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Abstract
Safe deployment of graph neural networks
(GNNs) under distribution shift requires models to
provide accurate confidence indicators. However,
while it is well-known in computer vision that CI
quality diminishes under distribution shift, this
behavior remains understudied for GNNs. Hence,
we begin with a case-study on CI calibration un-
der controlled structural and feature distribution
shifts and demonstrate that increased expressivity
or model size is not effective for improving CI
performance. Consequently, we instead advocate
for the use of epistemic uncertainty quantifica-
tion (UQ) methods to modulate CIs and propose
G-∆UQ, a new single model UQ method that ex-
tends the recently proposed stochastic centering
framework to support structured data and partial
stochasticity. Evaluated across covariate, concept,
and graph size shifts, G-∆UQ not only outper-
forms several popular UQ methods in obtaining
calibrated CIs, but also outperforms alternatives
when CIs are used for generalization gap predic-
tion or OOD detection. Overall, our work not
only introduces a new, flexible GNN UQ method,
but also provides novel insights into GNN CIs on
safety-critical tasks.

1. Introduction
As graph neural networks (GNNs) are increasingly de-
ployed in critical applications with test-time distribution
shifts (Zhang & Chen, 2018; Gaudelet et al., 2020; Yang
et al., 2018; Yan et al., 2019; Zhu et al., 2022), it becomes
necessary to expand model evaluation to include safety-
centric metrics, such as as calibration errors (Guo et al.,
2017), out-of-distribution (OOD) rejection rates (Hendrycks
& Gimpel, 2017), and generalization gap estimates (Jiang
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et al., 2019), to holistically understand model performance
under such shifted regimes (Hendrycks et al., 2022b; Trivedi
et al., 2023b). Notably, such additional metrics often rely
upon on confidence indicators (CI), such as maximum soft-
max or predictive entropy, which can derived from pre-
diction probabilities. However, while it is well-known in
computer vision that CI quality can significantly deteriorate
under distribution shifts (Wiles et al., 2022; Ovadia et al.,
2019) and that factors such as model size or expressitivity
can significantly affect this deterioration (Minderer et al.,
2021), this behavior remains less-explored for GNNs.

Indeed, there is an expectation that more advanced or ex-
pressive architectures (Chuang & Jegelka, 2022; Alon &
Yahav, 2021; Topping et al., 2022; Rampášek et al., 2022;
Zhao et al., 2022) would improve GNN CI calibration on
graph classification tasks. Yet, we find that using graph
transformers (Rampášek et al., 2022) or positional encod-
ings (Dwivedi et al., 2022; Wang et al., 2022b; Li et al.,
2020) does not significantly improve CI calibration over
vanilla message-passing GNNs under controlled, label-
preserving distribution shifts. Notably, when CIs are not
well-calibrated, GNNs with high accuracy may perform
poorly on the additional safety metrics, leading to unseen
risks during deployment. Given that using advanced archi-
tectures is not an immediately viable solution for improving
CI calibration, we instead adovocate for modulating CIs
using epistemic uncertainty estimates.

Uncertainty quantification (UQ) methods (Gal & Ghahra-
mani, 2016; Lakshminarayanan et al., 2017; Blundell et al.,
2015) have been extensively studied for vision models (Guo
et al., 2017; Minderer et al., 2021), and have been used
to improve vision model CI performance under distribu-
tion shifts. Our work not only studies the effectiveness of
such methods on improving GNN CIs, but also proposes
a novel UQ method, G-∆UQ, which extends the recently
proposed, state-of-the-art stochastic data-centering or “an-
choring" framework (Thiagarajan et al., 2022; Netanyahu
et al., 2023) to support partial stochasticity and structured
data. In brief, stochastic centering provides a scalable alter-
native to highly effective, but prohibitively expensive deep
ensembles (DeepEns) by efficiently sampling a model’s hy-
pothesis space, in lieu of training multiple, independently
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trained models. When using the uncertainty-modulated
confidence estimates from G-∆UQ, we outperform other
popular UQ methods, on not only improving the CI cali-
bration under covariate, concept and graph size shifts, but
also in improving generalization gap prediction and OOD
detection performance.

Proposed Work. This work studies the effectiveness of
GNN CIs on the graph classification tasks with distribution
shifts, and proposes, a novel uncertainity-based method
for improving CI performance. Our contributions can be
summarized as follows:

Sec. 3: Case Study on CI Calibration. We find that
improving GNN expressivity does not mitigate CI quality
degradation under distribution shifts.

