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Abstract

Labeled data are critical to modern machine learn-
ing applications, but obtaining labels can be ex-
pensive. To mitigate this cost, machine learn-
ing methods, such as transfer learning, semi-
supervised learning and active learning, aim to
be label-efficient: achieving high predictive per-
formance from relatively few labeled examples.
While obtaining the best label-efficiency in prac-
tice often requires combinations of these tech-
niques, existing benchmark and evaluation frame-
works do not capture a concerted combination
of all such techniques. This paper addresses
this deficiency by introducing LabelBench, a
new computationally-efficient framework for joint
evaluation of multiple label-efficient learning
techniques. As an application of LabelBench, we
introduce a novel benchmark of state-of-the-art
active learning methods in combination with semi-
supervised learning for fine-tuning pretrained vi-
sion transformers. Our benchmark demonstrates
better label-efficiencies than previously reported
in active learning. LabelBench’s modular code-
base will be open-sourced for the broader commu-
nity to contribute label-efficient learning methods
and benchmarks.

1. Introduction
Recently, large pretrained models have provided practition-
ers strong starting points in developing machine-learning-
powered applications (Radford et al., 2021; Yu et al., 2022;
Kirillov et al., 2023). While zero-shot and few-shot pre-
dictions can provide solid baselines, linear probing (which
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freezes the model and trains a layer on top) and fine-tuning
based on human annotation yield significantly better perfor-
mance (Radford et al., 2021; Yu et al., 2022). Label-efficient
learning, the objective of which is to achieve high predictive
performance with fewer labels, has received much attention
lately due to the high annotation cost of labeling large-scale
datasets.

Transfer learning, semi-supervised learning (SSL) and ac-
tive learning (AL) all study different aspects of label-
efficient learning. Modern transfer learning leverages large
general-purpose models pretrained on web-scale data and
fine-tunes the model to fit application-specific examples.
Semi-supervised learning utilizes a large set of unlabeled
examples to estimate the underlying data distribution and
more efficiently learn a good model. Active learning in-
crementally and adaptively annotates only those examples
deemed to be informative by the model. To date, however,
no existing literature has studied the above methods under
a single unified framework for fine-tuning large pretrained
models.

In this paper, we present LabelBench, a comprehensive
benchmarking framework for label-efficient learning. Ad-
ditionally, our framework tackles computational efficiency
problems that arise when scaling these techniques to large
neural network architectures. Specifically, incorporating
active learning involves periodically re-training the model
based on the latest labeled examples. While repeatedly
training small convolutional neural networks is practically
feasible (Sener & Savarese, 2017; Ash et al., 2019; 2021;
Beck et al., 2021; Zhan et al., 2022; Lüth et al., 2023), re-
training large-scale models is extremely compute intensive,
which could be computationally prohibitive for conduct-
ing large scale experiments on active learning. Inspired
by selection-via-proxy (Coleman et al., 2019), we propose
lightweight retraining schemes (based on freezing all but
the last layer of large pretrained models) for the purpose of
data selection and labeling, but evaluate final model perfor-
mance with a single end-to-end fine-tuning. This technique
yields a ten-fold reduction in training cost, but reaps all the
label-efficiency gains of using active learning.

To showcase the power of our framework, we conduct ex-
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(a) Generalization Accuracy on CIFAR-10
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(b) Generalization Accuracy on ImageNet

50000 100000 150000 200000 250000 300000 350000 400000
Number of Labels

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Po
ol

 A
cc

ur
ac

y

RANDOM
CONFIDENCE
ENTROPY
MARGIN
CORESET
BADGE

(c) Pool Accuracy on ImageNet

Figure 1. Performance of active learning + FlexMatch re-training + CLIP ViT-B32 when given different annotation budgets. Generalization
accuracy refers to the model’s Top-1 test accuracy. Pool accuracy measures the labeling accuracy on the pool of examples to be labeled
(see Section 4.2 for more details). Each curve of CIFAR-10 is averaged over 4 trials and each curve of ImageNet is averaged over two
trials. The confidence intervals are based on standard error. The AL gains over passive presented here are significantly larger than typical
gains observed in previous AL work where SSL and pretrained models are not considered.

periments that benchmark multiple deep active learning
algorithms in combination with semi-supervised learning
and large pretrained models; compared to existing active
learning literature, our experiments yield state-of-the-art
label-efficiency. To highlight some of our results, we ob-
serve a more than four-fold reduction (75% savings) in
annotation cost over random sampling on CIFAR-10 (Fig-
ure 1(a)), a dataset known to be particularly challenging for
active learning 1. This improvement is further demonstrated
in our experiments on ImageNet (Figure 1(b, c)). Under
any fixed annotation budget, our experiments suggest active
learning algorithms can consistently boost test accuracy by
more than 1.2% and pool accuracy (accuracy of predictions
on the pool of unlabeled training data defined in Section 4.2)
by more than 5%. Compared to the previous best results in
this setting (Emam et al., 2021), our results yield at least
10% higher test accuracy. Overall, LabelBench provides a
light-weight experiment framework for researchers to test
their algorithms on under more realistic and large-scale
scenarios.

