperforms or matches CLIP in most scenarios. Note
that CLIP acts as an oracle for our approach because it has
likely already seen all or more queries that Internet Explorer
makes. Actively searching for relevant data is crucial – the
“random exploration” baseline yields no improvement on
average, as the vast majority of data on the Internet is not
pertinent to the target dataset. Figure 3 shows that Internet
Explorer rapidly identifies what images are relevant to the
target dataset, even without any prior over what natural lan-
guage queries will be useful. See Appendix B for details on
experimental results.

4. Conclusion
We show that interactively exploring the Internet is an effi-
cient source of highly relevant training data—if one knows
how to search for it. In just 30–40 hours of training on a sin-
gle GPU, Internet Explorer either significantly outperforms
or closely matches the performance of compute-heavy ora-
cle models like CLIP (Radford et al., 2021) trained on static
datasets, as well as strong baselines that search the Internet
in an undirected manner.
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A. Method Details
A.1. Text-to-image Search

We discover and download images from the full breadth of the Internet by querying text-to-image search engines, which
return images based on their captions and surrounding text. Text-to-image search is fast, returns diverse images from across
the Internet, and enables searches for vastly different queries simultaneously. Note that text-to-image search is noisy and
makes use of weak supervision (the image-text pairing on webpages). Thus, we only perform self-supervised training on the
downloaded images. We use a public codebase to query Google Images, which can download the top 100 images for each
query (Vasa, 2015; Clinton, 2020). We also try other search engines in Section B.5.

A.2. Text Query Generation

As text queries are our only input interface with the Internet, it is crucial that we can generate diverse queries that correspond
to a variety of visual categories. Specificity is also important. Once a useful visual category is identified, generating
fine-grained variants of the query is necessary to obtain data for all visual variations in the category. We construct queries by
combining two components:

1. Concepts specify semantic categories such as people, places, or objects.
2. Descriptors are modifiers that generate variations in appearance.

We draw our concepts from the WordNet hierarchy (Miller, 1995), which consists of 146,347 noun lemmas. Not all of
these lemmas are visual, but the vocabulary still covers an incredible range of topics (see examples in Appendix A.8). To
generate a text query, we first sample a concept from a learned distribution over our vocabulary. This discrete distribution is
defined by our estimates of how relevant each concept in the vocabulary is at the current time (see Section A.4 for details
on estimating rewards and Section A.7 for the distribution). Given a sampled concept, we can generate a descriptor by
prompting a GPT-J language model (Wang & Komatsuzaki, 2021) with examples of descriptor-concept pairs (details in
Appendix A.9). Finally, as shown in Step 1 of Figure 2, we simply concatenate the concept and descriptor. If our concept is
“duck” and the GPT-generated descriptor is “baby,” our search engine query will be “baby duck.”

A.3. Self-supervised Training

We use self-supervised learning (SSL) to learn useful representations from the unlabeled images that we download from
the Internet. Internet Explorer is compatible with any SSL algorithm that uses images or image-text pairs, including
contrastive (He et al., 2020; Chen et al., 2020), non-contrastive (Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2021;
Caron et al., 2021), masking-based (Bao et al., 2021; He et al., 2022), or multimodal (Radford et al., 2021) approaches.
For speed and stability reasons, we use the MoCo-v3 algorithm (Chen et al., 2021), which trains encoders fq and fk on
augmentations (x1, x2) of the same image to output vectors q = fq(x1) and k = fk(x2). fq is trained to minimize the
InfoNCE loss (Oord et al., 2018):

Lq = − log
exp(q · k+/τ)

exp(q · k+/τ) +∑
k− exp(q · k−/τ) (1)

k+ corresponds to fk’s output on the other augmentation of the image used to compute q, and the set of negative examples
{k−} corresponds to fk’s output on other images in the batch. The temperature τ is set to 1 by default. fk consists of a base
encoder, a projection MLP, and a prediction head, whereas fq is the exponential moving average of the base encoder and
projection MLP from fk. By training q and k+ to be similar across image augmentations, MoCo-v3 encourages the network
to learn high-level semantic features.

Before turning to the Internet, we initialize a ResNet-50 model (He et al., 2016) using a MoCo-v3 checkpoint trained offline
for 100 epochs on ImageNet and then fine-tuned on the target dataset. Without using labels, we select the best starting
checkpoint by early stopping on the SSL loss, which highly correlates with target accuracy (Li et al., 2022). In each iteration
of our method, we use MoCo-v3 to fine-tune on a mixture of newly downloaded, previously downloaded, and target dataset
images.
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A.4. Image Relevance Reward

We want to rank newly downloaded images by how much they improve our features for the target dataset. This allows
us to (a) prioritize taking gradient steps on useful images, and (b) understand what to search for in subsequent iterations.
Unfortunately, it is challenging to directly measure the effect of an individual training example on performance. Numerous
techniques have been proposed (Koh & Liang, 2017; Feldman & Zhang, 2020; Paul et al., 2021; Ilyas et al., 2022), but they
all require extensive and repeated training on new images to estimate their impact.