Sec. 4: (Partially) Stochastic Anchoring for GNNs. We
propose G-∆UQ, a novel, flexible stochastic UQ method,
that extends stochastic centering to support GNNs and par-
tial stochasticity.

Sec. 5: Evaluating Uncertainity-Modulated CIs under
Distribution Shifts. Across covariate, concept and graph-
size shifts and evaluation protocols (calibration, OOD re-
jection, generalization gap prediction), we demonstrate the
effectiveness of G-∆UQ.

2. Preliminaries
In this section, we introduce several tasks that rely upon
reliable confidence indicators and discuss recent efforts to
improve them.

Notations. Let G = (X,E,A, Y ) be a graph with node
features X ∈ RN×dℓ , (optional) edge features E ∈ Rm×dℓ ,
adjacency matrix A ∈ RN×N , and graph-level label
Y ∈ {0, 1}c, where N,m, dℓ, c denote the number of nodes,
number of edges, feature dimension and number of classes,
respectively. We use i to index a particular sample in the
dataset, e.g. Gi,Xi.

Then, we can define a graph neural network consisting of
ℓ message passing layers (MPNN), a graph-level readout
function (READOUT), and classifier head (MLP) as follows:

Xℓ+1
M , Eℓ+1 = MPNNℓ

e

(
Xℓ,Eℓ,A

)
, (1)

G = READOUT
(
Xℓ+1

M

)
, (2)

Ŷ = MLP (G) , (3)

where Xℓ+1
M ,Eℓ+1 are intermediate node and edge repre-

sentations, and G is the graph representation. We focus on
a graph classification setting throughout our paper.

2.1. Using Confidence Estimates in Safety Critical Tasks

The safe deployment of graph machine learning models
in critical applications requires that GNNs not only gener-

alize to ID and OOD datasets, but that they do so safely.
To this end, recent works (Hendrycks et al., 2022b; 2021;
Trivedi et al., 2023b) have expanded model evaluation to
include additional robustness metrics to provide a holistic
view of model performance. Notably, while reliable confi-
dence indicators are critical to success on these metrics, the
impact of distributions shift on GNN confidence estimates
remains under-explored. Below, we introduce the different
robustness metrics that we use to understand their behavior.

Calibration: Calibrated models should provide confidence
estimates such that they match the true probabilities of the
classes being predicted (Naeini et al., 2015; Guo et al., 2017;
Ovadia et al., 2019). Poorly calibrated models are over/un-
der confident, making it difficult to trust their predictions.
By computing the top-1 label expected calibration error
(ECE) (Kumar et al., 2019; Detlefsen et al., 2022), we can
directly evaluate the quality of GNN confidence indicators
as follows. Let pi be the top-1 probability, ci be the pre-
dicted confidence, bi a uniformly sized bin in [0,1]. Then,
ECE :=

∑N
i bi∥(pi − ci)∥.

Generalization Error Prediction: Accurate estimation of
the expected generalization error on unlabeled datasets al-
lows models with unacceptable performance to be pulled
from production. To this end, generalization error predictors
(GEPs) (Garg et al., 2022; Ng et al., 2022; Jiang et al.,
2019; Trivedi et al., 2023a; Guillory et al., 2021) which as-
sign sample-level scores, S(xi) which are then aggregated
into dataset-level error estimates, have become popular. We
use maximum softmax probability and a simple thresholding
mechanism as the GEP (since we are interested in under-
standing the behavior of confidence indicators), and report
the error between the predicted and true target dataset accu-
racy: GEPError := ||Acctarget − 1

|X|
∑

i I(S(x̄i; F) >

τ)||, where τ is tuned by minimizing GEP error on the
validation dataset.

Out-of-Distribution Detection: By reliably detecting OOD
samples and abstaining from making predictions, models
can avoid over extrapolating to distributions which are not
relevant. While many scores have been proposed for detec-
tion (Hendrycks et al., 2019; 2022a; Lee et al., 2018; Wang
et al., 2022a; Liu et al., 2020), flexible, popular baselines,
such as maximum softmax probability and predictive en-
tropy (Hendrycks & Gimpel, 2017), can be derived from
confidence indicators relying upon prediction probabilities.
Here, we report the AUROC for the binary classification
task of detecting OOD samples using the maximum softmax
probability (Kirchheim et al., 2022).

We briefly note that while more sophisticated scores can
be used, our focus is on the reliability of GNN confidence
indicators and thus we choose scores directly related to those
estimates. Moreover, since sophisticated scores can often
be derived from prediction probabilities, we expect their

2



Estimating Epistemic Uncertainty of Graph Neural Networks

performance would also be improved with better estimates.