2. Related Work
Large pretrained models have demonstrated a wide range of
emergent generalization abilities on downstream language
and vision tasks. Most of these models are trained on web-
scale data with supervised (Kolesnikov et al., 2019; Doso-
vitskiy et al., 2020; Zhai et al., 2021) or self-supervised
techniques (Radford et al., 2021; Jia et al., 2021; Yuan et al.,
2021; Singh et al., 2021; Yao et al., 2021; Wang et al., 2022a;
Yu et al., 2022). While these models are powerful by them-
selves, adapting them to applications often requires transfer

1As reported in seminal papers and common benchmarks such
as Ash et al. (2019) (Figure 16), Ash et al. (2021) (Figure 10),
Beck et al. (2021) (Figure 1) and Lüth et al. (2023) (Figure 6-8),
they see less than two-fold reductions in annotation cost.

learning by fine-tuning on human annotated examples. Be-
low we survey existing literature on label-efficient learning
with an emphasis on the interplay among large pretrained
models, semi-supervised learning and active learning.

2.1. Semi-supervised Training

While in traditional supervised learning the model is only
trained on the set of labeled examples, in semi-supervised
learning (SSL) the model is additionally trained on the re-
maining unlabeled examples in the pool, with the intention
of taking the underlying sample distribution into account
for more label-efficient training. Intuitively, SSL leverages
the assumption that examples lying “nearby” to one an-
other should belong to the same class, and therefore dur-
ing training the model is encouraged to produce the same
model output for these examples (for an overview of SSL
we refer the interested reader to (Zhu, 2005; van Engelen &
Hoos, 2020; Ouali et al., 2020)). Broadly speaking, modern
SSL methods implement this principle using a combina-
tion of Consistency Regularization — where model outputs
of neighboring examples are regularized to be similar —
and Pseudo Labeling — where unlabeled examples that the
model is confident on are assigned artificial labels to supple-
ment supervised training (Sohn et al., 2020; Berthelot et al.,
2020). In our pipeline we implement one such SSL method
called FlexMatch (Zhang et al., 2021), due to its simplicity
and effectiveness.

Semi-supervised Training of Large Pretrained Models.
The application of SSL to fine-tuning large pretrained mod-
els is a nascent area of research. (Cai et al., 2022) pioneered
the application of SSL methods to large-scale vision trans-
formers by using a multi-stage pipeline of pretraining fol-
lowed by supervised fine-tuning and finally semi-supervised
fine-tuning. (Lagunas et al., 2023) apply this pipeline to a
fine-grained classification e-commerce task and demonstrate
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improved performance compared to standard supervised
training. SSL training on transformer architectures has also
been successfully applied to video action recognition (Xing
et al., 2023). USB (Wang et al., 2022b) is a benchmark that
includes SSL evaluations on large pretrained models such
as ViT; however, it does not incorporate AL into its pipeline,
as we do here.

2.2. Active Learning

Suppose we have a large pool of unlabeled examples and a
limited labeling budget. We might study how to choose an
informative subset for label annotation so that a learner
yields strong performance. While experimental design
(Pukelsheim, 2006) studies the setting where the subset
is chosen before any annotations are observed, pool-based
active learning (Settles, 2009) examines iterative adaptive
annotation: labels from previously annotated examples can
be used to determine which examples to choose for anno-
tation in the next iteration. Active learning algorithms are
generally designed to maximize one or both of the intu-
itive concepts of uncertainty and diversity. Uncertainty,
measured in a variety of ways (Settles, 2009), refers to the
uncertainty of a trained model for the label of a given point
(Lewis, 1995; Scheffer et al., 2001), while diversity refers to
selecting points with different features (Sener & Savarese,
2017). Many algorithms maximize a combination of these
two concepts (Ash et al., 2019; 2021; Citovsky et al., 2021;
Zhang et al., 2022).

