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Abstract

In the context of few-shot learning, it is currently
believed that a fixed pre-trained (PT) model, along
with fine-tuning the final layer during evaluation,
outperforms standard meta-learning algorithms.
We re-evaluate these claims under an in-depth
empirical examination of an extensive set of for-
mally diverse datasets and compare PT to Model
Agnostic Meta-Learning (MAML). Unlike pre-
vious work, we emphasize a fair comparison by
using: the same architecture, the same optimizer,
and all models trained to convergence. Crucially,
we use a more rigorous statistical tool — the ef-
fect size (Cohen’s d) — to determine the practical
significance of the difference between a model
trained with PT vs. a MAML. We then use a
previously proposed metric — the diversity coef-
ficient — to compute the average formal diversity
of a dataset. Using this analysis, we demonstrate
the following: 1. when the formal diversity of
a data set is low, PT beats MAML on average
and 2. when the formal diversity is high, MAML
beats PT on average. The caveat is that the mag-
nitude of the average difference between a PT vs.
MAML using the effect size is low (according
to classical statistical thresholds) — less than 0.2.
Nevertheless, this observation is contrary to the
currently held belief that a pre-trained model is
always better than a meta-learning model. Our ex-
tensive experiments consider 21 few-shot learning
benchmarks, including the large-scale few-shot
learning dataset Meta-Data set. We also show no
significant difference between a MAML model
vs. a PT model with GPT-2 on Openwebtext. We,
therefore, conclude that a pre-trained model does
not always beat a meta-learned model and that the
formal diversity of a dataset is a driving factor.
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1. Introduction

Rapid learning from a few examples is a hallmark of human
intelligence. Inspired by the ambition to equip artificial
agents with this capability, research in Artificial Intelligence
(AI) has been significantly influenced by the domain of meta-
learning, embodying the notion of "learning to learn" or
"learning to adapt" (Andrychowicz et al., 2016). In addition,
the broad success of Deep Learning in computer vision
(Krizhevsky et al., 2012; He et al., 2015), natural language
processing (Devlin et al., 2018; Brown et al., 2020), game
playing (Silver et al., 2016; Mnih et al., 2013; Ye et al.,
2021), theorem proving (Rabe et al.; Polu & Sutskever,
2020; Han et al.), code (Chen et al.) and more has lead Deep
Learning to be routinely applied to the field of few-shot
learning. Few-shot learning challenges a model’s ability to
quickly learn a new task from a few examples and therefore
has been a prominent research area for the application of
meta-learning algorithms. However, recent findings (Tian
et al., 2020) have demonstrated that a pre-trained model
with a fixed embedding can surpass many sophisticated
meta-learning algorithms in performance on a variety of
few-shot learning benchmarks (Tian et al., 2020; Chen et al.,
2019; 2020; Dhillon et al., 2019; Huang & Tao, 2019). It has
been suggested that we need to “Re-think Few-Shot Image
Classification; is a Good Embedding All You Need?". We
challenge this view and re-evaluate meta-learning against
pre-trained models — using Model Agnostic Meta-Learning
(MAML) as the canonical meta-learning algorithm. Our
novel re-evaluation uses three fundamental components: A.
It employs a fair comparison amongst pre-trained models
vs MAML trained models by; using the same architecture,
the same optimizer, and all models trained to convergence.
B. It uses a more rigorous statistical analysis technique — in
particular, we use the effect size (Cohen’s d) (Cohen, 1992)
to characterize more carefully the difference in performance
between the two methods. C. It takes into account the formal
diversity of a dataset when conducting statistical analysis.

All of this work is inspired by the key question: does explic-
itly training to “learn to learn" (i.e., meta-learn) improve the
performance of a machine learning algorithm? We provide
an answer in few-shot learning: in the low data diversity
regime, pre-training is better on average than MAML, but
in the high diversity regime, MAML is better. The caveat
is that the magnitude of the effect size (Cohen’s d) is less



than 0.2 on average — which is considered small in statistics
(Andrade, 2020; Lin et al., 2013; Cohen, 1992).

Our key Contributions are summarized as follows:

1. We clarify previous claims that pre-training is better
than MAML through a fair, in-depth, and extensive
study — using the effect size (Cohen’s d). Therefore, we
go beyond statistical significance to establish practical
significance instead.

2. We do the analysis in a novel data-centric perspective
by measuring the formal diversity of the datasets. This
reveals an additional rich structure to our findings.

3. We demonstrate:

(a) When the formal diversity of a data set is low, a
Pre-trained model beats MAML on average (but
with a small effect size)

(b) When the formal diversity of a data set is high,
a MAML model beats a Pre-trained model on
average (but with a small effect size).

2. Background

Model-Agnostic Meta-Learning (MAML): The MAML
algorithm (Finn et al., 2017) is designed to meta-learn an
optimal initialization of neural network parameters, thereby
priming it for rapid gradient descent adaptations. This al-
gorithm involves two core optimization loops: the outer
loop, which primes the parameters for swift adaptation, and
the inner loop, which executes the fast adaptation. During
meta-testing/evaluation, the inner loop exclusively carries
out the adaptation of the representation acquired from the
outer loop.

Pre-Training (PT) with a union of all the data: Prior re-
search (Tian et al., 2020) demonstrates that an initialization
pre-trained with a union of all the data can supersede nu-
merous meta-learning methods. Specifically, their method-
ology involves two phases: initially, they utilize a union
of all labels in the few-shot learning benchmark during
meta-training and undertake training with conventional pre-
training (PT). Subsequently, during the meta-testing phase,
they employ a standard inference method prevalent in trans-
fer learning: extraction of a fixed feature from the neural
network and a comprehensive fine-tuning of the final clas-
sification layer (the head) with LBGFS (Limited-memory
Broyden—Fletcher—Goldfarb—Shannon algorithm).

Effect Size (Cohen’s d): Cohen’s d (Cohen, 1992) is a
robust statistical tool designed to quantify the size or magni-
tude of an effect, irrespective of the sample size. This stan-
dardized measure of effect size allows for the comparison
of results across different studies and domains. It is calcu-
lated by determining the difference between two means and

dividing by the pooled standard deviation (approximately
unbiased estimate of the combined standard deviations), pro-
viding a measure of effect size in terms of standard deviation
units: d = (1 — pe)/pooled_std(o1, 02). We explain the
main reason for using this metric and its corresponding
decision rule in section 3.

Task2Vec Embeddings of tasks: We use the Task2Vec di-
versity coefficient proposed in (Miranda et al., 2022) to com-
pute the formal diversity of a dataset (or a few-shot learning
benchmark). To understand the diversity coefficient, we
explain how to compute Task2Vec (vectorial) embeddings
of a task and briefly explain why it is a good vectorial em-
bedding of a task. Task2Vec (Achille UCLA et al., 2019)
embeds data (e.g., any batch) using the diagonal entries of
the Fisher Information Matrix (FIM) using a fixed neural
network (also called a probe network) after (partially) fine-
tuning the final layer to solve the current task (or batch).
Thus, the Task2Vec embedding of task 7 is:

fo..40 = Diag(Fp, 1,) 1)

where Diag extracts the diagonal of the FIM:

FD-,—,fw = Ez,va logp(y | xvfw)va(y | xvfw)—r

and f, is the fixed probe network with architecture f
with weights w, x is sampled from the batch/data D, =
{(xs,y:)} for task 7, y is sampled from the (empir-
ical) posterior distribution using the probe network i.e.
p(y | @, fw), This is a good embedding of tasks because
the (diagonal) of the FIM indicates the most informative
weights for solving the current task and thus serves as a
unique fingerprint for task distribution. The Task2Vec au-
thors (Achille UCLA et al., 2019) empirically validate their
embeddings, e.g., Task2Vec embeddings cluster in a way
that matches human semantic relations between different vi-
sual tasks (Achille UCLA et al., 2019) and Task2Vec yields
(cosine) distance that positively correlation with taxonomi-
cal distances (Achille UCLA et al., 2019).