2.2. Improving Confidence Indicators

While success on the above tasks requires reliable prediction
confidence indicators, it is well-known in computer vision
that such estimates are often unreliable or uncalibrated di-
rectly out-of-the-box (Guo et al., 2017), especially under
distribution shifts (Ovadia et al., 2019; Wiles et al., 2022;
Hendrycks et al., 2019). To this end, many strategies have
been proposed to improve calibration (Lakshminarayanan
et al., 2017; Guo et al., 2017; Gal & Ghahramani, 2016;
Blundell et al., 2015). We note that such strategies might
also help GEPs and OOD detectors as the scores are more
informative. One particularly effective strategy is to create a
Deep Ensemble (DEns) (Lakshminarayanan et al., 2017) by
training a set of independent models (e.g., different hyper-
parameters, random-seeds, data order, etc) where the mean
predictions over the set is noticeably better calibrated. How-
ever, since DEns requires training multiple models, in prac-
tice, it can be prohibitively expensive to use. To this end,
we focus on single model strategies.

Single model strategies attempt to reliably estimate uncer-
tainty in a scalable way, which can then optionally be used
to re-calibrate the prediction probabilities. Here, the intu-
ition is that when the epistemic uncertainties are large in a
data regime, confidence estimates can be tempered so that
they better reflect the accuracy degradation during extrap-
olation (e.g., training on small-sized graphs but testing on
large-sized graphs). Some popular strategies include: Monte
Carlo dropout (MCD) (Gal & Ghahramani, 2016) which
performs Monte Carlo dropout at inference time and takes
the average prediction to improve calibration, temperature
scaling (Temp) (Guo et al., 2017) which rescales logits using
a temperature parameters computed from a validation set,
and Blundell et al. which proposes a variational method for
estimating uncertainty. While such methods are more scal-
able than DeepEns, in many cases, they do struggle to match
its performance (Ovadia et al., 2019). However, the recently
proposed stochastic centering paradigm is able to simulate
an ensemble by sampling from different hypotheses using
anchoring. We introduce this paradigm in detail below as
we will be extending it to accommodate both structured,
discrete graph data, and partial stochasticity (see Sec. 4).

2.3. Stochastic Centering for Uncertainty Quantification

In a recent work (Thiagarajan et al., 2022), it was found
that applying a (random) constant bias to vector-valued (and
image) data leads to non-trivial changes in the resulting
solution. This behavior was attributed to the lack of shift-
invariance in the neural tangent kernel (NTK) induced by
conventional neural networks such as MLPs and CNNs.
Building upon this observation, Thiagarajan et al. proposed

a single model uncertainty estimation method, ∆-UQ, based
on the principle of anchoring. Conceptually, anchoring is
the process of creating a relative representation for an input
sample x in terms of a random anchor c (which is used to
perform the stochastic centering), [c, x− c]. By choosing
different anchors randomly in each iteration, ∆-UQ emu-
lates the process of sampling different solutions from the
hypothesis space (akin to an ensemble). During inference
time, for a test sample, it aggregates multiple predictions
obtained via different random anchors (same anchor dis-
tribution as training) and produces uncertainty estimates.
Further, another recent study (Netanyahu et al., 2023), sug-
gests that anchoring can also be utilized to improve the
extrapolation behavior of deep neural networks. While an
attractive paradigm, there are several challenges to using
stochastic centering and anchoring for GNNs/graph data.
We discuss and remedy these in Sec. 4, and also propose
several partially stochastic variants.

3. Case Study on GNN Calibration
In this section, we perform a motivational study on the
calibration of widely-adopted GNN architectures. We con-
sider a simple, structural distribution shift on a standard
benchmark (Dwivedi et al., 2020) to emphasize that reliable
prediction confidence remains an important, open problem
of study despite improvements in architectures (He et al.,
2022; Corso et al., 2020; Zhao et al., 2022) and expressivity
(Wang et al., 2022b; Dwivedi et al., 2022).

Experimental Set-up: Data. Superpixel-MNIST (Dwivedi
et al., 2020; Knyazev et al., 2019; Velickovic et al., 2018)
is a popular graph benchmark that converts MNIST images
into k nearest-neighbor graphs of superpixels (Achanta et al.,
2012). We select this benchmark as it allows for (i) a diverse
set of well-trained models without requiring independent,
extensive hyper-parameter search and (ii) controlled, label
preserving, structural distortion distribution shifts. Inspired
by (Ding et al., 2021), we create structurally distorted but
valid graphs by rotating MNIST images by a fixed number
of degrees and then creating the super-pixel graphs from
these rotated images. Since superpixel segmentation on
these rotated images will yield different superpixel k-nn
graphs but not harm class information, we can create label-
preserving structural distortion shifts. Indeed, models are
trained only on the original (without any rotation) graphs.

