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Abstract
There needs to be an adaptive approach that com-
bines both performance and distribution based
concept drift detectors in order to harness the ben-
efits of unlabeled data and the ability to detect
varying types of drifts. This paper proposes Adap-
tive Aggregated Drift Detector (A2D2), which
consists of a suite of performance and data distri-
bution based detectors that can adaptively select
detectors based on rankings of least cost. The
notable contribution is that it enables an ecosytem
to not only adaptively combat drift, but to also
expand the information learned across a suite of
detectors.

1. Introduction
Many machine learning strategies have a model-centric view
which prioritizes fitting models onto a static dataset where
performance (e.g. accuracy, F1 score) is often the main
objective. Such models fail to consider the following: 1)
testing data can be unstationary and drift from away from
the context and concept originally captured under the train-
ing data and 2) performance comes with cost (Sculley et al.,
2015). The former can be generalized as covariate drift
(i.e. feature distributions diverge), label drift (i.e. class
distributions diverge) and concept drift (i.e. relationship
between feature and class diverges) (Lu et al., 2018). There
is a collection of detectors that range from being perfor-
mance based to data based distribution. Performance-based
techniques keep track of a model’s performance metrics, in-
cluding recall, precision, F-measure, and accuracy. The cost
is that they require labeled data, which can be expensive,
making the expectation of abundant labeled data impractical.
Data distribution-based techniques monitor changes in the
location, density, and scope of the data itself rather than
classifier performance parameters. These methods have the
benefit of processing both labeled and unlabeled data, but
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they are restricted in the types of drift they can identify
(Lu et al., 2019). Arguably, there needs to be an adaptive
approach that combines both types in order to detect drift,
specifically concept drift. Lastly, there needs to be a metric
that considers the computational debt from retraining to
fully mitigate its repercussions.

This paper proposes Adaptive Aggregated Drift Detec-
tor (A2D2). It takes in a suite of detectors consisting of
a mixture of performance based detectors and data distri-
bution based (e.g. divergence) detectors. Its goal is to
adaptively select the detector that optimizes Nupdate and
Gainperf to achieve minimal costs. It applies exploitation
and exploration strategies through the use of its Adaptive
and Aggregative Phases.

Section 2 describes the utilization of a metric accounting for
costs in terms of performance. Section 3 describes A2D2
and its metrics for evaluation under Section 4. Potential
contributions under Section 5.

2. Preliminary Work
Quon & Gaudiot (2023) proposed Performance Gained
Update Cost Ratio (PGUCR) Eq.(1) in order to relate
a model’s gain in performance with its cost of retraining
updates in response to the detection of drift. PGUCR is
normalized with values from 0 (ineffective) to 1 (effective).
F1new represents the F1 score of a base classifier equipped
with a detector. F1ablation is the score without any detectors
and thereby without any updates to the model. Nupdate is
the number of times a batch was triggered to retrain within a
set number of batches. Costupdate is an adjustable parameter
representing the importance of updates in comparison to
performance.

PGUCR =
1

2

(
1 +

F1new − F1ablation

F1ablation

)
÷ (1 +Nupdate × Costupdate) (1)

We manipulate the PGUCR to be in terms of Costupdate
and describe its upper and lower bounds. For clarity perfor-
mance gain is:

Gainperf =
F1new − F1ablation

F1ablation
(2)
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The lower bound of Costupdate when PGUCR equals 1 sim-
plifies to:

Costupdate =
1

2Nupdate
(Gainperf −

1

2
) (3)

The upper bound when PGUCR equals 0 signifies that re-
gardless of any updates, the base classifier Gainperf is -1.

Our work applies the lower bound Eq.(3) which attempts to
achieve max efficiency by minimizing costs improvements
and PGUCR as metrics.

3. Methodology
3.1. Adaptive Phase

The Adaptive Phase dynamically selects the detector that
has the best fit of achieving the highest PGUCR on top of
generating new ensembles of detectors to add to the suite.
It consists of the Terminal FCBF, Prequential Training and
Testing, and Select & Explore units.