Task2Vec Diversity coefficient: The Task2Vec diversity
coefficient is a formal quantitative metric proposed by (Mi-
randa et al., 2022) to approximate the effective number of
tasks in a dataset. If the tasks are probability distributions,
then this metric approximates the average distance between
probability distributions. They validate it with synthetic ex-
periments where the ground truth diversity is known. We fur-
ther validate it in the supplementary section A.4. We show
the intuitive notion that when different types of datasets
are unioned to create a new dataset, the Task2Vec diversity
coefficient increases. The Task2Vec diversity coefficient is
defined as the expected (cosine) distance between Task2Vec
embeddings of different tasks (or data batches) for a fixed
probe network from a few-shot learning benchmark/dataset
B:
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where F'p, . is the Task2Vec embedding of the training
data D, = {(z;,v:)}, for task p(x,y | 7) that uses the
fixed probe network f,, with architecture f and weights w.
Note that 7y, 75 are tasks sampled from the (meta) distribu-
tion of tasks p(r | B) for the current benchmark B, and
d is the cosine distance. It is worth restating that in this
framework, a task is defined as an n-way, k-shot few-shot
learning task. Each task thereby includes n classes, each of
which is sampled with k& examples. Usually, this is split into
a support (train) set for fast adaptation and a query (test) set
for evaluation.

3. Statistical Methods

In this section, we explain the main statistical methodology
we use to analyze our results using the effect size (Cohen’s
d) (Cohen, 1992; Andrade, 2020) and its rationale. We want
to emphasize that the main tool we used was the effect size
(Cohen, 1992) described in Section 2.

3.1. Decision Rule

Summary of decision rule: To determine if there was a
significant difference between PT vs MAML we computed
the meta-test accuracy of the two methods and determined
if the difference in terms of the effect size was larger than
what is common in machine learning (we use a 1 % standard-
ized threshold by dividing by the pooled standard deviation
(Rodriguez et al., 2020; Li et al., 2021)). If it is larger, we
determine there is a significant difference and report which
method won by looking at the sign of the effect size. Other-
wise, if the difference was small according to this threshold,
we reported there was no significant difference. Note, how-
ever, all our tables include the raw effect size differences.

More precisely, first compute a list of (meta) test accuracies
on a batch of few-shot learning tasks for MAML and PT
denoted as: accs,; and accsy,qmii, where ¢ denotes the num-
ber of inner steps in MAML during (meta) testing. Compute
the effect size (ES) of the difference of these. Compute
the threshold d;4, by dividing 1 % by the pooled standard
deviation of the current test accuracies, i.e. divide 0.01 by
std_pooled(accsp, — accsmamis). Then the decision rule in
equation 3 to determine if to reject the null hypothesis or not.
Note, you can also look at the effect size sign to determine
which method performed best. If the sign is positive, then
PT outperformed MAML, otherwise MAML performed bet-
ter. For most of our experiments, we noticed §,¢, ~ 0.06,
therefore, an effect size difference with magnitude less than
0.06 meant there wasn’t sufficient evidence to reject the null
hypothesis i.e. there wasn’t a significant difference between
the methods.

3.2. Justification for Effect Size and Decision Rule

The principal rationale behind our choice for using effect
size lies in the sizable sample/batch size we employed, rang-
ing from 300-500. Other statistical decision rules, including
t-tests (using p-values) and confidence intervals, over-reject
the null hypothesis, a known issue in statistics (Lin et al.,
2013). In other words, in studies with large sample sizes,
even tiny, unimportant differences can be statistically signif-
icant. Reporting effect size prevents this type of misleading
conclusion (Lin et al., 2013). An additional benefit of using
the effect size is that it also protects the researchers from
confirmation bias. For example, the researcher cannot de-
liberately choose a sample/batch size to fit pre-conceived
assumptions.

We also seek a data-centric perspective to our analysis.
Therefore, it was paramount that our analysis was robust
across datasets. Using effect size allows for this comparison
because it’s a standardized measure, so it’s not influenced
by sample size or the units of measurement.

Effect size provides information about the magnitude or
strength of the difference or relationship between variables,
going beyond the mere existence of an effect. It offers
more informative insights than solely determining whether
a difference is significant.

In the end, every statistical decision test will have an arbi-
trary value that needs to be chosen and justified. For t-tests,
it’s the p-value, commonly set to 0.05. For confidence in-
tervals is the confidence level, commonly set to 95%. For
effect size, the standard used values are 0.2, 0.5, 0.8 (An-
drade, 2020). In this setting, we choose the difference to be
the standardized 1 %. We choose this value because it is the
common performance gained needed in machine learning
conferences, these papers are some evidence (Rodriguez
et al., 2020; Li et al., 2021). However, note is arbitrary, and
therefore it is important to report all absolute effect sizes
and raw meta-test accuracies. We do this in our work, and
the meta-test accuracies are in the supplementary section
A2.

4. Experiments

We compare the performance of a pre-trained (PT) model
against a MAML model using the effect size and the deci-
sion procedure described in section 3. To provide further
insights, we organize our experiments results according to
the formal diversity of the datasets. In particular, we divide
the results into datasets with formally low and high diversity.
We do the division of low vs high at 0.146 Task2Vec diver-
sity, because that was approximately the average diversity.
In addition, this division roughly divided the datasets in an
intuitive way: most data sets that were a union of four or
more data sets had a diversity higher than 0.146, while the



HO (no diff.)

H1 (pt)
H1 (maml)

Decision(accspt, acCSmami;) =

rest were below. The only exception was Omniglot, which
had a high diversity, but also contains a vast amount of vi-
sual concepts (over 1000). The summary of our results can
be found in section 4.5.

4.1. Comparison of a Pre-trained (PT) model vs a
first-order (fo) MAML model on low diversity
datasets

Table 1 shows our experimental results for the low diversity
setting when comparing a pre-trained (PT) model vs a first-
order (fo) MAML model.

The summary for the decision counts is as follows: we failed
to reject the null hypothesis HO (no difference) 1 time, we
rejected the null hypothesis in favor of the H1 (PT) alterna-
tive 11 times, and we rejected the null hypothesis in favor of
the H1 (MAML) alternative 10 times. MAMLS5 accounted
for 5 of these rejections, while MAML10 accounted for 5.
Note that MAMLS, MAMLIO in this context correspond
to a MAML model that used 5 or 10 SGD steps during
adaptation respectively.