Experimental Set-up: Models. While improving the ex-
pressivity of GNNs is an active area of research, positional
encodings and graph-transformer architectures have proven
to be particularly popular due to their effectiveness, and
flexibility. Here, we consider the effects of (i) incorporating
equivariant and stable positional encodings (Wang et al.,
2022b) (ii) utilizing message passing vs. graph transformer
architectures and (iii) changing depth/width on calibration
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Figure 1. Calibration on Structural Distortion Distribution Shifts. On a controlled graph structure distortion shift, we evaluate models
trained on the standard superpixel MNIST benchmark (Dwivedi et al., 2020) on super-pixel k-nn graphs created from rotated MNIST
images. While accuracy is expected to decrease as distribution shift increases, we observe that the expected calibration error also grows
significantly worse. Importantly, this trend is persistent when considering transformer architectural variants (GPS (Rampášek et al.,
2022)), as well as different depths and widths. In contrast, our proposed G-∆UQ method achieves substantial improvement in ECE
without significantly compromising on accuracy.

under distribution shift. These parameters are considered
with respect to the GatedGCN backbone (Dwivedi et al.,
2020). For the graph transformer, we utilize the recently
state-of-the-art, flexible GPS architecture (Rampášek et al.,
2022).

Observations. In Fig. 1, we present our results and make
the following observations.

We begin by noting that graph transformer architectures
have shown better handling of over-smoothing (a phe-
nomenon where graph neural networks lose discriminative
power) and over-squashing (a phenomenon where graph
neural networks collapse node representations) (Alon &
Yahav, 2021; Topping et al., 2022). However, when it
comes to the task of obtaining calibrated predictions un-
der distribution shifts, GPS (“general, powerful, scalable")
graph transformer performs noticeably worse compared to
its message-passing variants, despite having comparable ac-
curacies. This is apparent particularly at high degrees (60◦,
90◦, 180◦). Furthermore, we find that positional encodings
have minimal effects on both calibration and accuracy under
distribution shift. This suggests that while these techniques
may enhance theoretical and empirical expressivity, they
do not necessarily transfer to the safety-critical task of ob-
taining calibrated predictions under distribution shifts. In
addition, we investigate the impact of model depth and width
on calibration performance, considering that model size has
been known to affect the calibration of vision models (Guo
et al., 2017; Minderer et al., 2021) and the propensity for
over-squashing in graph neural networks (Xu et al., 2021).
Our observations reveal that increasing the number of mes-
sage passing layers (L = 3 → L = 5) can improve accu-
racy, but it may also marginally decrease calibration error.
Moreover, we find that increasing the width of the model
can lead to slightly worse calibration at high levels of shift

(90◦, 180◦), although accuracy scores are not compromised.

Notably, when we apply our proposed method G-∆UQ, (see
Sec. 4), to the simple message-passing backbone with no
positional encodings, it significantly improves the calibra-
tion over more expressive variants (GPS, LPE), across all
levels of distribution shifts, while maintaining comparable
accuracy. We briefly note that we did not tune the hyper-
parameters to our method to ensure a fair comparison, so
expect that accuracy could be improved with tuning. Over-
all, our results emphasize that effective uncertainty-based
prediction calibration remains a difficult problem that can-
not be easily solved through advancements in architectures
and expressivity.

4. Graph-∆UQ: Uncertainty-based Prediction
Calibration

Motivated by the calibration study conducted on various
GNN architectures in the previous section, we propose to
perform uncertainty-based calibration of prediction proba-
bilities in GNNs. To accomplish this objective, we will
extend the recently introduced ∆−UQ model to graph-
structured data. By doing so, we will illustrate how this
extended model can effectively enhance the reliability of
confidence indicators, even in the presence of difficult dis-
tribution shifts.

As mentioned in Section 2, the concept of anchoring has
proven to be effective in training deep models with enhanced
extrapolation capabilities (Netanyahu et al., 2023). Addi-
tionally, it has shown promise in facilitating single model
uncertainty estimation (Thiagarajan et al., 2022). However,
previous research has primarily focused on traditional vision
models and relied on straightforward input space transfor-
mations to construct anchored representations. Moreover,
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the distribution shifts encountered in graph datasets exhibit
distinct characteristics compared to those typically exam-
ined in the vision literature. Hence, it becomes imperative to
gain new insights into uncertainty quantification for GNNs.