3.1.1. TERMINAL FAST CORRELATED BASED
FILTERING (FCBF)

Fast Correlated Based Filtering (FCBF) (Yu & Liu, 2003;
Nguyen et al., 2012) is a multivariate feature selection
method that takes into account the dependencies between
features and the class relevance. It uses information gain
via entropy Eq.(4) to generate values under Symmetrical
Uncertainty (SU) (Iserles, 1989). SU Eq.(6) calculates the
dependencies between random variables X and Y such that
it measures the effect of having knowledge on one has on
the information learned from the other. SU is normalized
between 0 (i.e. complete independence) to 1 (i.e. mutual de-
pendence). IG(X|Y ) Eq.(5) denotes the information gain
of X given Y .

H(X) = −
∑
x

P (xi) log2(P (xi)) (4)

IG(X|Y ) = H(X)−H(X|Y ) (5)

SU(X,Y ) =
2× IG(X|Y )

H(X) +H(Y )
(6)

FCBF sorts features from highest to lowest SU ordering
them from most to least relevance to the class. Yu & Lie
(2003) iteratively removed redundant features by using the
most predominant feature to heuristically compare and filter
against lower valued features. Our method does not remove
redundancies (hence the name Terminal FCBF) and keeps
the SU values per features as a matrix. The generated SU
matrix is then used as a blueprint for the data set in hand.

3.1.2. PREQUENTIAL TRAINING AND TESTING

The role of the base classifier is to predict the class, y based
on the incoming features, X . Data is processed prequen-
tially as windows, W with instances first used for testing
followed by training. Every W is split into 10 batches, b.
A selected detector processes through W and indicates if it
suspects drift under any of b, serving as a list of triggers that
the base classifier must retrain under. Each W is processed
at least twice under the Adaptive Phase. Once for predicting
under the triggered retrainings and another under ablation
without any triggers. The F1 scores and triggers are sent to
the Aggregative Phase.

3.1.3. SELECT & EXPLORE UNITS

Select takes the SU matrix and the Aggregated Embeddings
(AgE) as inputs in order to predict which existing detector
is the best for current W . The Explore unit takes in the
selected detector, DD and references the Collaborative Fil-
tering Recommender System (CFRS) in order to identify
which detector has the least similarity with (if any). If there
exists a pair, the union of triggers between DD and the
complementary detector, DD′ are used. If an ensemble is
created, then the classifier must run for a third time and sub-
sequently compares if PGUCRDD ≤ PGUCRDD′ noting
that DD′ is worth adding to the suite.

3.2. Aggregative Phase

The Aggregative Phase develops a collective knowledge
of each detector with respect to the W processed. If the
Adaptive Phase is considered as online testing, then the Ag-
gregative Phase would be considered the offline training.
Hence W , which was the current data from the Adaptive
Phase is viewed as the reference data under the Aggrega-
tive Phase. Under this phase, all the detectors take turns
detecting drift and measuring their performance under the
Detector Test Suite. The Detector Test Suite works simi-
larly as the Adaptive Phase, where classifier with detector is
compared with the ablation test. The Detector Test Suite out-
puts the F1 score and triggers to the Cost Based Ordinality
(CBO) and only the triggers to CFRS.