Overall, the effect size for HO (no diff.) is 0.029, for H1
(PT) is 0.778, and for HI (MAML) is -0.411 as shown in
table 6. However, when averaging all low diversity results
(as done in section 4.5) where there was a difference (H1 pt
or maml), the overall effect size is 0.0909, favoring PT.

4.2. Comparison of a Pre-trained model vs. a
higher-order (ho) MAML model on low diversity
datasets

Table 2 shows our experimental results for the low diver-
sity setting when comparing a pre-trained (PT) model vs a
higher-order (ho) MAML model.

The summary for the decision counts is as follows: we failed
to reject the null hypothesis HO (no difference) O times, we
rejected the null hypothesis in favor of the H1 (PT) alterna-
tive 9 times, and we rejected the null hypothesis in favor of
the HI (MAML) alternative 9 times. MAMLS5 accounted
for 4 of these rejections, while MAML10 accounted for 5.
Note that MAMLS, MAMLI10 in this context correspond to
a MAML model that used 5 or 10 SGD inner steps during
evaluation respectively.

Overall, the effect size for HO (no diff.) is N/A (for PT vs
ho-MAML HO was never decided), for H1 (PT) is 0.669,
and for HI (MAML) is -0.717 as shown in table 6. However,
when averaging all low diversity results (as done in section

if ES(acespr — accsmami;) € [—01%, 01%)
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if ES(acespr — accsmami;) > 01%
if ES(accspr — accSmami;) < —019

4.5) where there was a difference (H1 pt or maml), the
overall effect size is 0.0909, favoring PT.

4.3. Comparison of a Pre-trained model vs. a MAML
model on high diversity datasets

Table 3 shows our experimental results for the high diver-
sity setting when comparing a pre-trained (PT) model vs a
higher-order MAML model.

The summary for the decision counts is as follows: we failed
to reject the null hypothesis HO (no difference) 14 times, we
rejected the null hypothesis in favor of the H1 (PT) alterna-
tive 3 times, and we rejected the null hypothesis in favor of
the HI (MAML) alternative 9 times. MAMLYS5 accounted
for 2 of these rejections, while MAML10 accounted for 6.
Note that MAMLS5, MAMLI10 in this context correspond to
a MAML model that used 5 or 10 SGD inner steps during
evaluation respectively.

Overall, the effect size for HO (no diff.) is 0.0721, for H1
(PT) is 0.0638, and for HI (MAML) is -0.155 as shown in
table 6. However, when averaging all high diversity results
(as done in section 4.5) where there was a difference (H1 pt
or maml), the overall effect size is -0.105, favoring MAML.

4.4. Comparison of a Pre-trained (PT) model vs a
MAML model on a varying size of SCNN on high
diversity dataset

Table 4 shows our experimental results for the high diver-
sity setting when comparing a pre-trained (PT) model vs a
MAML model using a varying size SCNN.

The summary for the decision counts is as follows: we failed
to reject the null hypothesis HO (no difference) 4 times, we
rejected the null hypothesis in favor of the PT alternative 3
times, and we rejected the null hypothesis in favor of the
MAML alternative 9 times. MAMLS5 accounted for 4 of
these rejections, while MAML10 accounted for 5. Note that
MAMLS, MAMLIO in this context correspond to a MAML
model that used 5 or 10 SGD inner steps during evaluation
respectively.

Overall, the effect size for HO (no diff.) is 0.00922, for H1
(PT) is 0.0795, and for H1 (MAML) is -0.192 as shown in
table 6. However, when averaging all high diversity results
(as done in section 4.5) where there was a difference (H1 pt
or maml), the overall effect size is -0.105, favoring MAML.



Model (Dataset)

PT-MAMLS5 (Decision)

PT-MAML10 (Decision)

Resnet12 (cifar-fs)
Resnet12 (fc100)
Resnet12 (mini-imagenet)
Resnet12 (tiered-imagenet)
Resnet12 (aircraft)
Resnet12 (flower)
Resnet12 (dtd)
Resnet12 (delaunay)
Resnet12 (cubirds)
ResNet12 (vggair)
ResNet12 (vggdtd)

-0.266 (H1 maml5)
-0.251 (H1 maml5)

-0.342 (H1 maml10)
-0.248 (H1 maml10)

-0.671 (H1 maml5)

-0.572 (H1 maml5)
-0.105 (H1 maml5)

0.413 (H1 pt)
0.218 (H1 pt)

1.224 (H1 pt)
1.332 (H1 pt)
1.290 (H1 pt)

0.200 (H1 pt)

0.149 (H1 pt)
0.0290 (HO no diff.)
-1.014 (H1 maml10)
1.125 (H1 pt)
1.147 (H1 pt)
1.262 (H1 pt)
-0.452 (H1 maml10)
-0.195 (H1 maml10)
0.203 (H1 pt)

Table 1. Meta-Test accuracy difference between a Pre-trained (PT) model vs. first-order (fo) MAML model using Effect Size
(ES/Cohen’s d) on low diversity few-shot learning vision datasets. We used a meta-batch size of 300 few-shot learning tasks. The
summary of decisions from the hypothesis test were: HO (no difference) 1 time, H1 (pt) 11 times, and H1 (maml) 10 times (MAMLS
accounted for 5 of while MAMLI10 accounted for 5). The diversity for them is low, as shown in table 8. Resnetl2 has 1,427,525

parameters.
Model (Dataset) PT-MAMLS (Decision) | PT-MAMLI10 (Decision)
Resnet12 (cifar-fs) -0.602 (H1 maml5) -0.628 (H1 maml10)
Resnet12 (fc100) -0.800 (H1 maml5) -0.643 (H1 maml10)

Resnet12 (mini-imagenet)
Resnet12 (tiered-imagenet)
Resnet12 (aircraft)
Resnet12 (flower)
Resnet12 (dtd)
Resnet12 (delaunay)
Resnet12 (cubirds)

-0.667 (H1 maml5)

-1.043 (H1 maml5)

0.205 (H1 pt)
0.236 (H1 pt)

0.382 (H1 pt)
1.240 (H1 pt)
0.912 (H1 pt)

-0.126 (H1 maml10)
0.768 (H1 pt)
-0.908 (H1 maml10)
0.465 (H1 pt)
1.020 (H1 pt)
0.793 (H1 pt)
-1.044 (H1 maml10)

Table 2. Meta-Test accuracy difference between a Pre-trained (PT) model vs higher-order (ho) MAML model using Effect Size
(ES/Cohen’s d) on low diversity few-shot learning vision datasets. The summary of decisions from the hypothesis test were: HO (no
difference) 0 times, H1 (pt) 9 times, and H1 (maml) 9 times (MAMLS accounted for 4 while MAML10 accounted for 5). The diversity for

them is low, as shown in table 8. Resnet12 has 1,427,525 parameters.

ResNet12 (seedl) (hdb7-afto)
ResNet12 (seedl) (hdb8-cado)
ResNet12 (seedl) (hdb9-cavdo)

ResNet12 (seedl) (hdb10-micova)
Resnet50 (seed1 vs seed1) (mds)
Resnet50 (seedl vs seed2) (mds)
Resnet50 (seed2 vs seedl) (mds)
Resnet50 (seed2 vs seedl) (mds)

0.0528 (H1 pt)
-0.167 (H1 maml5)
0.00798 (HO no diff.)
-0.287 (H1 maml5)
0.0834 (H1 pt)
-0.0391 (HO no diff.)
-0.0566 (HO no diff.)
0.0178 (HO no diff.)