Instead of trying to precisely measure what is learned from each image, we use its similarity to the target dataset as a proxy
for being relevant to training. We rank the downloaded images by their similarity in representation space to the target
dataset images; those most similar to the target dataset induce larger contrastive loss since each exp(q · k−) term in the
denominator of Eq. 1 is larger when the negative examples {k−} are closer to q. These “hard negatives” (Robinson et al.,
2020; Schroff et al., 2015; Oh Song et al., 2016; Harwood et al., 2017; Wu et al., 2017; Ge, 2018) yield larger and more
informative gradients and should result in the biggest improvement in representation quality. Thus, overloading notation for
k, we compute the reward for a particular image as its representation’s average cosine similarity to its k closest neighbors
in the target dataset. Given an image encoder fk : RH×W×3 → Rd, an unlabeled target dataset D = {xi}Ni=1, and a new
image y to evaluate, the reward is calculated:

r(fk,D, y) = max
I⊂{1,...,N};

|I|=k

1

k

∑
i∈I

Scos(fk(xi), fk(y)) (2)

where Scos is the cosine similarity. A previous metric for identifying relevant data (Jiang et al., 2021) used k = 1 nearest
neighbors, but we found that this was too noisy and allowed high rewards for outlier target images to distract our search.
We instead use k = 15 to improve the accuracy of our relevance estimation. In Appendix B.6, we compare our reward to
alternatives and explore their failure modes. This reward is used for two purposes: determining which of the downloaded
images to train on and, subsequently, which concepts would be useful to search for next.

Which images to train on. Many newly downloaded images are not worth training on, since they come from unrelated
queries or are noisy results from the search engine. Thus, at the end of each iteration, we rank the newly downloaded images
by their reward and save the top 50% to a replay buffer that we maintain across iterations. In subsequent iterations, we
continue training on this filtered data.

Determining which concepts are useful. When we search for a concept and get back Q image results {Ii}Qi=1, we take
the average of the top 10 image-level rewards ri = r(fk,D, Ii) and use that as a concept-level score. This gives us an
accurate measure of the relevance of a particular query and reduces the impact of noisy search results.

A.5. Estimating Reward for Unseen Concepts

Since our vocabulary contains hundreds of thousands of concepts, it is inefficient to search to test whether a query yields
relevant images. Luckily, we can estimate the quality of a query by using the observed rewards of the queries used so far.
Humans can do this effortlessly due to our understanding of what each concept means. To us, it is obvious that if querying
“golden retriever” yielded useful images for this dataset, then “labrador retriever” probably should as well. To give our
method the same understanding of concept meaning, we embed our 146,347 WordNet concepts into a 384-dimensional space
using a pre-trained sentence similarity model (Reimers & Gurevych, 2019). We provide relevant context about concepts to
the text embedding model using the following template:

{lemma} ({hypernym}): {definition}.

For example,

Chihuahua (toy dog): an old breed of tiny short-haired dog with protruding eyes

from Mexico held to antedate Aztec civilization.

We use Gaussian process regression (GPR) (Williams & Rasmussen, 1995) over the text embeddings {ei} to predict the
concept-level reward r(ei) for untried concepts. GPR models the function outputs for any set of inputs {r(ei)} as jointly
Gaussian random variables. The covariance of any two variables r(ei) and r(ej) is determined by the kernel k(ei, ej), which
we set as the default RBF kernel k(ei, ej) = exp(

−∥ei−ej∥2

2 ). Given the observed rewards for concepts Robs = {r(ei)},

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Internet Explorer: Targeted Representation Learning on the Open Web 7

Algorithm 1 Internet Explorer

1: Input: target dataset D, SSL algorithm A, search engine SE, encoder f : RH×W×3 → Rd, image reward function
r, vocabulary V = {ci}Ci=1, # concepts/itr M , # query results/search Q, GPT-based concept→ descriptor function
GPTDesc, concept distribution function CalcProb

2: Initialize replay buffer B ← ∅
3: Initialize concept distribution p = Uniform{1, C}
4: for iteration = 1, 2, . . . do
5: for i = 1, . . . ,M do
6: Sample concept ci ∼ p(V) (§A.2)
7: Sample descriptor di ← GPTDesc(ci) (§A.9)
8: Image search {Iij}Qj=1 ← SE(di + ci, Q) (§A.1)
9: Calc. reward rci ← 1

Q

∑Q
j=1 r(f,D, Iij) (§A.4)

10: end for
11: Bnew = {I1j }Qj=1 ∪ · · · ∪ {IMj }Qj=1

12: SSL training: A(f,D ∪ B ∪ Bnew) (§A.3)
13: Add to buffer: B ← B ∪ Top50%(Bnew, r)
14: Predict all concept rewards rconcept from {rci} (§A.5)
15: Update concept dist p← CalcProb(rconcept) (§A.7)
16: end for

GPR calculates the posterior distribution over the rewards for an unobserved concept e′, P (r(e′)|{r(ei)} = Robs). Given
that the joint distribution P ({r(ei)}, r(e′)) is Gaussian, the posterior is also Gaussian with mean µ(e′) and variance σ(e′)2.
The locality provided by the RBF kernel enables reasonable reward predictions, and having a distribution over rewards
instead of a point estimate allows us to explore potentially good concepts. We encourage exploration by setting the score of
unobserved concepts to µ(ei) + σ(ei).