Graph datasets possess structured, discrete, and variable-
size characteristics, making it extremely challenging to de-
vise appropriate anchors that are capable of effectively sam-
pling the underlying model hypothesis space. Consequently,
in this section, we not only provide a conceptual introduc-
tion to the application of stochastic centering in the context
of GNNs but also explore the potential benefits of incor-
porating partial stochasticity and pretraining to further im-
prove the performance of anchored GNNs. In Section 5, we
present empirical evidence to substantiate the advantages of
this approach.

4.1. Node Feature Anchoring

We begin by reminding that in the ∆-UQ framework, input
samples are transformed into an anchored representation,
where the anchors are randomly drawn from the training
dataset itself. During inference, we marginalize the pre-
dictions over multiple anchor choices to obtain mean and
uncertainty estimates. While this is easy to implement for
vector valued data or images, due to the variability and dis-
creteness of graph sizes, performing a residual operation
on the anchor/query pair A would introduce artificial edge
weights and connectivity artifacts. To this, we create an-
chors using node features as an input-space analog to the
subtraction and channel-concatenation operation in ∆-UQ.

To accomplish this, we first draw anchors from a Gaussian
distribution (N (µ, σ)) fitted to the training node features.
During training, we randomly sample an anchor for each
node. Mathematically, given the anchor c ∼ N (µ, σ), we
create the anchor/query node feature pair [Xi||Xi − ci],
where || denotes concatenation. During inference, we sam-
ple a fixed set of k anchors and compute residuals for all
nodes with respect to the same anchor. For datasets with cat-
egorical node features, it is more beneficial to perform the
anchoring operation after embedding the node features in a
continuous space. Alternatively, considering the advantages
of positional encodings in enhancing model expressivity
(Wang et al., 2022b), one can compute positional informa-
tion for each node and perform anchoring based on these
encodings. While using only node features for anchoring
neglects information about the underlying structure, incor-
porating positional encodings provides a straightforward
approach to include some form of relational priors in anchor
construction.

4.2. Hidden Layer Anchoring

While our G-∆UQ approach can be used with any GNN ar-
chitecture, we explore three different variants for improving

both the flexibility and scalability of stochastic centering-
based UQ. Intuitively, performing anchoring in the input
space creates a fully stochastic neural network as all pa-
rameters are learned using the randomized input, and it
emulates the process of sampling different solutions from a
hypothesis space. However, recent evidence with Bayesian
neural networks shows that relaxing the assumption of fully
stochastic neural networks and defining partially stochastic
models (Sharma et al., 2023) leads to strong computational
benefits, and in many cases, improved calibration perfor-
mance. Motivated by this observation, we propose to extend
the family of functions supported in G-∆UQ by anchoring
in intermediate layers, in lieu of the inputs. This allows for
partially stochastic models, wherein the layers prior to the
anchoring step are deterministic. Moreover, this interme-
diate anchoring has the additional benefit that anchors will
be able to sample hypotheses that consider both topological
and node feature information due to MPNN steps.

Intermediate MPNN Anchoring: Given a GNN containing
ℓ MPNN layers, let k ≤ ℓ be the layer at which we perform
node feature anchoring. We obtain the anchor/query pair
by computing the intermediate node representations from
the first k MPNN layers. We then randomly shuffle the node
features over the entire batch, concatenate the residuals,
and proceed with the READOUT and MLP layers as with the
standard ∆−UQ model. Note that, we do not consider the
gradients of the query sample when updating the parame-
ters, and the MPNNk+1 layer is modified to accept inputs of
dimension dℓ × 2 (to take in anchored representations as
inputs). Another difference from the input space implemen-
tation is that, we fix the set of anchors and subtract a single
anchor from all node representations in an iteration (instead
of sampling uniquely).

Intermediate Read Out Anchoring: While READOUT an-
choring is conceptually similar to intermediate MPNN an-
choring, we now only obtain a different anchor for each
hidden graph representation, instead of individual nodes.
This allows us to sample hypotheses after all node informa-
tion has been aggregated.

Pretrained Anchoring: Lastly, we note that, in order to be
compatible with the stochastic centering framework (the
input layer or chosen intermediate layer), one needs to fully
redesign the network architecture and retrain from scratch.
To circumvent this, we consider a variant of READOUT
anchoring with a pretrained GNN backbone. Here, the
final MLP layer of a pretrained model is discarded, and
reinitialized to accommodate query/anchor pairs. We then
freeze the MPNN, and only train the anchored classifier head.
This allows for an inexpensive, limitedly stochastic GNNs
(see Sec. 5.2).