Model (Seeds) (Dataset) PT-MAMLS5 (Decision) | PT-MAMLI10 (Decision)
Resnet12 (fo-maml) (omniglot) 0.00702 (HO no diff.) 0.0679 (HO no diff.)
Resnet12 (ho-maml) (omniglot) 0.577 (HO no diff.) 0.468 (HO no diff.)

ResNet12 (fo-maml) (mio) -0.0197 (HO no diff.) -0.0161 (HO no diff.)
ResNet12 (seed1) (hdb4-micod) -0.0166 (HO no diff.) -0.0559 (HO no diff.)
ResNet12 (seedl) (hdb6-afdo) -0.0919 (H1 maml5) 0.0242 (HO no diff.)

-0.121 (H1 maml10)
-0.116 (H1 maml10)
0.0552 (H1 pt)
-0.308 (H1 maml10)
0.0439 (HO no diff.)
-0.102 (H1 maml10)
-0.131 (H1 maml10)
-0.0680 (H1 maml10)

Table 3. Meta-Test accuracy difference between a Pre-trained (PT) model vs MAML model using Effect Size (ES/Cohen’s d) on
high diversity few-shot learning vision datasets using a 5 layer CNN (SCNN). The summary of decisions from the hypothesis test
were: HO (no difference) 14 times, H1 (pt) 3 times, and H1 (MAML) 9 times (MAMLS accounted for 2 while MAML10 accounted for 6).
The diversity for them is high, as shown in table 9. Resnet12 has 1,427,525 parameters, while Resnet50 has 50,685,637 parameters. Note;

mds stands for Meta-DataSet.




Filter Size (Dataset)

PT-MAMLS (Decision)

PT-MAMLI10 (Decision)

2 (micod)
6 (micod)
8 (micod)
16 (micod)
32 (micod)
64 (micod)

-0.0533 (H1 maml)
-0.184 (H1 maml)
0.0794 (H1 pt)
-0.131 (H1 maml)
0.0401 (HO no diff)
-0.0588 (HO no diff)

0.0624 (H1 pt)
-0.100 (H1 maml)
-0.00121 (HO no diff)
-0.149 (H1 maml)
-0.0689 (H1 maml)
-0.145 (H1 maml)

256 (micod)
512 (micod)

0.0568 (HO no diff)
-0.341 (H1 maml)

0.0969 (H1 pt)
-0.376 (H1 maml)

Table 4. Meta-Test accuracy difference between a Pre-trained (PT) model vs MAML model using Effect Size (ES/Cohen’s d)
on the high diversity MICOD few-shot learning vision data set. The summary of decisions from the hypothesis test were: HO (no
difference) 4 times, H1 (pt) 3 times, and H1 (maml) 9 times (MAMLS5 accounted for 4 while MAML10 accounted for 5). The Diversity
Coefficient for the MICOD dataset was high with Task2Vec diversity coefficient of 0.174 as reported on table 9.

4.5. Summary of comparison of Pre-training (PT) vs
MAML

Finally, we summarize all our results. In table 5 we summa-
rize the overall counts of the decisions from the hypothesis.
In the low diversity regime: we failed to reject the null
hypothesis HO (no difference) 1 time, we rejected the null
hypothesis in favor of the H1 (pt) alternative 20 times, and
we rejected the null hypothesis in favor of the H1 (maml)
alternative 19 times. Suggesting PT is slightly better than
MAML for low diversity datasets.

In table 6 we summarize the overall effect size for the four
settings we studied. In the low diversity setting PT out-
performs MAML but, in the low diversity setting MAML
outperforms PT. In the low diversity setting, PT has a larger
effect size relative to the effect size of MAML in the high
diversity regime when analyzing the results in this way.

In table 7 we summarize all results and compare the low
diversity vs the high diversity regime when there is a signif-
icant difference (i.e. H1). In more detail, when averaging
all the low diversity results with an H1 (PT or MAML) de-
cision, the overall effect size is 0.0909, favoring PT. When
averaging all the low diversity results, the overall effect
size is -0.105 favoring MAML. However, note that this is
considered low effect in classical statistics, as the regime
for small, medium, high are roughly 0.2, 0.5, 0.8 (Andrade,
2020; Cohen, 1992).

4.6. Formal Diversities of datasets

In this section, we present the formal diversities computed
on the datasets we studied. We used the Task2Vec diversity
coefficient described in section 2 and (Miranda et al., 2022).
We divide the results into datasets with formally low and
high diversity. We do the division of low vs high at 0.146
Task2Vec diversity (using Resnetl8pt), because that was
approximately the average diversity. We describe the dataset
composition in the supplementary section A.3.

5. Related Work

We suggests a data centric-oriented framework for exam-
ining meta-learning algorithms in response to the call to
re-think meta-learning — especially in the context of few-
shot learning (Tian et al., 2020). Also, the main distinction
between our work and theirs (Tian et al., 2020) lies in: that
we bring clarity and nuance to their surprising results by
using more rigorous statistical analysis (through the effect
size (Lin et al., 2013)), that we contextualize our finding by
computing explicit data quality properties — like the formal
diversity of a dataset, and that we use a much wider set of
diverse datasets. In addition, unlike their work, ours focuses
in ensuring a fair comparison by using a consistent neural
network architecture, optimizer, and all models trained to
convergence. Another point of difference is their attainment
of further accuracy gains through distillation, a method we
have not analyzed but will consider for future work.

Some earlier work demonstrated that MAML operates
chiefly through feature reuse rather than rapid learning,
signifying that a model trained with MAML undergoes
minimal alteration after the MAML adaptation. Our work
diverges from theirs primarily in two ways: 1) we con-
trast MAML meta-trained models against models that are
pre-trained with a union of all the data rather than solely
comparing varying types of MAML models, and 2) we con-
textualize our analysis by explicitly analyzing properties of
datasets, like formal diversity.

Related work also includes the predictability of adversarial
transferability and transfer learning through extensive ex-
perimentation and a theoretical analysis (Liang et al., 2021).
The primary difference between their work and ours is their
primary focus on transfer learning, while we concentrate
on meta-learning for few-shot learning. Additionally, we
did not consider adversarial transferability, which forms a
central part of their analysis.

Now we proceed to comment on datasets/benchmarks re-
lated to our work. The meta-data set benchmark aims to



Setting Decision: HO | Decision: H1 (PT) | Decision: Hl (MAML)
Low diversity (fo maml) 1 11 10
Low diversity (ho maml) 0 9 9
High diversity (all) 14 3 9
High diversity (SCNNs) 4 3 9
GPT2 (Openwebtext) 1 0 0

Table 5. Summary of experimental results, counting when MAML beat Pre-training (PT) across low and high diversity datasets
using the effect size (ES/Cohen’s d) was greater than the (standardized) 1% difference. Using this statistical decision, the conclusion
is that in the low diversity regime, MAML and Pre-training show no difference while in the high diversity there is a small difference. The
summary of decisions from the hypothesis test were: HO (no difference) 1 times, H1 (PT) 20 times, and H1 (MAML) alternative 19 times
Note fo maml stands for first-order MAML and ho maml stands for higher-order maml.