A.6. Provable speedup in relevant query identification

Assume that our vocabulary of n concepts contains cs≪ n relevant concepts, which are partitioned into c disjoint clusters
of size s. We want to discover every relevant concept by sampling concepts uniformly at random (with replacement) to test.
Assume that sampling a concept conclusively tells us whether it is relevant. Furthermore, assume that we could optionally
use a Gaussian Process which, if we’ve sampled a relevant concept, tells us that all the concepts in its cluster are also
relevant.

Lemma A.1. Let Tbase be the expected time to identify every relevant concept without the GPR, and TGPR be the expected
time when exploiting the additional knowledge from the GPR. Then, Tbase = nHc·s, TGPR = nHc

s , and the speedup from
GPR is Tbase

TGPR
≈ s log s.

Proof. This problem is a variant of the coupon collector problem. Let’s first compute Tbase as the sum of expected times ti
to identify the next relevant concept.

Tbase =

cs∑
i=1

ti (3)

=

cs∑
i=1

1

pi
(4)

=

cs∑
i=1

n

cs+ 1− i
(5)

= n

cs∑
i=1

1

cs+ 1− i
(6)

= nHcs (7)
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Figure 4. Learned concept sampling distribution. Given estimated scores for each of the 146, 347 concepts, we need to choose how
often to sample each one in order to balance exploration and exploitation. Top: we scale our scores to a desired temperature, then take the
softmax to obtain a distribution over concepts. Finally, we create tiers so that the top 250 concepts have 80% of the probability mass, and
the next 750 have 10%. This ensures that we sample enough from the top 1,000 concepts while still exploring other concepts with lower
scores. Bottom: the top 1000 concepts are only sampled a tiny fraction of the time without tiering.

where Hcs is the csth harmonic number. Similarly, we can compute TGPR as the sum of expected times ti to identify the
next relevant cluster.

TGPR =

c∑
i=1

ti (8)

=

c∑
i=1

1

pi
(9)

=

c∑
i=1

n

s(c+ 1− i)
(10)

=
n

s

c∑
i=1

1

c+ 1− i
(11)

=
nHc

s
(12)

The speedup is then Tbase

TGPR
= sHcs

Hc
≈ s log s.

We find that in practical settings (e.g., the Pets example analyzed in Figure 6), we can accurately predict how many samples
are required to discover all useful concepts. If the vocabulary size is n ≈ 150,000, the number of clusters is about c = 2
(one for cats and one for dogs), and the size of each cluster is about 150, then TGPR = 1500, which roughly matches the
9× 256 = 1792 queries it took to discover both cats and dogs in the Pets dataset. This shows that a predictive model like
GPR is crucial for quickly identifying all useful concepts.

A.7. Query sampling distribution

Once we have estimates for the quality of each concept, how do we determine what to search for next? We face the age-old
dilemma of exploration versus exploitation: we need to sample the top concepts frequently enough to get relevant training
data for SSL, while at the same time, we need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann exploration (Sutton, 1991). Boltzmann exploration samples based
on a scaled softmax distribution p(ci) ∝ exp(r(ci)/τ), where τ is the temperature scaling. However, with a large vocabulary
(action space) of 146, 347 concepts, it becomes difficult to tune τ so that we sample the top concepts frequently enough
without being too skewed. Thus, we define a “tiering function” to adjust the probability mass in specified intervals of our
distribution. Given a sorted discrete probability distribution p, interval boundaries T0 = 0 < T1 < · · · < Tn, and interval

8
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masses ∆0, . . . ,∆n−1 such that
∑

i ∆i = 1, tiering computes a new distribution:

ptier
i = ∆j

pi∑Tj+1

k=Tj
pk

for j s.t. Tj ≤ i < Tj+1 (13)

ptier is a new distribution such that
∑Tj+1

k=Tj
ptier = ∆j . We use T0 = 0, T1 = 250, T2 = 1,000, T3 = 146,347, ∆0 = 0.8,

∆1 = 0.1, and ∆2 = 0.1. Simply put: we give the highest-ranked 250 concepts 80% of the probability mass, the next
750 concepts 10%, and all remaining concepts 10%. Figure 4 shows that tiering the scaled softmax distribution samples
frequently enough from the top concepts while a vanilla scaled softmax distribution does not.

A.8. WordNet Lemmas

We draw our concepts from the WordNet hierarchy (Miller, 1995), which consists of 146,347 noun lemmas. For reference,
here are 32 randomly sampled concepts:

"resolution", "lodgment", "phycobilin", "acidosis", "widening", "human
face", "family Crassulaceae", "sail", "Ipomoea imperialis", "Davis",
"prothrombin", "cease", "marsh clematis", "major power", "chump change",
"madcap", "junky", "pere david’s deer", "make-up", "genus Rumex", "gape",
"Brachychiton populneus", "bell morel", "wain", "friendly", "Principe",
"bottle green", "glycerol trimargarate", "water-shield", "San Joaquin
River", "woodsman", "pin".