While these variants can lead to vastly different uncertainty
estimates, the complexity of the task and the nature of the
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Figure 2. Impact of Layer Selection on G-∆UQ. Performing an-
choring at different layers leads the sampling of different hypothe-
sis spaces. On D&D, we see that later layer anchoring corresponds
to a better inductive bias and can lead to dramatically improved
performance.

distribution shift will determine which of the variants is best
suited.

5. Uncertainty-based Prediction Calibration
under Distribution Shift

In this section, we conduct experiments on size generaliza-
tion (Sec. 5.1) and the recently proposed, Graph-Out-of-
Distribution (GOOD) benchmark to rigorously study uncer-
tainty estimation of GNNs under distribution shifts and the
benefits of stochastic anchoring.

5.1. Size Generalization

While GNNs are well-known to struggle when generalizing
to larger size graphs (Buffelli et al., 2022; Yehudai et al.,
2021; Chen et al., 2022), their predictive uncertainty behav-
ior with respect to such shifts remains under studied. Given
that such shifts can be expected at deployment, reliable un-
certainty estimates under this setting are important for safety
critical applications. We note that while sophisticated train-
ing strategies can be used to improve size generalization
(Buffelli et al., 2022; Bevilacqua et al., 2021), our focus
is primarily on the quality of uncertainity estimates, so we
do not consider such techniques. However, we note that
G-∆UQ can be used in conjunction with such techniques.

Experimental Set-up. Following the procedure of (Buffelli
et al., 2022; Yehudai et al., 2021), we create a size distribu-
tion shift by taking the smallest 50%-quantile of graph size
for the training set, and reserving the larger quantiles (>50%)
for evaluation. Unless, otherwise noted, we report results
on the largest 10% quantile to capture performance on the
largest shift. We utilize this splitting procedure on four well-
known benchmark binary graph classification datasets from
the TUDataset repository (Morris et al., 2020): D&D, NCI1,
NCI09, and PROTEINS. Please see the Supplementary for
dataset statistics. We consider three different backbone
GNN models, GCN (Kipf & Welling, 2017), GIN (Xu et al.,

2019), and PNA (Corso et al., 2020) and report their perfor-
mance with and without stochastic anchoring. All models
contain three message passing layers and the same sized
hidden representation.

Results. As noted in Sec. 4, stochastic anchoring can be
applied at different layers, leading to the sampling of dif-
ferent hypothesis spaces and inductive biases. In order to
empirically understand this behavior, we compare the per-
formance of stochastic centering when applied at different
layers on the D&D dataset, which comprises the most severe
size shift from training to test set (see Fig. ??). We observe
that applying stochastic anchoring after the READOUT layer
(L3) dramatically improves both accuracy and calibration as
the depth increases. While this behavior is less pronounced
on other datasets (see Supplementary), we find overall that
applying stochastic anchoring at the last layer yields com-
petitive performance on size generalization benchmarks and
better convergence compared to stochastic centering per-
formed at earlier layers.

Indeed, in Fig. 3, we compare the performance of last-layer
anchoring against the baseline model on 4 datasets. We
observe that G-∆UQ improves calibration performance on
most datasets, while generally maintaining or even improv-
ing the accuracy. Indeed, improvement is most pronounced
on the largest shift (D&D), further emphasizing the benefits
of stochastic centering.

5.2. Evaluation under Concept and Covariate Shifts

Conventional neural networks are well-known to behave
unpredictably under different types of distribution shifts.
Therefore, in this section, we seek to understand behavior
of GNN predictive uncertainity under controlled covariate
and concept shifts. Moreover, we expand our evaluation to
include the utility of predictive uncertainties in the OOD
detection (Hendrycks & Gimpel, 2017; Hendrycks et al.,
2019) and generalization gap prediction tasks (Guillory
et al., 2021; Ng et al., 2022; Trivedi et al., 2023a; Garg
et al., 2022). We begin by introducing our data and addi-
tional tasks, and then present our results.