3.2.1. COLLABORATIVE FILTERING RECOMMENDER
SYSTEM

CFRS takes the key value pairs of detectors and triggers and
represents them into a matrix, where rows indicate detectors
and columns indicate whether a drift was detected at b.It ap-
plies the Jaccard similarity coefficient (Ivchenko & Honov,
1998) to calculate the pairwise similarities amongst detec-
tors and outputs their similarity scores. Unorthodoxically,
CFRS is used for finding the least similar detector for the
DD under the Adaptive Phase.
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Figure 1. A2D2 architecture has Adaptive and Aggregative Phases. The Adaptive Phase applies exploitation and exploration strategies in
order to select the most cost effective detector out of the suite of detectors. Simultaneously it creates an ensemble of detectors composed
of the selected detector and its most complimentary detector (i.e. detector with the least similarity in terms of batches triggered). The
Aggregative Phase updates its Aggregated Embeddings (AgE) via the SU matrix and the updated rankings from the Cost Based Ordinality
(CBO). To generate complimentary ensembles, batches triggered per detector are inputted to the Collaborative Filtering Recommender
System (CFRS),which scores detectors of their similarities. If the newly created ensemble detector is more cost effective than the selected
detector, then the ensemble grouping is added to the suite of detectors.

3.2.2. COST BASED ORDINALITY

The CBO ranks the detectors according to Eq.(3). Heuristi-
cally, the detectors are ranked from largest to smallest cost,
but an alternative method not implemented is to have the de-
tectors fall under rankings based on where their Costupdate
falls under the intervals of 1/NDetectors, where NDetectors is
the current number of detectors in the suite. The key value
pairs of detector to ranking are processed to AgE.

3.2.3. AGGREGATED EMBEDDINGS

AgE saves the SU matrix from the Adaptive Phase and con-
nects it with the rankings after the Detector Test Suite and
CBO are complete. AgE appends the table of SU with the
detector-rankings, where SU can be interpreted as the fea-
tures that predict the classification defined by the detector-
rankings. In other words, AgE is used to predict which
detectors would have the smallest Costupdate under a spe-
cific SU.

4. Evaluation
This work will use the MOA framework (Bifet et al., 2010;
2013) to evaluate A2D2 on 3 artificial datasets and 2 real-
world datasets that were injected with concept drift. Our
method will include 6 divergence tests capable of detecting
changes in distribution specifically, Cramer Von Mises test
(CMV), Energy Distance test (EDT), Kolmogorov-Smirnov
test (KS), Mann-Whitney U-rank test (MWT), T test, and
Wasserstein Distance test (WD). It will also include 6 per-

formance based detectors DDM, EDDM, KSWIN, PH, AD-
WIN, HDDM A, and HDDM W as part of the Detector Test
Suite.

4.1. Artifical Dataset Configuration

MOA can inject concept drift by connecting data streams as
a weighted combination of distributions whose likelihood of
an instance originating from the new concept is defined by
a sigmoid function. Each dataset will contain 10K instances
with widths ranging from 0.5K to 4K instances. The drift’s
midpoints will fall in between 1.5 and 7.5 kilometers. By
altering the instantiation of streams using a random seed, 10
tests will be created from each dataset.

4.2. Artificial Datasets

Agrawal (Agrawal et al., 1993) describes 6 numerical and 3
categorical features mapped to 10 different pre-defined loan
functions

LED (Bifet et al., 2009; Schlimmer & Granger, 1986;
Breiman et al., 1984) comprises of 24 binary attributes,
but only 7 are relevant for predicting the next digit on a
seven-segment LED display (i.e. 10 classes).

Sea (Bifet et al., 2009; Schlimmer & Granger, 1986; Street
& Kim, 2001) uses 3 attributes, but 1 is irrelevant. All
attributes have values between 0 and 10, and comparing the
sum of the relevant attributes with a threshold parameter
determines which of the 4 classes it is mapped to.
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4.3. Real World Datasets

The following datasets are nomalized by MOA, so that the
numerical values are between 0 and 1.

Electricity (Harries, 1999) contains 8 attributes to predict
whether the Australian New South Wales Electricity Market
from May 1996 to December 1998 rises or falls (i.e. 2
classes). The dataset contains 45,312 instances.

Poker is a modified version of (Cattral et al., 2001) without
duplicates and is sorted by rank and suit. Each instance is a
hand of 5 cards drawn from a 52 card deck. It is made up of
10 attributes (rank and suit of cards in hand) to predict 10
poker hands or classes. The dataset has 1,000,000 instances.