A.9. GPT-J Descriptor Prompting

We use GPT-J-6B (Wang & Komatsuzaki, 2021), a free, open-source autoregressive language model, to generate useful
descriptors for a given concept. We use the following prompt template:

"What are some words that describe the quality of ‘{concept}’?

The {concept} is frail.

The {concept} is red.

The {concept} is humongous.

The {concept} is tall.

The {concept} is"

We sample completions with a temperature of 0.9 and a max length of 100 tokens. We truncate the completion after the first
comma, period, underscore, or newline character (including the special character). If the truncated completion is degenerate
and contains a duplicate of the concept, we resample another completion. After successfully sampling a descriptor, we
prepend it to the concept and use the resulting phrase as our search query.

For reference, here are 32 randomly sampled descriptors for “labrador retriever”:

"a good-looking dog", "very gentle", "a", "brown", "lovable", "a
strong runner", "a male or a female", "sturdy", "agile", "a strong",
"beautiful", "a male", "kind", "long-haired", "a male or a female", "a
good-looking dog", "gentle", "medium", "loyal", "very gentle", "blue-eyed",
"sturdy", "blue-eyed", "a retriever", "kind", "loyal", "large", "brown",
"good-natured", "gentle", "large", "small".

9
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Dataset Category

Oxford Flowers102 Flower
Oxford IIIT Pets Pet
Food101 Food
Birdsnap Bird
VOC2007 Object

Table 2. Target Dataset “Category”.

A.10. Concept Vocabulary Size

As stated in Section A.2, our vocabulary comprises the 146,347 noun lemmas in the WordNet hierarchy. Thus, in all our
experiments, Internet Explorer only searches for WordNet terms (plus the class names, if we have knowledge of the label
set). We found that this worked quite well for these standard benchmarks. Note that expanding the vocabulary (e.g., adding
technical terms relevant to a specific topic) can easily be done by adding those terms to the list of possible concepts. One
easy extension would be to add page titles and frequent unigrams and bigrams from Wikipedia, as was done to generate the
CLIP training set (Radford et al., 2021). Doing so would expand our vocabulary to roughly 500,000 total concepts.

A.11. Query Model Details

Temperature for concept distribution After estimating scores r(ci) for each concept ci, we do a temperature-scaled
softmax, followed by the tiering operation described in Section 2.6. We compute the temperature τ such that

SMR =
maxi r(ci)−mini r(ci)

τ
(14)

where the “softmax range” SMR ∈ R is the desired gap between the largest and smallest scores after temperature scaling.
After the softmax p(ci) ∝ exp(r(ci)/τ), the softmax range determines the likelihood ratio of most likely concept to least
likely concept:

maxi p(ci)

mini p(ci)
=

maxi exp(r(ci)/τ)

mini exp(r(ci)/τ)
(15)

= exp

(
maxi r(ci)−mini r(ci)

τ

)
(16)

= exp(SMR) (17)

Thus, SMR is an easy way to specify the relative likelihood of the highest and lowest scoring concepts and achieve a desired
exploration-exploitation balance.

Label set-guided vocabulary To reduce our search space in the label set-guided setting, in which we know the English
names of the classes a priori, we generate a subset of the WordNet vocabulary that contains only the top-10% most
semantically-relevant concepts to each target dataset. We use a pre-trained text embedding model (Reimers & Gurevych,
2019) to generate 384-dimensional embeddings for each concept in WordNet, using the same template described in Section
2.5 of the main paper:

{lemma} ({hypernym}): {definition}.

To generate a similar embedding for concepts in target datasets, we use the summary from Wikipedia in place of the
definition and the “category” of the target dataset (shown in Table 2) in place of the hypernym:

{label} ({category}): {summary}.

After generating the embeddings for each concept in the target dataset, we find the k-NN distance for each WordNet concept
to the target dataset embeddings, where k is chosen to be 1/3 the size of the class label set. We then rank the concepts in
WordNet by the distance and take the closest 10% of terms as our subset. This subset is used for all methods in the label
set-guided setting, including the random exploration methods.
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Hyperparameter Value

Architecture Resnet-50 (He et al., 2016)
Optimizer LARS (You et al., 2017)
Batch size 224
Learning rate 0.8× 224

256
Learning rate schedule constant
MoCo momentum 0.9985
RandomResizedCrop min crop area 0.2
Queries per iteration 256
Requested images per query 100
Min images per query 10
Softmax range (SMR) 3
PCR 2
Epochs per iteration 10

Table 3. Internet Explorer hyperparameters.

A.12. Training Details

In each iteration, we download roughly 25k candidate images, since we download up to 100 images for each of the 256
queries. Given this set C of candidate images, we sample PCR× |C| images from the union of the replay buffer B and the
target dataset training images D. PCR (past data to candidate data ratio) is a scalar value that determines how much old data
vs new data to train on at every iteration. We set PCR = 2 for all experiments. We perform 10 epochs of training over the
union of the new candidate data and the sampled replay buffer and target dataset images.