Experimental Set-up: Data In brief, concept shift corre-
sponds to a change in the conditional distribution of labels
given input from the training to evaluation datasets, while
covariate shift corresponds to change in the input distri-
bution. We use the recently proposed Graph Out-Of Dis-
tribution (GOOD) benchmark (Gui et al., 2022) to obtain
four different datasets (GOODCMNIST, GOODMotif-basis,
GOODMotif-size, GOODSST2) with their corresponding
in-/out- of distribution concept and covariate splits. To
ensure fair comparison, we use the architectures and hyper-
parameters suggested by the benchmark when training.
Please see the supplementary for more details.
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Figure 3. Predictive Uncertainty under Size Distribution Shifts. When evaluating the accuracy and calibration error of models trained
with and without stochastic anchoring on dataset with a graph size distribution shift, we observe that stochastic centering decreases
calibration error while improving or maintaining accuracy across datasets and different GNNs.
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Figure 4. Predictive Uncertainity under Concept and Covariate Shifts. Stochastic anchoring leads to competitive in-distribution and
out-of distribution test accuracy while improving calibration, across domains and shifts. This is particularly true when comparing to other
single-model UQ methods.

Baselines: We consider the following methods in our anal-
ysis: Deep Ensembles (Lakshminarayanan et al., 2017),
Monte Carlo Dropout (MCD) (Gal & Ghahramani, 2016),
and our proposed G-∆UQ, including the pretrained variant.
DeepEns is well known to be a performative baseline on un-
certainty estimation tasks, but we emphasize that it requires
training multiple models. This is in contrast to single model
estimators, such as MCD and G-∆UQ. We note that while
MCD and G-∆UQ can be applied at intermediate layers;
we present results on the best performing layer but include
the full results in the supplementary.

Tasks: In addition to reporting expected calibration error,
we also report the mean absolute error obtained when at-
tempting to predict the generalization accuracy, and the
AUROC when attempting to detect out-of-distribution sam-
ples. To estimate the generalization error, we use the confi-
dences obtained by the different baselines as sample-level
scores, S(xi) corresponding to the model’s expectation

that a sample is correct. We then threshold and aggre-
gate sample-level scores to obtain a dataset-level estimate:
1

|X|
∑

i I(S(xi) > τ), where the threshold hyperparameter
τ is identified by training a regressor to recover the true
accuracy on a pre-defined, validation dataset. We report the
MAE between the estimated error and true error on both in-
and out-of -distribution test splits provided by the GOOD
benchmark. For OOD detection, we create a binary classifi-
cation task where the objective to correctly reject OOD test
splits from the benchmark.

Results: Accuracy & Calibration. We notice that using
stochastic anchoring via G-∆UQ yields competitive accu-
racy, especially in comparison to other single-model meth-
ods such as MCD, temperature scaling, or the base GNN
model: in-distribution accuracy is higher on 6 out of 8
dataset/shift combinations, and out-of-distribution accuracy
is higher on 5 out of 8 combinations. While Deep Ensem-
bles is the most accurate method on a majority of datasets,
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Figure 5. Generalization Gap Prediction.The mean absolute error when using scores obtained from different baselines in the challenging
(and to the best of our knowledge, yet unexplored for graphs) task of generalization error prediction are reported. While there is not a
dominant method, stochastic anchoring is very competitive, and yields among the lowest MAE of single-model UQ estimators. Notably,
pretrained G-∆UQ is particularly effective and outperforms the end-to-end variant.
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Figure 6. OOD Detection. The AUROC is reported for the task
of detecting out-of-distribution samples. Under concept shift,
the proposed G-∆UQ variants are very competitive with other
baselines, including DeepEns. Under covariate shifts, except for
GOODMotif-basis, pretrained G-∆UQ produces significant im-
provements over all baselines, including end-to-end G-∆UQ train-
ing.

they are known to be computationally expensive. Moreover,
the simpler stochastic anchoring procedure generally comes
close to the accuracy of Deep Ensembles, and in a few
cases (covariate shift on GOODCMNIST and GOODMotif-
size datasets), can noticeably outperform it. Stochastic an-
choring also excels in improving calibration, improving
in-distribution calibration compared to all baselines on 4 out
of 8 combinations. Most importantly, out-of-distribution
calibration error is decreased by stochastic anchoring on
7 of 8 dataset/shift combinations compared to all other
methods (single-model or ensemble).

Results: Generalization Gap Prediction. Next, we study all
of our methods on the GOOD benchmarks for the task of
generalization gap prediction, and report the results in Fig. 5.
On this challenging task, there is no clear winner across
all benchmarks. However, stochastic anchoring methods

are consistently competitive in MAE, and yield among the
lowest MAE (across the board lower than other single-model
UQ methods). In particular, the pretrained G-∆UQ variant
produces on average the lowest MAE for generalization
gap estimation.