5. Conclusion
The potential advantages of A2D2 will be its ability to 1)
embed W as training data to predict rankings of detectors
and adaptively select the one with least cost and 2) develop
a collective understanding of detectors that continues to
grow. The notable contribution may be 2) as it enables an
ecosytem to not only adaptively combat drift, but to also
expand the information learned across a suite of detectors.
Although A2D2 is left to be implemented we have collected
preliminary empirical work related to the Detector Test
Suite, which is included in the appendix.
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Table 1. F1 Scores of HFT on synthetic datasets that were retrained on batches identified by divergence tests. ABL refers to ablation test.

TEST AGRAWAL LED SEA

CVM 1 ± 0.00 0.66 ± 0.04 0.84 ± 0.01
ED 1 ± 0.00 0.64 ± 0.05 0.84 ± 0.01
FCBF 1 ± 0.00 0.65 ± 0.05 0.84 ± 0.01
KS 1 ± 0.00 0.65 ± 0.04 0.84 ± 0.02
MW 1 ± 0.00 0.66 ± 0.04 0.83 ± 0.02
T 1 ± 0.00 0.66 ± 0.04 0.83 ± 0.02
WD 1 ± 0.00 0.66 ± 0.04 0.83 ± 0.02
ABL 1 ± 0.00 0.58 ± 0.10 0.83 ± 0.02

Table 2. F1 Scores of HFT on real datasets that were retrained on batches identified by divergence tests. ABL refers to ablation test.

TEST AIRLINES ELECTRICITY POKER

CVM 0.56 0.70 0.21
EDT 0.56 0.70 0.21
FCBF 0.47 0.64 0.16
KS 0.56 0.70 0.21
MWT 0.56 0.70 0.21
T 0.56 0.70 0.21
WDT 0.56 0.70 0.21
ABL 0.56 0.55 0.14

Table 3. Average number of triggers for updates on synthetic datasets. Ablation excluded as the count will always be zero.

TEST AGRAWAL LED SEA

CVM 4.3 ± 0.9 8.1 ± 0.9 2.0 ± 0.7
EDT 9.0 ± 0.0 2.0 ± 0.7 4.0 ± 0.9
FCBF 3.1 ± 1.4 3.6 ± 1.3 1.6 ± 0.5
KS 3.5 ± 1.8 3.6 ± 1.7 1.8 ± 0.8
MWT 5.4 ± 0.5 7.7 ± 2.1 1.8 ± 0.4
T 6.0 ± 0.7 8.3 ± 0.7 1.8 ± 0.4
WDT 3.0 ± 0.7 4.7 ± 0.9 0 ± 0.00

Table 4. Number of triggers for updates on real datasets. Ablation excluded as the count will always be zero.

TEST AIRLINES ELECTRICITY POKER

CVM 9 9 9
EDT 9 9 9
FCBF 1 3 3
KS 9 9 9
MWT 9 9 9
T 9 9 9
WDT 9 9 9
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Figure 2. Accuracy Gain to Update Cost Ratio when the penalty for updates is 0.1. Values closer to 1 are more cost effective

Table 5. AGUCR (penalty =0.1) for real and synthetic datasets with rankings

TEST MEAN AGUCR MEAN RANK

CVM 0.36 ± 0.05 5.33
ED 0.36 ± 0.15 5.00
FCBF 0.41 ± 0.03 2.33
KS 0.41 ± 0.03 2.67
MW 0.36 ± 0.06 4.83
T 0.35 ± 0.07 5.83
WD 0.42 ± 0.7 2.00
χ2
F =9.90 FF =2.44 CRITICAL VALUE AT α=0.1 IS 2.33
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Figure 3. Performance Gain to Update Cost Ratio when the penalty for updates is 0.25. Values closer to 1 are more cost effective

Figure 4. Post-hoc Nemenyi test at confidence level of 99% of the AGUCR from RandTree100 dataset. Critical distance is 7.144. With
respect to FCBF there is a significant difference between it and T, MW, KS, and CVM.

8