Active Learning for Fine-Tuning Large Pretrained Mod-
els. Recent literature in deep active learning has started to
utilize large pretrained models for large-scale datasets. Cole-
man et al. (2022) proposes a computational efficient method
to annotate billion-scale datasets by actively labeling ex-
amples only in the neighborhood of labeled examples in
the SimCLR (Chen et al., 2020) embedding space. Tamkin
et al. (2022) studies the emergent property of uncertainty
sampling when using large pretrained models. LabelBench
serves as a more comprehensive large-scale benchmark for
these studies, where we combine SSL training in our frame-
work. We further take into account the expensive cost of
fine-tuning large pretrained models at every iteration of
active data collection.

In addition, numerous papers have utilized self-supervised
or unsupervised learning methods to initilaize their models
(Siméoni et al., 2021; Chan et al., 2021; Wen et al., 2022;
Lüth et al., 2023) on the unlabeled datasets. However, their
methods do not utilize existing large pretrained models.

Active Learning with Semi-supervised Training. Since
AL and SSL seek to maximize model performance using
only a minimal budget of labeled points, it is natural to
combine both techniques to maximize label efficiency. This
practice dates back to (Zhu et al., 2003), which labels exam-

ples that minimize expected classification error in a Gaus-
sian Field SSL model. In the context of deep learning, (Lüth
et al., 2023; Chan et al., 2021; Mittal et al., 2019; Siméoni
et al., 2021) benchmark various AL methods in SSL settings.
(Huang et al., 2021) develops a hybrid AL/SSL approach
for computer vision tasks, and (Gao et al., 2020) develops
a consistency-based AL selection strategy that is naturally
compatible with SSL methods. (Borsos et al., 2021) ap-
proaches AL in the context of SSL as a problem of dataset
summarization, and demonstrates improved performance
on keyword detection tasks. (Hacohen et al., 2022; Yehuda
et al., 2022) both use FlexMatch as a baseline SSL method
in their AL experiments, further corroborating our choice to
implement FlexMatch in our own pipeline.

3. Label Efficient Fine-tuning Framework

Pretrained
large-scale

models

Model
fine-tuning

Linear probe

Shallow probe

Full finetune

Active
learning

algorithms
Dataset

Labeled
training

data

Unlabeled
training data 

Select new data
to label

Proxy
model

Pre-computing
augmented
embeddings

Semi-supervised Leanring

Figure 2. A modular framework consisted of pre-trained models,
SSL trainer and AL strategies.

We propose a framework for label-efficient learning consist-
ing of three widely-adopted components in modern deep
learning: initialization from a large pretrained model, data
annotation, and fine-tuning on downstream tasks. Our frame-
work bears much resemblance to traditional active learning,
but also takes advantage of large pretrained models and semi-
supervised learning in obtaining the optimal label-efficiency.
As shown in Figure 2, our framework starts with a large
pretrained model as initialization. Data annotation follows
a closed-loop procedure, where one starts with a pool of
unlabeled examples in the beginning and iteratively gathers
more human annotations. At any iteration, given a partially
labeled pool we utilize semi-supervised training to obtain
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the best performing model. Informed by this trained model,
an active learning strategy selects unlabeled examples it
deems the most informative. The selected examples are sent
to human annotators for labeling. At the end of the iteration,
the newly annotated labels are recorded into the dataset.

The greatest challenge in implementing this framework
comes from incorporating large-scale model training while
meeting a limited computational budget. Unlike classical
deep AL literature (Sener & Savarese, 2017; Ash et al.,
2019; 2021) that utilizes smaller neural network architec-
tures (e.g., ResNet-18), computational cost of fine-tuning
large pretrained models at every iteration of the data col-
lection loop is significant. To address this challenge, we
propose a selection-via-proxy approach (Section 3.1), along
with additional code optimization to improve the computa-
tional and memory efficiencies for large-scale datasets. In
addition, our codebase is modular, allowing contributors
to easily work on isolated components of the framework
(Section 3.2).

3.1. Selection via Proxy

During each iteration of data collection, there are three po-
tential strategies in fine-tuning the large pre-trained model:
fine-tuning the model end-to-end, training only a linear
probe, and training a nonlinear probe with shallow neural
network. In the latter two strategies, the learner freezes the
pretrained image encoder and attaches it with the less com-
putationally intensive model (i.e. linear classifier, shallow
network). In traditional active learning, the same model is
utilized for both informing the selection of examples and
acts as a deployable predictive model after label budget has
been exhausted. Consequently, end-to-end fine-tuning leads
to expensive retraining costs, while probing methods, al-
though computationally efficient, performs much worse at
test time due to the limitation on model capacity.