A.13. Hyperparameters

Table 3 shows our hyperparameter values, which are shared across datasets. We perform minimal hyperparameter tuning
and copy most of the values from the MoCo-v3 (Chen et al., 2021) ResNet-50 configuration. We will also release our code
upon acceptance, which we hope will clarify any remaining implementation details and make it easy for the community to
reproduce and build on our work.

A.14. Image Licenses

Internet Explorer uses images that were indexed by a web crawler (Google Images and LAION) or uploaded to Flickr. The
images and their rights belong to their respective owners; we use, download, and train on them under fair use guidelines for
research.

B. Experimental Results & Analysis
B.1. Experimental Setting

B.1.1. SELF-SUPERVISED EXPLORATION

We assume that we have an unlabeled target dataset of images for which we would like to learn useful visual features. We
compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

B.1.2. LABEL SET-GUIDED EXPLORATION

We may sometimes know the set of labels for our task (e.g., “golden retriever”, etc.) even if we do not have image-label
pairs. Knowing the label set greatly accelerates learning on the Internet, because it acts as a strong prior on what could be
useful. Using our text similarity model, we reduce the size of the vocabulary by selecting the top 10% (14,635 concepts)

11
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Figure 5. Learning curves in self-supervised setting. We show how k-NN validation accuracy improves across iterations on each target
dataset. Without using any labels, Internet Explorer identifies and focuses on relevant concepts for each target dataset. This allows it to
find more useful data than the baseline that searches for random concepts. Adding GPT-generated descriptors (Ours++) further improves
performance by enabling Internet Explorer to generate diverse views of useful concepts.

with the largest average top-k similarity to the label set in text embedding space. We set k to a third of the size of the label
set to reduce the impact of outliers. Reducing the size of the vocabulary strengthens our baselines by ensuring that they only
search for potentially useful concepts. We compare 4 methods:

1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time, and random concepts from the pruned vocabulary the other half of

the time.
3. Ours: sample labels half of the time and sample from our learned concept distribution the other half.
4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have additional supervision in the form of the label set.

B.1.3. DATASETS AND METRICS

We evaluate Internet Explorer on 4 popular small-scale fine-grained classification datasets: Birdsnap (Berg et al., 2014),
Flowers-102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and Oxford-IIT Pets (Parkhi et al., 2012). We
also evaluate on Pascal VOC 2007 (Cls) (Everingham et al., 2010), a coarse-grained multi-label classification task. These
small datasets consist of 2,040 to 75,750 training examples, making them ideal for testing whether Internet Explorer can
efficiently find relevant useful data. We do not target large-scale datasets like ImageNet (Deng et al., 2009) because they
already contain over a million human-curated Internet images. We compare the representation quality of our model w.r.t. its
target dataset using two metrics: k-nearest neighbors (k-NN) accuracy and linear probe accuracy.

B.2. Self-supervised Results

Figure 5 shows how Internet Explorer improves the k-NN accuracy more efficiently than sampling queries uniformly at
random from the concept vocabulary. In fact, random sampling occasionally decreases accuracy, likely due to the fact that
Internet images can generally be unsuitable for pre-training due to issues such as watermarks, images containing text, and
overly photogenic images (Mezuman & Weiss, 2012; Chen & Gupta, 2015). Table 4 shows that our method significantly
improves on the starting MoCo-v3 (ImageNet + target) checkpoint and can outperform a CLIP (Radford et al., 2021) model
of the same size while using much less compute and data. This is impressive as CLIP can be thought of as an oracle, since
its training set contains up to 20k Bing image search results for each WordNet lemma (in addition to other queries). Using
GPT-generated descriptors in “Ours++” also significantly improves performance by enabling Internet Explorer to generate
diverse views of the most useful concepts.

B.3. Self-supervised Exploration Behavior

Figure 6 shows the progression of Internet Explorer (Ours++) behavior on the Pets dataset in the self-supervised setting.
Since Pets consists of cat and dog breeds, to analyze the results, we use the WordNet hierarchy to divide concepts in our
vocabulary into 5 meaningful categories: cats, dogs, non-cat felines (e.g., lion), non-dog canines (e.g., wolf), and other. This
categorization is only done for this post hoc analysis and is not provided during training. Figure 6 (top) shows that Internet
Explorer rapidly identifies the roughly 0.3% of concepts that are useful for Pets. During the first two iterations, the average
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Model Birdsnap Flowers Food Pets VOC2007 Images GPU hrs.

Fixed dataset, lang. supervision
CLIP ResNet-50 (oracle) 57.1 96.0 86.4 88.4 86.7 400× 106 4,000

Fixed dataset, self-supervised
MoCo-v3 (ImageNet pre-train) 26.8 83.2 70.5 79.6 − 1.2× 106 72
MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0† 1.2× 106 72 + 12

No label set information
Random exploration 39.6 (−0.3) 95.3 (+0.7) 77.0 (−1.3) 85.6 (+0.3) 70.2 (+12.2) 2.2× 106 84 + 40
Ours 43.4 (+3.5) 97.1 (+2.5) 80.5 (+2.2) 86.8 (+1.5) 68.5 (+10.5) 2.2× 106 84 + 40
Ours++ 54.4 (+14.5) 98.4 (+3.8) 82.2 (+3.9) 89.6 (+4.3) 80.1 (+22.1) 2.2× 106 84 + 40