Setting Decision: HO
Low diversity (fo maml) 0.029
Low diversity (ho maml) No data
High diversity (all) 0.0721
High diversity (SCNNs) 0.00922

Decision: H1 (PT) | Decision: HI (MAML)
0.778 -0.411
0.669 -0.717
0.0638 -0.155
0.0795 -0.192

Table 6. Summary of experimental results when comparing a MAML model against a Pre-trained (PT) model using the average
effect size (ES/Cohen’s d) for each statistical decision rule. Using the averages we can see that the difference in the low diversity
regime is low but slightly favoring a pre-trained model, while in the high diversity a MAML model is favored. Note fo maml stands for

first-order MAML and ho maml stands for higher order maml.

create a larger and more diverse dataset for few-shot learning
(Triantafillou et al., 2019). The key distinction between their
work and ours is our use of a quantitative metric to measure
the intrinsic diversity of a dataset, ad therefore bring more
nuanced considerations beyond dataset size or even just
class numbers. Another interesting work is the IBM Cross-
Domain few-shot learning benchmark (Guo et al., 2019).
They provide an interesting benchmark but we decided to
leave it for future work since their setting is different from
ours because cross-domain learning is out of scope for our
work.

The work by (Wang et al., 2021) proposes the concept of
global labels, equivalent to what we call pre-training with
all the data in this paper. Their theoretical analysis, however,
is dependent on a fixed feature extractor, and fails to accom-
modate different feature extractors e.g. when comparing a
Pre-trained model vs a MAML model. We address this in
our empirical study.

6. Discussion

Our paper presents an alternative explanation for claims that
a Pre-trained model can often beat a model trained with
meta-learning (Tian et al., 2020; Chen et al., 2019; 2020;
Dhillon et al., 2019; Huang & Tao, 2019). In particular,
we show that a more careful analysis — especially one that
takes the formal dataset diversity into account and more
rigorous statistical tools — can provide a nuanced truthful
conclusion. Note, however, all statistical tools have assump-
tions and none are perfect — as the following discussion will

exemplify.

For example, section 4.5 shows that when the overall aver-
age effect size across all high diversity datasets is used, we
get a mean effect size of -0.105, favoring MAML. Similarly,
across all low diversity datasets the effect size is 0.0909,
favoring PT. However, this effect size is considered low
in classical statistics, since effect sizes of small, medium,
high are roughly 0.2, 0.5, 0.8 (Cohen, 1992). However, to
further nuance the analysis, if one uses the decision of the
hypothesis test alone as in table 6, one might conclude that
in the low diversity datasets Pre-training is marginally bet-
ter than MAML - since there was only one more time it
outperformed MAML. In the high diversity setting, how-
ever, MAML clearly outperformed Pre-training using this
measure with 18 counts vs 6. However, it is worth point-
ing out that even in the high diversity regime, our decision
procedure resulted with 18 counts where HO (no difference)
was concluded. It is worth pointing that this method has
a disadvantage in that it would hide the magnitude of the
effect, which is why we always report the raw value of the
effect size. A final nuance we’d like to add to our results
is the variance of the effect size. Table 6 has effect sizes
ranging from 0.778 to -0.717. Meaning that when looking
at individual experiments, the difference might be high for
each individual run.

In addition, we want to emphasize that unlike previous work,
we truly emphasized a fair comparison i.e. we used the same
architecture, the same optimizer, and all models trained
to convergence. Previous results, especially (Tian et al.,



Decision: H1 (PT)

Decision: HI (MAML)

Setting Decision: HO
Low diversity (fo & ho maml) 0.029
High diversity (all & SCNNs) 0.0581

0.727
0.0717

-0.581
-0.167

Table 7. Summary of experimental results when comparing a MAML model against a Pre-trained (PT) model using the average
effect size (ES/Cohen’s d) for each statistical decision rule using all results at once. The overall mean effect size for rejecting the null
hypothesis (i.e. H1) was 0.0909 for the low diversity setting and —0.105 for the high diversity setting. This shows: A. in the low diversity
setting the H1 difference is low but marginally favoring a pre-trained model, while B. in the high diversity the H1 difference is also low
but marginally favoring a MAML model. Note fo maml stands for first-order MAML and ho maml stands for higher order maml.

mini-imagenet
tiered-imagenet

Dataset Diversity (Resnet18 pt) | Diversity (Resnet34 pt)
cifar-fs 0.106 £ 0.00166 0.0890 £ 0.00199
fc100 0.107 £ 0.00149 0.0903 4+ 0.00389

0.119 £ 0.00213
0.124 £ 0.00219

0.102 £ 0.00163
0.105 £ 0.00161
0.0932 £+ 0.00109
0.117 £ 0.00234
0.111 £ 0.00228
0.1078 £+ 0.00196
0.104 £ 0.00149
0.120 £ 0.00129
0.119 £ 0.00107

aircraft 0.110 £+ 0.00127
flower 0.138 4+ 0.00288
dtd 0.129 4+ 0.00227
delaunay 0.128 4+ 0.00268
cubirds 0.120 4+ 0.00161
vggair 0.141 £+ 0.00131
vggdtd 0.135 £+ 0.00105

Table 8. Shows the low diversities of data sets used for analysis using the Task2Vec diversity coefficient — using the train split
with 95% confidence intervals. We use a Resnet18 and Resnet34 pre-trained (pt) on ImageNet as the backbone to calculate the Fisher
Information Matrix (FIM) needed for the Task2Vec task embeddings for the Diversity Coefficient.

2020), compared different architectures and different meta-
learning methods, thereby making it impossible to know
the true source of improved performance. We disambiguate
this and show that in datasets with low formal diversity,
PT outperforms MAML, while MAML outperforms PT in
datasets with high formal diversity.

We’d also like to note that although MAML and Pre-training
(PT) are marginally different (or that MAML is better than
PT for high diversity data sets) — that MAML is still harder
to train than PT. In particular, MAML requires an additional
memory for the gradient in the forward pass and makes it
harder to train for large models. Even though (Bronskill
et al., 2021) memory efficient meta-learning might solve the
memory issue, it is still less simple than pre-training.
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Diversity (resnet34pt)

Dataset Diversity (resnet18pt)
omniglot 0.167 £ 0.00579
mio 0.188 £ 0.00416
hdb4-micod 0.174 £ 0.00420
hdb6-afdo 0.179 +£ 0.00255
hdb7-afto 0.186 £ 0.00276
hdb8-cado 0.173 £ 0.00278
hdb9-cavdo 0.177 £ 0.00256
hdb10-micova 0.170 £ 0.00262
mds 0.173 £ 0.00282

0.139 £ 0.00387
0.161 £ 0.00351
0.154 £ 0.00381
0.155 £ 0.00218
0.146 £ 0.00233
0.153 £ 0.00236
0.139 £ 0.00199
0.137 £ 0.00214
0.149 £ 0.00252

Table 9. Shows the high diversities of data sets used for analysis using the Task2Vec diversity coefficient — using the train split
with 95% confidence intervals. We use a Resnet18 and Resnet34 pre-trained (pt) on ImageNet as the backbone to calculate the Fisher
Information Matrix (FIM) needed for the Task2Vec task embeddings for the Diversity Coefficient. MDS stands for Meta-DataSet.
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A. Supplementary Material
A.1. Related Work (Cont.)