To better trade-off between retraining/inference cost and the
final model performance, we present the selection-via-proxy
approach, which is inspired by (Coleman et al., 2019). In
the referenced work, a less computationally intensive proxy
is created by carefully scaling down the original model ar-
chitecture and training for fewer epochs. In our framework,
we exploit a more straightforward approach by employing
the linear probe and shallow network models as potential
proxies. During every iteration of the data annotation loop,
the learner only retrains the proxy model, which informs
the selection of unlabeled examples to be annotated. After
collecting a sufficient amount of labeled examples or reach-
ing the labeling budget limits, the learner then switches to
end-to-end fine-tuning at the last batch to further boost the
performance of the final model. As a result, selection-by-
proxy significantly reduces the cost of back-propagation.

We further diminish the forward inference cost by precom-

End-to-end
Fine-Tune

Shallow Network
(proxy)

Training Stage
GPU
Hours

AWS
Dollars

GPU
Hours

AWS
Dollars

Precomputation 0 $0 5 $15
Retraining 1900 $5700 57 $180

Final Model 100 $300 100 $300
Total 2000 $6300 162 $495

Table 1. Estimated cost of neural network training for ImageNet
experiments when collecting 600,000 labels with 20 iterations
(batches of 30,000 labels per iteration). Here we display the total
cost of running 12 trials with CLIP ViT-B32 and FlexMatch semi-
supervised training (Zhang et al., 2021). All AWS dollars are
based on on-demand rates of EC2 P3 instances.

# Add a new d a t a s e t .
@ r e g i s t e r d a t a s e t ( ” m y d a t a s e t ” ,

MULTI CLASS )
def g e t d a t a s e t ( . . . ) :

. . .

# Add a new SSL A l g o r i t h m .
C l a s s MyTrainer ( PyTorchSemiTra ine r ) :

def t r a i n s t e p ( img , aug img , . . . ) :
. . .

Figure 3. Our modular codebase allows one to work solely
in one directory without a thorough knowledge of the entire
codebase. Implementing a new dataset or semi-supervised
learning trainer is as easy as implementing a single function.

puting and saving embeddings of each dataset in advance.
To account for random image augmentations during train-
ing, we precompute five sets of embeddings on randomly
augmented images using different random seeds. Our dat-
aloader loops through these sets of embeddings over differ-
ent epochs. As shown in Table 1, we highlight the reduction
in experimentation cost on the ImageNet dataset. In particu-
lar, selection-via-proxy reduces the GPU time and training
induced cost by more than ten-fold.

3.2. Codebase

Our codebase consists of five components: datasets, model,
training strategy (for suprevised and semi-supervised train-
ing), active learning strategy and metrics. We would like to
highlight the following advantages of our implementation:

• Modularity. As shown in Figure 3, adding any new
instance, such as a new dataset or training strategy, simply
involves implementing a new function. This allows future
contributors to solely focus on any isolated component
without a thorough understanding of the entire repository.
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• Self-report mechanism. We include configuration files
of all experiment setups. In addition, we keep track of
all experiment results in the results directory for fair
comparisons. Researchers are encouraged to self-report
their research findings by submitting pull requests to our
repository. This significantly reduces the unnecessary
overhead of replicating existing experiments for the re-
search community.

• Significant speed-up of existing AL implementation.
Running some AL algorithms can be time-prohibitive
when scaled to large datasets with large numbers of
classes. In our implementation, we speed up popular
active learning algorithms such as BADGE (Ash et al.,
2019) by orders of magnitude in comparison to existing
implementations (see details in Appendix C).

4. Benchmarking Active Learning Algorithms
As a demonstration of the utility of our framework, we con-
duct experiments in comparing popular deep active learn-
ing strategies in combination with large pretrained models
and semi-supervised training. Our results presented in Sec-
tion 4.4 shows better label efficiencies than state-of-the-art
deep AL literature. Moreover, we discuss the accuracy gap
by using selection-via-proxy under different settings.

4.1. Experiment Setup

Here we detail our benchmark’s specific choices of AL
strategies, large pretrained models, and semi-supervised
training methods. It is important to note that settings beyond
the ones discussed here can also be easily integrated into our
general framework and codebase. We leave more detailed
discussions on potential future directions to Section 5.

Our benchmark studies the following annotation procedure:

1. Initial large pre-trained model. We use pretrained CLIP
(Radford et al., 2021) and CoCa (Yu et al., 2022) with
the ViT-B32 architecture as image encoders. For end-
to-end fine-tuning, we attach the image encoder with a
dataset-dependent zero-shot head. On the other hand,
proxy models are initialized randomly. Throughout our
experiments, shallow networks have a single hidden layer
with the same dimension as the embeddings.