Use label set information
Search labels only 47.1 (+7.2) 96.3 (+1.7) 80.9 (+2.6) 85.7 (+0.4) 61.8 (+3.8) 2.2× 106 84 + 40
Labels + relevant terms 49.9 (+10.0) 98.0 (+3.4) 81.2 (+2.9) 87.0 (+1.7) 67.5 (+9.5) 2.2× 106 84 + 40
Ours 52.0 (+12.1) 97.6 (+3.0) 81.2 (+2.9) 87.3 (+2.0) 70.3 (+14.3) 2.2× 106 84 + 40
Ours++ 62.8 (+22.9) 99.1 (+4.5) 84.6 (+6.3) 90.8 (+5.5) 79.6 (+21.6) 2.2× 106 84 + 40

Table 4. Linear probing accuracy. Our method significantly improves the starting checkpoint performance in just 40 additional hours of
training. We show the performance change from the starting MoCo-v3 (ImageNet + target) initialization in green/red. CLIP numbers
correspond to linear probe (which is higher than its zero-shot accuracy). Internet Explorer reaches or often surpasses CLIP (oracle with 2x
params) performance on each dataset while using 2.5% as much compute and 0.5% as much data. †For VOC2007, we do not do ImageNet
pre-training because ImageNet is too close to VOC2007.

estimated reward for each category is roughly the same. However, after the first dog concept is searched in iteration #2, the
estimated reward and probability mass for dogs and other canines rapidly increases. The same happens for cats after the first
cat is searched in iteration #4. Interestingly, while “other felines” and “other canines” have higher average reward than the
“other” category, they still have much lower reward than cats and dogs. This indicates that our model understands that other
felines and canines (mostly large, wild predators) are only moderately relevant for house pet cats and dogs.

Figure 3 shows how Internet Explorer downloads progressively more useful images over time. It shows 8 random images
that were downloaded in iteration #0, #1, #3, #6, #10, and #15. Iteration #0 contains mostly useless data, like graphics
or screenshots, but Pets-relevant images already make up most of the downloads by iteration #3.

B.4. Label Set-guided Results

Internet Explorer significantly outperforms the stronger baselines in the label set-guided setting where we additionally have
knowledge of the label set. Searching for the label set continuously provides useful data and helps us rapidly identify other
useful concepts. Together with the diversity promoted by GPT descriptors, Ours++ outperforms CLIP in 3/5 datasets and
approaches its performance in the other 2, using just 2.5% of the time and 0.5% the data.

B.5. Learning from other sources of data

We primarily obtain images by querying Google Images, but Internet Explorer is compatible with any text-to-image search
engine. To measure the effect of the choice of search engine, we also test Internet Explorer with the Flickr photo search API
and a custom search engine we built on top of a subset of LAION-5B (Schuhmann et al., 2022). LAION-5B consists of
noisy web-scraped (text, image) pairs, and our custom LAION search engine searches using approximate nearest neighbors
in text embedding space. Thus, it tests whether Internet Explorer can still improve even when the search engine has little
inductive bias. We discuss more details in Appendix C. Table 5 shows that Internet Explorer consistently improves over
time, regardless of the search engine we use. Google consistently does best, followed by Flickr, then LAION (which has the
smallest pool of images to draw from). Using Internet Explorer to search LAION-5B consistently performs better than
random exploration—indicating that Internet Explorer is effective even for selecting data from a static dataset.

B.6. Effect of image reward type

We run an ablation on the type of image relevance reward. Instead of calculating the image reward based on the average
similarity to the k = 15 nearest neighbors in representation space (as in Appendix A.3), we also try using k = 1 or the
MoCo contrastive loss as the reward. Table 6 compares these three metrics in the label set-guided setting and shows that
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Figure 6. Self-supervised concept discovery on Pets dataset. When targeting the Pets dataset, self-supervised Internet Explorer quickly
estimates high reward for concepts from the cat category (82 concepts) and dog category (246 concepts). It is also able to identify felines
that are not cats (e.g., tiger) and canines that are not dogs (e.g., wolf), although it gives them lower reward on average. Finding these
categories is especially challenging, since they comprise only 460/146,347 = 0.3% of the vocabulary.
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Figure 7. Learning curves in label set-guided setting. Using knowledge of the label set improves the performance of all methods.

k = 15 does best. We explain this result by qualitatively comparing the behavior of various metrics on Food101 in Figure 8
in the appendix. The MoCo loss does not identify relevant concepts, instead preferring images that are difficult to align
across augmentations. Representation similarity with k = 1 also fails, as it prefers images of zebras and text because these
images are highly similar to a few outlier images in Food101. Our proposed reward with k = 15 eliminates the influence of
outliers and avoids this problem.

C. Learning from other sources of data
Google Images is an exceptionally useful data source for Internet Explorer. It offers access to a large portion of the Internet’s
images, and it ranks images using weak supervision from the image caption, surrounding text, click rates, image features,
incoming and outgoing hyperlinks, and other signals. This extra supervision is helpful and should be utilized. Nonetheless,
we show that Internet Explorer is agnostic to the choice of text-to-image search engine and can still rapidly improve even
when the data source is much noisier.