The ARC benchmark (Chollet, 2019) was designed with AGI in mind — potentially the ultimate meta-learner. However,
ARC’s focus is primarily on visual reasoning utilizing program synthesis techniques. We believe it’s a promising path, but
our work inspires extensions that transcend program synthesis approaches.

The study by (Chen et al., 2021) offers, to our knowledge, the first non-vacuous generalization bounds for the (supervised)
meta-learning setting. However, their results do not aim to differentiate classes of meta-learning, as our work attempts to do
empirically.

The work by (Wang et al., 2021) proposes the concept of global labels, equivalent to what we call USL in our paper. Their
theoretical analysis, however, is dependent on a fixed feature extractor, and fails to accommodate different feature extractors
that might be trained, such as comparing USL vs MAML directly in an end-to-end fashion. This was partially addressed
theoretically and empirically in (Miranda et al., 2022).

The study by (Denevi et al., 2020) presents a theoretical treatment of meta-learning using meta-learners with closed-form
equations derived from ridged regularization using fixed features. However, their results are highly theoretical, whereas ours
focus on empirical results, and they do not explore their findings in the context of modern few-shot learning benchmarks
like Minilmagenet, Cifar-fs, FC100, TiereImagenet, Meta-DataSet, etc. like we do.

The work by (Goldblum et al., 2020) provides strong evidence that adaptation at test time is best done when the meta-trained
model matches the adaptation it was meta-trained with. However, their results cannot beat (Tian et al., 2020) and thus do not
help separate the role of meta-training and pre-training (PT) with a union of all the data.

The study by (Gao & Sener, 2020) provides theoretical bounds of when the expected risk of MAML and DRS (Domain
Randomized Search) by bounding the gradient norm. However, they do not provide in depth empirical analysis with respect
to any real few-shot learning benchmarks like Minilmagenet or Cifar-fs.

The work by (Rosenfeld et al., 2021) provides a theoretical analysis on the difference between interpolation and extrapolation
in transfer learning. We believe this type of theory may be helpful as an inspiration to explore why in the high diversity
regime there seems to be a difference between the performance of meta-learning and transfer learning or pre-trained methods.

Finally, the work (Miranda, 2020b;a) first demonstrated that there exist synthetic data sets capable of exhibiting higher
degrees of adaptation compared to the original work by (Raghu et al., 2020). Their main focus was on comparing adapted
MAML models vs. unadapted MAML models, a difference from our approach in this paper.

Previous work demonstrated that in datasets with low diversity, the difference MAML and pre-training is small (Miranda
et al., 2022). While we substantiate these results to a degree, we introduce a nuance that, when evaluated through the
statistical lens of effect size, pre-training can outperform MAML. This subtle detail underscores the critical role of the
selected statistical measure in the comparative analysis of these algorithms. Finally, we provide the final piece of evidence
to complete their story (Miranda et al., 2022), for high diversity datasets. Crucially, we include the large scale meta-dataset
(mds) and demonstrate that merging/unioning datasets is an effective mechanism for increasing the formal diversity of a
dataset.

BiT (Kolesnikov et al., 2020) is a study that demonstrates good performance on a wide set of datasets (20) using transfer
learning by pre-training on a large (JFT-300M) scale vision data set. They fine-tune the entire network (with SGD and
momentum) during adaptation and provide heuristics for choosing the hyperparameters with the HyperRule heuristic. The
main contrast with our work is that they do not do a direct fair comparison with meta-learning (like MAML) as we did.
Contrary to this previous work that leaves the comparative merits of pre-training and meta-learning algorithms indeterminate,
our work directly addresses this comparison as its primary focus. We think the authors (Kolesnikov et al., 2020) should
have compared their test time adaptation method that fine-tunes the entire paper to the one proposed by (Tian et al., 2020)
that uses optimal convergence at the final layer with gradient-based BFGS fine-tuning. We note they use a large dataset for
pre-training, and it’s important to use such a dataset for the training of MAML to be able to do a fair comparison between
MAML and pre-training. Our experiments on meta-dataset suggest that on large-scale formally diverse dataset MAML
might be marginally better than pre-training.

Memory efficient meta-learning with large images (Bronskill et al., 2021) demonstrates that if one subsamples the support
set (using their method called LIME) to meta-train many meta-learning algorithms, then one can match the performance of a
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pre-training network that has been fine-tuned with 50 steps. The main contrast between their work and ours is: 1. They
use confidence intervals to separate pre-training methods vs meta-learning methods, while we use effect size 2. We add
another level of structure to the analysis by separating the results in datasets that have a formal low diversity vs a formal
high diversity. This analysis shows that MAML in fact can outperform pre-training, although being small when using
the effect size as the measuring metric. We posit that our work, in conjunction with (Bronskill et al., 2021), provides a
complete perspective on meta-learning — where we conjecture that meta-learning methods in general marginally outperform
pre-training methods. Their work (Bronskill et al., 2021) supports our counter-narrative that pre-training methods are always
better.

The Vendi Score is a recently proposed formal diversity score different from the diversity coefficient proposed in (Miranda
et al., 2022). The Vendi score is mainly a more sophisticated aggregation method than an expectation given pair-wise
comparisons. Their aggregation score is interesting, but it is unclear what the advantages of it are compared to a simpler
expectation. For a sample of n already embedded tasks (or data points), the Vendi score takes O(n?) (due to the use of
eigenvalue computation), while ours uses the faster to compute expectation, which takes O(n? — n/2) = O(n?). We
hope to explore the Vendi score in future work and compare it with the expectation aggregation score. However, the main
weakness of the Vendi score that previous work address (Miranda et al., 2022) is the use of Task2Vec (Achille UCLA
etal., 2019) to compute embeddings of tasks. The Vendi score assumes one already has such a comparison by assuming
a Kernel/Grahm Matrix and unfortunately circumvents arguably the hardest part of the problem — computing effective
embeddings a task. Their formulation also implies their analysis is mostly focused on individual data point diversity, while
the diversity coefficient also works embedding tasks, batches, and even entire datasets.

The ranges of 0.2, 0.5, and 0.8 as small, medium and large effect sizes were proposed in (Andrade, 2020).

The work by (Kumar et al., 2022) provides an exploration of the effects of diversity in meta-learning. However, they focus

mostly on sampling strategies, while we focused on the intrinsic diversity in the datasets/benchmarks themselves.

A.2. All Meta-test accuracy of a Pre-trained (PT) model vs. MAML

In this section, we report the raw meta-test accuracy of used (to compute the effect size) when comparing PT vs MAML

models in the main body of the text section 4.

A.2.1. META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A FIRST-ORDER (FO) MAML MODEL ON LOW
DIVERSITY DATASETS

Meta-test accuracy (with 95% confidence intervals) of a Pre-trained (PT) model vs. a first-order (fo) MAML model on low
diversity datasets are in table 10.