2. Initial batch of labels. We collect the first batch of labels
by choosing examples uniformly at random.

3. Adaptive annotation loop. We iterate over the following
steps to annotate batches of examples.

Model training. At the beginning of each itera-
tion, the dataset is partially labeled. We use the semi-
supervised training technique FlexMatch (Zhang et al.,
2021) to fine-tune the vision transformer or train the
proxy model from scratch. FlexMatch minimizes the
sum of supervised training loss on labeled examples and

unsupervised losses on unlabeled examples, including the
loss of pseudo labeled examples and the regularization
term capturing the input distribution properties.

Data selection. Given the trained model, we use
a data selection strategy to select unlabeled examples
for annotation. We benchmark against prevalent active
learning algorithms such as confidence sampling (Lewis,
1995), margin sampling (Scheffer et al., 2001), entropy
sampling (Settles, 2009), BADGE (Ash et al., 2019) and
GALAXY (Zhang et al., 2022) (see Section 2 and Ap-
pendix A for details). These algorithms make decisions
based on the model’s properties and its prediction on the
pool of unlabeled examples (e.g. the confidence/entropy
score, the gradient of the linear head).

Annotate. Based on the strategy’s selection, we
reveal the ground-truth labels and update the dataset.

4. Final Model. After the annotation budget is exhausted,
we fine-tune the pretrained CLIP or CoCa model end-to-
end regardless if we are using proxy model for selection.
Similar to the above, we use FlexMatch to fine-tune on
the collected labeled examples as well as the remaining
unlabeled examples.

Appendix B details our hyper-parameter tuning procedure.

4.2. Performance Metrics

We report results on the following two tasks of label-efficient
learning.

• Label-efficient generalization aims to learn accurate
models that generalize beyond examples in the pool while
spending limited budget on oracle annotation, such as
human labeling. We refer to the models’ performances on
test data as generalization performance. In this paper, we
report performances on in-distribution test data (drawn
from the same distribution as the pool). As will be men-
tioned in Section 5, one may further develop benchmarks
on label-efficient learning under distribution shifts.

• Label-efficient annotation aims to annotate all exam-
ples in the pool with limited budget. When the dataset
is partially labeled by human, a model trained based on
existing annotations can serve as a pseudo annotation tool
that labels the rest of the unlabeled examples. We refer
to the percentage of labels (both human annotated and
pseudo labels) that agree with ground-truth labels as the
pool performance. Examples of label-efficient annota-
tion applications include product cataloging, categorizing
existing userbases, etc.

To quantify performance, we use the standard accuracy for
(near) balanced datasets, and balanced accuracy and macro
F1 score for imbalanced datasets. Balanced accuracy and
macro F1 score are measured as unweighted averages of per-
class recall accuracies and per-class F1 scores, respectively.
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(a) Generalization accuracy on ImageNet,
AL + FlexMatch + CoCa ViT-B32
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(b) Generalization accuracy on fMoW,
AL + FlexMatch + CLIP ViT-B32

5000 10000 15000 20000 25000
Number of Labels

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Te
st

 M
ac

ro
 F

1

RANDOM
CONFIDENCE
ENTROPY
MARGIN
CORESET
GALAXY
BADGE

(c) Generalization macro F1 on iWildcam,
AL + FlexMatch + CLIP ViT-B32
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(d) Pool accuracy on ImageNet,
AL + FlexMatch + CoCa ViT-B32
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(e) Pool accuracy on fMoW,
AL + FlexMatch + CLIP ViT-B32
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(f) Pool macro F1 on iWildcam,
AL + FlexMatch + CLIP ViT-B32

Figure 4. Performances of different data selection strategies on ImageNet, fMoW and iWildcam. The ImageNet results differ from Figure 1
by using a different pretrained model, CoCa ViT-B32. Each result of fMoW and iWildcam is averaged over four trials and each results of
ImageNet is over two trials due to the limitation of computing resources. The confidence intervals are based on standard error.