To test Internet Explorer in the most minimal setting, we build a custom search engine that finds images solely using their
accompanying text—without using any pre-trained visual features whatsoever. We use the LAION-5B dataset (Schuhmann
et al., 2022), which consists of 5.85 billion noisy image-caption pairs. We filter the dataset to only include samples with
English captions and images with at least 5122 pixels. This leaves us with about 600M text-image pairs. To find image results
for a query, we find the 100 captions closest to the query in text representation space, then return the associated images. We
use a pre-trained text embedding model (Reimers & Gurevych, 2019) to compute 384-dimensional text embeddings for each
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Model Flowers Food Pets

Google Flickr LAION Google Flickr LAION Google Flickr LAION

Fixed dataset
MoCo-v3 (IN) 83.2 83.2 83.2 70.5 70.5 70.5 79.6 79.6 79.6
MoCo-v3 (IN + target) 94.6 94.6 94.6 78.3 78.3 78.3 85.3 85.3 85.3

Undirected search
Random exploration 95.3 95.2 94.8 77.0 80.0 80.2 85.6 84.4 85.1

Internet Explorer
Ours++ (no label set) 98.4 98.1 94.6 81.2 80.3 80.9 87.3 88.4 85.9
Ours++ (with label set) 99.1 99.0 95.8 84.6 81.9 81.0 90.8 89.1 86.7

Table 5. Linear probe accuracy with other search engines. Internet Explorer improves its performance using any search engine,
including Flickr and our custom text-based LAION search engine.

Reward Type Food

MoCo loss 81.2
1-NN sim 83.2
15-NN sim (ours) 84.6

Table 6. Ablation on type of image reward. MoCo loss does not identify relevant concepts, and k = 1 similarity is too noisy to identify
useful concepts.

caption. Then, we use Faiss (Johnson et al., 2019) to compute a fast, approximate nearest-neighbors lookup index. Querying
our custom search engine finds 100 image results in less than a second. Figure 9 shows that our search engine is reasonably
accurate, even without using any image features.

 sunflowerShow me:

Figure 9. Our custom LAION-5B search engine. We
build a custom text-to-image search engine that finds
images within the LAION-5B dataset by doing nearest
neighbor search in text embedding space. This uses no
image features whatsoever.

We also test Flickr’s photo search API as another text-to-image search
engine, in addition to Google Images and LAION. Figure 11 shows
that each data source has its own tendencies. For the “spaghetti
bolognese” query, Google Images is biased (Mezuman & Weiss, 2012;
Chen & Gupta, 2015) towards brightly-lit, photogenic images that
typically come from food blogs. Flickr mainly consists of amateur
home photos, so it returns a messier variety of images that perhaps
better capture the real world. LAION images come from web crawling,
without any ranking, so they additionally contain many graphics with
text overlays. The same image can also frequently show up in the
LAION results multiple times, as a result of being posted on multiple
separate pages.

Figure 10 and Table 5 (main paper) show that Internet Explorer still
improves over time, even when the data comes from LAION or Flickr.
Internet Explorer tends to perform better with Flickr than with LAION,
which makes sense. Flickr indexes far more images, as our custom
LAION search engine only uses 600M images, so it can return more
of the useful photos that Internet Explorer queries for. Flickr is also
slightly better at understanding descriptors, although both Flickr and LAION tend to be thrown off by specific or odd
descriptors. Nevertheless, Internet Explorer significantly improves the starting model in less than a day of searching and
training even with noisy search results and no hyperparameter tuning. Overall, these results prove that Internet Explorer can
effectively utilize any window into the Internet’s vast ocean of image data.
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15-NN 
similarity:

MoCo loss:

1-NN 
similarity:

1-NN in 
Pets dataset:

breakfast 
burrito

edamame chocolate 
mousse

hamburgerLabel:

Figure 8. Most preferable images under different rewards. We show the top 5 downloaded images ranked by 3 possible image rewards
on the Food dataset. 15-NN (ours) prefers a variety of food images, whereas MoCo prefers noisy images out of the training distribution.
1-NN is thrown off by outliers in the Food dataset and thus prefers black images, text, and zebras.

D. Are we finding the entire test set online?
One may be concerned that Internet Explorer improves performance mainly by finding a significant portion of the test
set images online. We address this concern by checking how much test data Internet Explorer has downloaded. We use
difference hashing (dHash) (Buchner, 2021) to compute hashes for the target dataset’s training set, its test set, and the ≈ 106

images that Internet Explorer has downloaded. We compare hashes to determine how many test images were leaked, and
we report the number of collisions in Table 7. Across all five datasets, Internet Explorer finds very few test images. On
Birdsnap, Internet Explorer finds 56 additional test set images that were not leaked in the training set, which is roughly 3%
of the test set. On the other datasets, the amount leaked ranges from 0.003% to 0.6% of the test set. Additionally, we only
perform self-supervised training on downloaded images, so it is much harder for our model to cheat with the leaked images.
Overall, given that Internet Explorer outperforms its starting checkpoint by between 5 to 30 percentage points, we conclude
that its performance cannot be explained by cheating.