Results: OOD Detection. Finally, we consider the task of de-
tecting out-of-distribution samples. In Fig. 6, we see that the
performance of stochastic anchoring methods under concept
shift is generally very competitive with other UQ methods.
For covariate shifts, except for the case of GOODMotif-
basis use-case, stochastic anchoring produces high AU-
ROC scores. In particular, on the GOODCMNIST-color,
GOODSST2-length and GOODMotif-size benchmarks, the
pretrained variant of G-∆UQ produces significantly im-
proved AUROC scores. Finally, on GOODMotif-basis,
however, both have lower AUROC than other baselines;
we suspect the reason for this to be the inherent simplicity
of this dataset and that G-∆UQ was prone to shortcuts.

6. Conclusion
In this work, we take a closer look at confidence estima-
tion under distribution shifts in the context of graph neural
networks. We begin by demonstrating that techniques for
improving GNN expressivity, such as transformer architec-
tures and using positional encodings, do not necessarily
improve the estimation performance on a simple structural
distortion shift benchmark. To this end, we seek to im-
prove the uncertainty estimation of GNNs by adapting the
principle of stochastic anchoring for discrete, structured
settings. We propose several G-∆UQ variants, and demon-
strate the benefits of partial stochasticity when estimating
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uncertainty. Our evaluation is extensive, spanning multiple
types of distribution shift (size, concept, covariate) while
considering multiple safety critical tasks that require reli-
able estimates (calibration, generalization gap prediction,
and OOD detection.) The proposed G-∆UQ improves esti-
mation performance on a number of tasks, while remaining
scalable. Overall, our paper rigorously studies uncertainty
estimation for GNNs, identifies several shortcomings in ex-
isting approaches and proposes a flexible framework for
reliable estimation.
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A. Appendix
A.1. Details on Super-pixel Experiments

We provide an example of the rotated images and corresponding super-pixel graphs in Fig. 7, as well as additional resulting
using the GINE backbone.

Rot: 0° Rot: 10° Rot: 15°

Rot: 25° Rot: 35° Rot: 40°

Rot: 60° Rot: 90° Rot: 180°

Figure 7. Rotated Super-pixel MNIST. Rotating images prior to creating super-pixels to leads to some structural distortion (Ding et al.,
2021). We can see that the class-discriminative information is preserved, despite rotation. This allows for simulating different levels of
distribution shifts, while still ensuring that samples are valid.

A.2. Dataset Statistics

The statistics for the size generalization experiments (see Sec. 5.1) are provided below in Table 1.

Table 1. Size Generalization Dataset Statistics: This table is directly reproduced from (Buffelli et al., 2022), who in turn used statistics
from (Yehudai et al., 2021; Bevilacqua et al., 2021).

NCI1 NCI109
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
NUM OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61

PROTEINS DD
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
CLASS B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
NUM OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746
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Figure 8. Rotated Super-pixel MNIST, GINE Backbone. We report additional results for performance on rotated-superpixel MNIST
using a GINE backbone and READOUT stochastic ancoring. While G-∆UQ does lose some accuracy, we see at higher levels of distortion,
that it is significantly better calibrated.

A.3. Layer Selection Size Generalization

As discussed in Sec. 5.1, the choice of anchoring layer can have a disparate effect on the accuracy and calibration of a
dataset. For example, in Fig. 9, we see that while the choice of layer is very influential for DD, it is significantly less
important for the other datasets. However, overall, we see that anchoring after READOUT leads to good performance.
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Figure 9. Effect of Anchoring Layer on Performance. Performing stochastic anchoring at different layers leads to sampling of different
inductive biases and hypothesis spaces. Here, we see that the choice of anchoring layer is important to the the D&D dataset, but is not as
influential on the other datasets. Given that last-layer anchoring generally performs well, we suggest performing stochastic anchoring in
the last-layer when models are expected to encounter size distribution shifts.

A.4. GOOD Benchmark Experimental Details

For our experiments in Sec. 5.2, we utilize the in/out-of-distribution covariate and concept splits provided by (Gui et al.,
2022). Furthermore, we use the suggested models and architectures provided by their package. In brief, we use GIN models
with virtual nodes (except for GOODMotif) for training, and average scores over 3 seeds. When performing stochastic
anchoring at a particular layer, we double the hidden representation size for that layer. Subsequent layers retain the original
size of the vanilla model.

We use 10 samples when computing uncertainties using Monte Carlo Dropout, and manually set individual layers to “train"
in order to perform layer-wise dropout. When performing stochastic anchoring, we use 10 fixed anchors randomly drawn
from the in-distribution validation dataset. We also train the G-∆UQ for an additional 50 epochs to ensure that models are
able to converge. Please see our code repo for the full details.
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