4.3. Datasets

We first test on CIFAR-10 and ImageNet, both of which
are standard datasets used in previous AL and SSL papers.
To further evaluate LabelBench on more realistic datasets,
we also test on iWildCam (Beery et al., 2021) and fMoW
(Christie et al., 2018), as parts of WILDS benchmark (Koh
et al., 2021). To the best of our knowledge, only a handful
of existing studies, such as (Tamkin et al., 2022; Mussmann
et al., 2022; Bartlett et al., 2022), have evaluated label-
efficient algorithms on these datasets, albeit under different
experimental setups. This benchmark is originally intended
to represent distribution shifts faced in the wild (i.e., OOD
test sets), here we limit our evaluation to in-domain (ID)
test set performance as an initial exploratory step. Using
these datasets provides several advantages:: 1) Both of them
are highly imbalanced. 2) Fine-tuning pre-trained large-
scale models on them is more challenging than on imageNet
(e.g., ID test acc on fMoW is 73.3% (Wortsman et al., 2022)
when fine-tuning ViT-L14 end-to-end). 3) Unlike imagenet
whose examples are gathered by querying search engines
and passing candidate images through a validation step on
Amazon Mechanical Turk, iWildCam and fMoW gather
labels directly from human annotators, which aligns more
closely with our aim to enhance label efficiency.

4.4. Results and Discussion

In this section we present a summary of performance evalua-
tions on various combinations of models and AL strategies.

End-to-end Fine-tuning First, we summarize our results
when end-to-end fine-tuning the large pretrained model at
every iteration of the data collection loop. When comparing
the results of AL strategies to random sampling, we consis-
tently see label efficiency gains across all datasets (Figures 1
and 4). Such label efficiency gain is especially significant on
pool performances, with active learning strategies saving up
to 50% of the annotation budget for ImageNet (Figure 4(d)).
Notably, these gains are not confined to CLIP models. As
shown in Figures 4(a,d), we observe consistent gains in
accuracies also with pretrained CoCa model. In general,
when comparing performance of different AL strategies on
(near) balanced datasets (ImageNet, CIFAR-10 and fMoW),
margin sampling surprisingly performs among the top in
terms of both generalization and pool accuracy. On im-
balanced dataset like iWildcam, GALAXY demonstrates a
clear advantage in terms of generalization and pool macro
F1 scores. These findings underscore the importance of
further evaluating AL strategies on more realistic dataset.

Lastly, comparing to existing literature of AL + SSL (Lüth
et al., 2023; Chan et al., 2021; Mittal et al., 2019; Siméoni
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(a) Selection and evaluation with end-to-
end fine-tuning, batch size of 1000
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(b) Selection with shallow network, evalu-
ation on fine-tuning, batch size of 1000
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(c) Selection with shallow network, evalua-
tion on fine-tuning, batch size of 200

Figure 5. Generalization performance on CIFAR-10 when using different proxy models for data selection. Each result is averaged over
four trials and the confidence intervals are based on standard error.

Test Accuracy Pool Accuracy

Fine-tune Shallow Network Fine-tune Shallow Network

Confidence 97.84± .07 97.85± .05 99.92± .02 99.67± .02
Entropy 97.89± .08 97.87± .14 99.93± .01 99.65± .02
Margin 97.97± .12 97.88± .17 99.93± .01 99.68± .01
Coreset 97.79± .06 97.81± .19 99.48± .02 98.94± .03
GALAXY 97.94± .20 97.98± .12 99.90± .01 99.66± .02
BADGE 97.95± .08 97.84± .10 99.93± .01 99.61± .02
Random 97.59± .22 97.59± .22 98.18± .05 98.18± .05
Best Overall 97.97± .12 97.98± .10 99.93± .01 99.68± .01

Table 2. Selection-via-proxy results of CIFAR-10 using CLIP ViT-B32. The results are evaluated with 10,000 labels. Confidence intervals
are standard errors based on four trials.

et al., 2021) and AL + large pretrained models (Tamkin
et al., 2022), our experiment yields the largest percentage of
annotation cost savings to reach the same level of accuracy
as random sampling. This reinforce the importance of study-
ing the combination of active learning, semi-supervised
learning and pretrained foundation models under an unified
framework.

Selection-via-proxy. We also study the effectiveness and
drawbacks of selection-via-proxy where we only retrain
shallow neural networks (proxy models) for data selection.
We compare it against selection with fine-tuning, where
one fine-tunes the entire model during the data collection
process. Note that despite using different models for data se-
lection, our evaluation results of both strategies are reported
based on fine-tuning pretrained models end-to-end on the
selected examples. As shown in Table 2, 3, 4, selection-
via-proxy performs similarly to selection with end-to-end
fine-tuned models in terms of test accuracy. On the other
hand, we found that selection-via-proxy is less effective
than selection with fine-tuning in terms of pool accuracy -
there is an approximately 3% reduction in performance in
fMoW and ImageNet experiments.