Model (Dataset) PT (test acc.) MAMLS (test acc.) | MAMLIO (test acc.)
Resnet12 (cifar-fs) 0.755 + 0.0102 0.779 + 0.00975 0.786 £ 0.00996
Resnet12 (fc100) 0.438 +0.00949 | 0.458 £+ 0.00931 0.459 + 0.00988
Resnet12 (mini-imagenet) | 0.719 4 0.00893 0.685 £ 0.00947 0.706 £ 0.0104
Resnet12 (tiered-imagenet) | 0.788 4 0.00945 0.769 4+ 0.0107 0.786 4+ 0.0107
Resnet12 (aircraft) 0.592 + 0.010 0.659 + 0.013 0.685 + 0.011
Resnet12 (flower) 0.928 + 0.005 0.856 + 0.008 0.870 £+ 0.007
Resnet12 (dtd) 0.610 + 0.011 0.511 £0.012 0.528 + 0.011
Resnet12 (delaunay) 0.735 £ 0.010 0.614 £ 0.012 0.632 £+ 0.010
Resnet12 (cubirds) 0.787 + 0.008 0.829 + 0.008 0.821 + 0.009
ResNet12 (vggair) 0.727 £ 0.027 0.745 £+ 0.019 0.760 + 0.019
ResNet12 (vggdtd) 0.737 + 0.019 0.701 £ 0.022 0.701 + 0.021

Table 10. Meta-Test accuracy of a Pre-trained (PT) model vs. a first-order (fo) MAML model with 95% confidence intervals on
low diversity few-shot learning vision datasets. We used a meta-batch size of 300 few-shot learning tasks. The data sets’ diversity is
low, as shown in table 8. Resnet12 has 1,427,525 parameters.
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A.2.2. META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A HIGHER-ORDER (HO) MAML MODEL ON LOW
DIVERSITY DATASETS

Meta-test accuracy (with 95% confidence intervals) of a Pre-trained (PT) model vs. a higher-order (ho) MAML model on
low diversity datasets are in table 11.

Model (Dataset) PT (test acc.) MAMLS (test acc.) | MAMLIO (test acc.)
Resnet12 (cifar-fs) 0.753 + 0.00941 0.804 + 0.00982 0.809 + 0.0107
Resnet12 (fc100) 0.432 +0.0102 0.503 4+ 0.0100 0.489 + 0.00988
Resnet12 (mini-imagenet) | 0.721 £ 0.00889 0.704 + 0.0100 0.732 4+ 0.00952

Resnet12 (tiered-imagenet) | 0.791 £ 0.00922 0.771 £ 0.0103 0.695 £+ 0.0178

Resnet12 (aircraft) 0.576 £0.0116 0.647 £ 0.0127 0.667 £ 0.0112
Resnet12 (flower) 0.921 £ 0.00534 | 0.902 £ 0.00597 0.899 £ 0.00581
Resnet12 (dtd) 0.600 + 0.0156 0.501 £ 0.0162 0.519 £0.0159
Resnet12 (delaunay) 0.734 £0.00984 | 0.655 + 0.00981 0.665 £ 0.00986

Resnet12 (cubirds) 0.785 £ 0.00839 | 0.857 + 0.00721 0.857 £ 0.00726

Table 11. Meta-Test accuracy of a Pre-trained (PT) model vs. a higher-order (ho) MAML model with 95% confidence intervals on
low diversity few-shot learning vision datasets. We used a meta-batch size of 300 few-shot learning tasks. The data sets’ diversity is
low, as shown in table 8. Resnet12 has 1,427,525 parameters.

A.2.3. META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A MAML MODEL ON HIGH DIVERSITY
DATASETS

Meta-test accuracy (with 95% confidence intervals) of a pre-trained (PT) model vs. MAML model on high diversity datasets
are in table 12.

Model (Seeds) (Dataset) PT (test acc.) MAMLS (test acc.) | MAMLIO (test acc.)
Resnet12 (fo maml) (omniglot) | 0.993 £ 0.00148 | 0.993 4+ 0.00139 0.992 4+ 0.00164
Resnet12 (ho maml) (omniglot) | 0.994 £ 0.00110 | 0.985 %+ 0.00219 0.988 + 0.00180

ResNet12 (fo maml) (mio) 0.845 £ 0.0121 0.849 £ 0.0136 0.848 + 0.0133

ResNet12 (micod) 0.778 + 0.0124 0.781 +0.0124 0.786 + 0.0119
ResNet12 (hdb6-afdo) 0.786 + 0.0205 0.802 + 0.0190 0.782 + 0.0178
ResNet12 (hdb7-afto) 0.756 + 0.0227 0.745 + 0.0226 0.779 £ 0.0216
ResNet12 (hdb8-cado) 0.711 + 0.0218 0.744 + 0.0227 0.733 + 0.0208

ResNet12 (hdb9-cavdo) 0.772 + 0.0210 0.771 4+ 0.0207 0.762 + 0.0211
ResNet12 (hdb10-micova) 0.713 £+ 0.0244 0.764 + 0.0177 0.766 + 0.0167
Resnet50 (seed1 vs seedl) (mds) | 0.775 + 0.0133 0.762 £+ 0.0133 0.768 +0.0144

Resnet50 (seedl vs seed2) (mds)
Resnet50 (seed2 vs seedl) (mds)
Resnet50 (seed2 vs seed1) (mds)

0.752 £0.0138
0.750 £ 0.0141
0.765 £ 0.0135

0.758 £ 0.0150
0.759 £ 0.0151
0.762 + 0.0147

0.768 £ 0.0144
0.772 £ 0.0152
0.776 £ 0.0143

Table 12. Meta-Test accuracy of a Pre-trained (PT) model vs. a MAML model with 95% confidence intervals on low diversity
few-shot learning vision datasets. Their diversity is high, as shown in table 9. Resnet12 has 1,427,525 parameters, while Resnet50 has
50,685,637 parameters.

A.2.4. META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A MAML MODEL ON A VARYING SIZE OF
5CNN ON THE MICOD HIGH DIVERSITY DATASET

Meta-test accuracy (with 95% confidence intervals) of a Pre-trained (PT) model vs. MAML model on varying size of
5CNNs on the MICOD high diversity dataset are in table 12.
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Filter Size (Dataset) PT (test acc.) MAMLS (test acc.) | MAMLIO (test acc.)
2 (micod) 0.481 4+ 0.0205 0.493 4+ 0.0197 0.467 + 0.0184
6 (micod) 0.588 + 0.0169 0.626 4+ 0.0189 0.608 4+ 0.0178
8 (micod) 0.606 £+ 0.0161 0.591 + 0.0178 0.607 = 0.0184
16 (micod) 0.655 + 0.0149 0.678 £ 0.0154 0.681 £+ 0.0157
32 (micod) 0.689 4+ 0.0151 0.682 + 0.0150 0.701 + 0.0154
64 (micod) 0.694 4+ 0.0135 0.704 4+ 0.0155 0.718 + 0.0152
256 (micod) 0.711 + 0.0139 0.702 4+ 0.0163 0.695 4+ 0.0156
512 (micod) 0.653 4+ 0.0175 0.718 + 0.0158 0.724 + 0.0154

Table 13. Meta-Test accuracy of a Pre-trained (PT) model vs. a MAML model with 95% confidence intervals on the high diversity
MICOD few-shot learning vision dataset using varying size of SCNNs. We used a meta-batch size of 500 few-shot learning tasks. The
Diversity Coefficient for the MICOD dataset is 0.174; details can be found in table 9.