In fact, we view it as a positive that Internet Explorer finds some test set images, because it serves as confirmation that it is
learning to search for relevant images—and the most relevant images possible would be those from the dataset itself! But
beyond test set images, Internet Explorer finds a lot of internet images that are very relevant to the dataset. We visualize the
top-10 most similar images for 5 randomly selected test set images from the Flowers, Food, and Pets datasets in Figure 12.
We use CLIP ViT-L/14 to compute the representations of the test set images, as well as the downloaded images. We then
find the top-10 most similar online images given a test set image (from the downloaded images using Ours++ (with label
set)). We see that Internet Explorer finds several images that are very similar but not identical to the test set images.
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Figure 10. Learning from Flickr and LAION-5B. Even with the noisy search results returned by Flickr and LAION, Internet Explorer
still continuously improves performance.
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Food101 dataset: “Spaghetti Bolognese”

Google Images: “Spaghetti Bolognese”

Flickr: “Spaghetti Bolognese”

LAION-5B: “Spaghetti Bolognese”

Figure 11. Comparison of different search engines. We show images for the “spaghetti bolognese” class in the Food101 dataset, as well
as 20 search results for “spaghetti bolognese” from Google Images, Flickr, and LAION5B. Google images are typically well-lit, aesthetic
food blog pictures. In comparison, Flickr images are messier, darker, and capture a wider variety of real-world conditions. LAION-5B
images lie somewhere in the middle, but contain text overlays much more frequently. Duplicate image results are also common.
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Figure 12. Top-10 most similar online images. The left column shows randomly chosen test set images from each dataset, and the right
block shows the 10 most similar images in the downloaded data for each test image, ranked left to right.
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Birdsnap Flowers Food Pets VOC2007

Target test set size 1849 6142 25246 3663 4952

No exploration
Target training set overlap 1 (0.05%) 5 (0.01%) 34 (0.13%) 21 (0.57%) 0 (0.00%)

Internet Explorer
Ours++ (no label set) 28 (+1.46%) 11 (+0.01%) 35 (+0.00%) 26 (+0.14%) 1 (+0.02%)
Ours++ (with label set) 57 (+3.03%) 27 (+0.36%) 35 (+0.00%) 43 (+0.60%) 1 (+0.02%)

Table 7. Number of leaked test set images. We use image hashing to compute the fraction of test images present in the set of images
downloaded by Internet Explorer. Surprisingly, the training/validation sets of these datasets already leak a small fraction of the test
sets—Pets is the most egregious, with 0.57% of test images leaked. For each dataset, we show the test set size, the number of leaked test
images, and the percentage of the test set that this represents in blue; for each version of our method, we show the total number of leaked
images that the model had access to, and the percentage increase this represents over the dataset’s leakage in blue. Leakage numbers
for our methods include this train-test leakage, since our methods also train on the target dataset’s training set. Internet Explorer only
finds a tiny fraction of test set images online, and it only uses them for self-supervised training, so there is no label leakage. Overall,
Internet Explorer’s increase in accuracy cannot be explained by test set leakage, so it must be improving performance through better
feature learning and generalization.

E. Progression of downloaded images
Just as Figure 3 in the submission showed how Internet Explorer progressively discovers useful data when targeting the Pets
dataset, Figure 13, Figure 14, Figure 15, and Figure 16 show the progression of downloaded images when targeting Birdsnap,
Flowers, Food, and VOC respectively. Note that this analysis is in the self-supervised setting, without any knowledge of the
label set.

F. Related Work
Many papers use self-supervised or weakly-supervised learning on large-scale static datasets collected from the Internet,
such as YFCC-100M (Thomee et al., 2015), Instagram-1B (Mahajan et al., 2018), or LAION-400M (Schuhmann et al.,
2021). However, these are usually impractically expensive since they attempt to train on all of the data, not just the subset
relevant for a target dataset. Another line of work continuously interacts with the Internet to find useful data, instead of
using fixed-size scraping. NELL (Carlson et al., 2010; Mitchell et al., 2018) extracts text from web pages to learn candidate
beliefs, and NEIL (Chen et al., 2013) uses images downloaded from Google Image Search to learn visual concepts. However,
both methods are undirected (i.e., they do not modify their exploration behavior to prioritize specific data), which means that
learning proceeds slowly. Kamath et al. (2022) improves a visual question-answering model using a set of predetermined
Bing queries. In contrast to these works, Internet Explorer uses targeted exploration on the open web to find data for
self-supervised training.
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Target dataset: Birdsnap

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 13. Progression of downloaded Birdsnap images. This corresponds to Ours++ without using label set information.

Target dataset: Flowers

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 14. Progression of downloaded Flowers images. This corresponds to Ours++ without using label set information.
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Target dataset: Food

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 15. Progression of downloaded Food images. This corresponds to Ours++ without using label set information.

Target dataset: VOC2007

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 16. Progression of downloaded VOC2007 images. This corresponds to Ours++ without using label set information.
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