To further investigate the label-efficiency tradeoff of the
two methods, in Figures 5(a,b), we plot their performances
respectively after collecting every batch of labels. The gap
between selection-via-proxy and selection with fine-tuning
diminishes quickly with more iterations of data selection.
As shown in Figure 5(c), we can further close the gap in
lower-budget settings by collecting more rounds of anno-
tations with smaller batches. Indeed, to achieve 97.75%
accuracy (random sampling’s accuracy with 10,000 labels),
selection-via-proxy only requires 2750 labels (with batch
size of 200), comparable to selection with fine-tuning’s
label-efficiency in Figure 5(a). We note that smaller batches
are only computationally feasible for selection-via-proxy, as
one can only end-to-end fine-tune a small number of times
under a limited budget.

5. Call for Contribution and Future Work
We call on the broader community to further develop dif-
ferent components of LabelBench: below we provide sug-
gested contributions for each directory of framework. Our
codebase is modular, so one can easily start working on a
single component without a thorough understanding of the
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Test Accuracy Pool Accuracy

Fine-tune Shallow Network Fine-tune Shallow Network

Confidence 58.66± .49 57.82± .37 72.47± .32 70.91± .41
Entropy 58.14± .75 57.75± .35 71.02± 1.40 70.87± .27
Margin 59.51± .37 58.80± .06 74.36± .19 71.63± .19
Coreset 57.71± .26 57.35± .07 68.43± .42 66.50± .40
GALAXY 59.41± .22 58.91± .19 73.56± .43 71.32± .76
BADGE 59.59± .47 59.25± .27 73.30± .16 70.92± .05
Random 58.40± .34 58.40± .34 68.46± .13 68.46± .13
Best Overall 59.59± .47 59.25± .27 74.36± .19 71.63± .19

Table 3. Selection-via-proxy results of fMoW using CLIP ViT-B32. The results are evaluated with 30,000 labels. Confidence intervals are
standard errors based on four trials.

Test Accuracy Pool Accuracy

Fine-tune Shallow Network Fine-tune Shallow Network

Confidence 77.38± .13 76.96± .12 90.11± .01 88.93± .01
Entropy 77.12± .04 76.63± .11 89.62± .01 88.33± .02
Margin 77.37± .04 77.15± .01 90.02± .03 88.75± .03
Coreset 75.54± .15 75.33± .17 85.60± .01 84.84± .03
BADGE 77.15± .02 76.83± .04 89.10± .04 87.64± .02
Random 76.12± .14 76.12± .14 83.35± .01 83.35± .01
Best Overall 77.38± .13 77.15± .01 90.11± .01 88.93± .01

Table 4. Selection-via-proxy results of ImageNet using CLIP ViT-B32. The results are evaluated with 400,000 labels. Confidence intervals
are standard errors based on two trials.

entire codebase.

Trainer. Our experiments demonstrate the potential label
savings provided by combining active learning with Flex-
Match. To expand upon these results, it would be valuable
to develop a benchmark of additional semi-supervised meth-
ods, evaluated in combination with active learning and large
pretrained models. To do so, one could instantiate specific
SSL trainer classes that inherit our template SSL trainer.

Active Learning Strategy. As exhibited by our results,
combining active learning with SSL and large pretrained
models results in highly accurate and label-efficient models
that demonstrate clear gains over passive learning. There-
fore, we call on the active learning community to evaluate
their active selection algorithms under our more comprehen-
sive and up-to-date benchmark. Additionally, while we have
implemented several existing baseline methods in our active
benchmark experiments, there exists a large suite of active
selection methods in the literature that could potentially be
implemented and evaluated (Ren et al., 2021).

Datasets and Metrics. In future benchmarks built on top
of LabelBench, we plan on incorporating datasets with dis-
tribution shift evaluation data. We believe this is a valuable
future direction that aligns with many real-world scenar-

ios. Introducing tasks beyond image classification is also
an important next step, e.g., natural language processing
tasks, vision tasks such as object detection and segmenta-
tion, and generative modeling in both vision and language
applications.

Models. With the computational speed-ups afforded by
selection-via-proxy and our pre-computation steps, we can
scale the model to ViT-L and ViT-H architectures (Dosovit-
skiy et al., 2020) without incurring significant computational
costs. Moreover, in developing benchmarks that better re-
flect real-world applications, contributors could implement
a blend of selection-via-proxy and end-to-end fine-tuning
during example selection, instead of fine-tuning at every
iteration or only once at the end of labeling.

6. Conclusion
In this paper, we present LabelBench, a comprehensive and
computationally efficient framework for evaluating label-
efficient learning. LabelBench puts label-efficient learning
under the spotlight of fine-tuning large pretrained model. A
pivotal realization from our experiments is the necessity to
re-calibrate our focus. Beyond algorithm development in
isolated research areas, it is crucial to study how existing
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tools – such as pre-trained models, semi-supervised learn-
ing, and active learning – can be skillfully intertwined and
leveraged together.
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A. Active Learning Strategies
We describe the active learning setup and introduce some basic active learning strategies in this section.

We start by describing the active learning setups. The learner starts with a large pool of unlabeled examples U = {xi}i∈[n]

and a small fraction of labeled examples L, where each example x comes from the input space X with some unknown
label y belonging to labeling space Y . At the beginning of every batch, adhering to a certain active learning strategy, the
algorithm adaptively selects new examples to label (i.e., moving the labeled examples from U to L) based on the current
model h. We use hθ(x) to denote the predicated softmax vector; we also use [hθ(x)]i to denote the i-th coordinate of the
prediction. The model h is then retrained based on the updated dataset L,U with a certain training strategy. The ultimate
goal is to use as small of a labeling budget as possible to achieve some desired performance (e.g., small error).

Below we introduce some active learning strategies that have been used in our experiments.

• Confidence (Lewis, 1995): An uncertainty-based active learning strategy that selects examples with the least confidence
score in terms of the top predicated class, i.e., maxi[hθ(x)]i.

• Entropy (Settles, 2009): An uncertainty-based active learning strategy that selects examples with the highest entropy of
the predicted distribution hθ(x).

• Margin (Scheffer et al., 2001): An uncertainty-based active learning strategy that selects examples with the smallest
prediction margin between the top-2 classes, i.e., [hθ(x)]i⋆ −maxi̸=i⋆ [hθ(x)]i, where i⋆ = argmax[hθ(x)]i.

• BADGE (Ash et al., 2019): An active learning strategy that incorporates both uncertainty and diversity in sampling using
k-means++ in the hallucinated gradient space.

• BAIT (Ash et al., 2021): An active learning strategy that incorporates both uncertainty and diversity by sampling from a
Fisher-based selection objective using experimental design. BAIT can be viewed as a more general version of BADGE.

• GALAXY (Zhang et al., 2022): A graph-based active learning strategy that incorporates both uncertainty and diversity
by first building a graph and then adaptively sampling examples on the shortest path of the graph.

B. Hyper-parameter tuning
Adhering to the guidelines proposed by (Lüth et al., 2023), we are transparent about our method configuration, which many
active learning studies fail to report. For each dataset, we utilize a separate validation set, typically with size around 10% of
the training pool. We begin the process by adjusting the hyper-parameters on a subset of the training data, which is randomly
queried and constitutes around 10% of the total training pool. The selection of hyper-parameters is mainly based on the
criterion of achieving the highest accuracy on the validation set. These hyper-parameters are then consistently applied in all
subsequent data collection batches and across varied experimental settings (e.g., experiments with different batch sizes).
While it’s arguable that this fixed hyper-parameter approach may not always yield optimal results, it is practically suitable in
real-world scenarios and allows for fair comparison in this paper.

C. Speeding Up Existing Active Learning Algorithms
Notation. Let U = {x1, ..., xN} denote the set of N unlabeled examples and K denote the number of classes in a dataset.
For each i ∈ [N ], we further use pi ∈ RK and ŷi ∈ [K] to denote the predictive probability and predictive label respectively
on example xi. Lastly, we use v1, ..., vN ∈ Rd to denote the penultimate layer output of a neural network where d is the
number of dimensions.

Implementation of BADGE. Current implementation of BADGE (https://github.com/JordanAsh/badge)
explicitly compute gradient embeddings gi of each unlabeled example xi. In particular, each gi is a Kd-dimensional vector
and can be computed via vectorizing qiv

⊤
i where qi ∈ RK is defined as

qi,j =

{
1− pi,j if j = ŷi

−pi,j otherwise

During each iteration of BADGE (B iterations in total for each batched selection of B examples), the dominating computation
lies in computing the ℓ-2 distance between N pairs of gradient embeddings. Currently, this is implemented by naively
computing ∥gi − gj∥2 with an O(Kd) complexity each.
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We instead use the following decomposition:

∥gi − gj∥2 = ∥gi∥2 + ∥gj∥2 − 2g⊤i gj

= ∥qi∥2 · ∥vi∥2 + ∥qj∥2 · ∥vj∥2 − 2 · (q⊤i qj) · (v⊤i vj).

where the last expression can be computed with O(K + d) complexity, effectively reducing the computational time by an
order of magnitude. In our ImageNet experiment, this means a 512-fold reduction in computation time.
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