A.3. Dataset composition details

Here we detail how we made our high diversity datasets. The method we used was taking the union as in (Tian et al., 2020)
of different datasets. Fe used global labels (Wang et al., 2021) during training.

Here we outline what the acronyms mean in tables 9 and 8: Here we outline what the acronyms mean in tables 9 and 8:

» HDBI stands for High-Diversity Benchmark number :.
* MIO stands for combining Minilmagenet (Vinyals et al., 2017) and Omniglot (Lake et al., 2015).

* MICOD stands for combining Minilmagenet (Vinyals et al., 2017), Cifar-fs (Bertinetto et al., 2019), Omniglot (Lake
et al., 2015), and Delaunay (Gontier et al., 2022).

* AFDO stands for combining fgvcAircraft (Maji et al., 2013), vggFlower (Nilsback & Zisserman, 2006), Delaunay
(Gontier et al., 2022), and Omniglot (Lake et al., 2015).

* AFTO stands for combining fgvcAircraft (Maji et al., 2013), vggFlower (Nilsback & Zisserman, 2006), describable-
Textures (Cimpoi et al., 2013), and Omniglot (Lake et al., 2015).

* CADO stands for combining Cifar-fs (Bertinetto et al., 2019), FGVCAircraft (Maji et al., 2013), Delaunay (Gontier
et al., 2022), and Omniglot (Lake et al., 2015).

* CAVDO stands for combining Cifar-fs (Bertinetto et al., 2019), FGVCAircraft (Maji et al., 2013), VGGFlower
(Nilsback & Zisserman, 2006), DescribableTextures (Cimpoi et al., 2013), Omniglot (Lake et al., 2015).

* MICOVA stands for combining Minilmagenet (Vinyals et al., 2017), Cifar-fs (Bertinetto et al., 2019), Omniglot (Lake
et al., 2015), VGGFlower (Nilsback & Zisserman, 2006), FGVCAircraft (Maji et al., 2013).

e MDS stands for Meta-Dataset (Triantafillou et al., 2019).

* dtd stands for Describable Textures Dataset (Cimpoi et al., 2013).

* VGGFlower is the alternative name for fgvcFlower (Nilsback & Zisserman, 2006).

* vggair stands for combining VGGflower (Nilsback & Zisserman, 2006) and fgvcAircraft (Maji et al., 2013).
» vggdtd stands for combining VGGflower (Nilsback & Zisserman, 2006) and DTD (Cimpoi et al., 2013).

A 4. Further testing of the Diversity Coefficient
A.4.1. VALIDATING THE TASK2VEC TASK EMBEDDINGS USED IN THE DIVERSITY COEFFICIENT

In this section, we further test if the Task2Vec task embeddings distances cluster in a semantically meaningful way in our
dataset MIO. This test is important because if the Task2Vec embeddings used to compute the diversity coefficient have
the structure we’d expect, then it makes the diversity coefficient itself more trustworthy. The MIO dataset was created by
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combining the Minilmagenet Omniglot. Therefore, if Task2Vec is a valid embedding for tasks, we would expect three
modes for our histogram: 1. One mode for the distances between tasks generated from Minilmagenet and Minilmagnet
2. Another mode for distances between tasks generated from Omniglot and Omniglot 3. And the last mode for distances
between tasks generated from Minilmagenet and Omniglot That is indeed what is seen as shown in figure 1

One interesting observation is that the average distance between Task2Vec embeddings (i.e. the diversity coefficient) is
larger for smaller networks.

Distribution of Task2Vec Distances Distribution of Task2Vec Distances
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Figure 1. The Task2Vec distances the histogram cluster in a way that reflect the semantic information of the union of the
Minilmagenet and Omniglot (MIO) training datasets. Left plot show the histogram of the cosine distance between Task2Vec
embeddings made using a Resnet18 backbone pre-trained on Imagenet. Right show the same, but when using Resnet34. The meta-batch
size was 500 meaning we used 500 tasks to compute these histograms. The diversity coefficients are 0.188 + 0.00416, 0.161 £ 0.00351

for the LHS and RHS plots.
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A.5. Discussion (Cont.)

In contrast to (Tian et al., 2020), our work deliberately opts for a broad suite of datasets with varying formal diversities
at the expense of exploring fewer meta-learning methods, which might be viewed as a potential limitation. However,
this decision was deliberate. This choice arises from (Tian et al., 2020)’s implication that pre-training may outperform
virtually all meta-learning algorithms (they considered). Our research, however, challenges this view (Tian et al., 2020), and
demonstrates that even the simplest meta-learning algorithm, MAML, can outperform pre-training when the comparison
employs fair and rigorous statistical analysis that considers the characteristics of the dataset e.g. formal diversity. In
addition, by not considering as wide (and arguably unmotivated) of set of meta-learning algorithms we are able to conduct a
more motivated A.6 investigation across a notably diverse array of datasets. Our approach underscores the importance of
dataset properties on algorithm performance, thereby contributing a nuanced perspective to the ongoing discourse in the
meta-learning domain.

We’d also like to remark the trade-offs between pre-training and meta-learning (Metal) that (Bronskill et al., 2021) articulates
clearly — especially given the evidence we present countering the prevailing narrative that advocates for pre-training (PT)
and transfer learning methods. The selection between PT vs MetaL strategies should be guided by: the available data,
computational resources, and the application’s specific requirements. For singular task types with ample data and no
computational or temporal constraints, fine-tuning within transfer learning may suffice. Conversely, meta-learning would be
more appropriate in scenarios requiring the acquisition of diverse tasks with sparse data on resource-limited devices, or in
continual or online learning environments. In addition, we provide a novel perspective where we show formally diverse
datasets are a scenario when meta-learning methods are marginally better than pre-training methods.

A potential drawback of our work could be our focus on mainly comparing pre-training (PT) against MAML, instead of
considering a wider set of meta-learning algorithms. Our justification is as follows: The current narrative (Tian et al., 2020;
Chen et al., 2019; 2020; Dhillon et al., 2019; Huang & Tao, 2019) implies that PT can beat any meta-learning algorithm.
We’d like to emphasize the word any, because it implicates a “for all" quantifier. Therefore, to counter the current narrative,
we only need to provide evidence against it (and thus show it is likely false) by considering a single meta-learning algorithm.
Therefore, if PT cannot even beat MAML — the simplest of meta-learning algorithms — it’s good evidence against the current
narrative. Therefore, we only need a single meta-learning algorithm to supports our conclusions. In addition, memory
efficient meta-learning (Bronskill et al., 2021) demonstrated that other meta-learning algorithms can match pre-trained
models. However, as we explained in the related work section, our contributions are novel, complementary and different
from (Bronskill et al., 2021) does because: 1. We contextualize our claims in a data-centric framework using formal
diversities over an extensive set of formally diverse datasets, 2. Our analysis goes beyond using confidence intervals and
reports the effect size, a method we justify in section 3, and, 3. Our novel analysis demonstrates that meta-learning (via
MAML) and pre-training can be (marginally) separated in performance when considering the formal diversity of the dataset.
In addition, it is reasonable to expect, given the memory efficient results (Bronskill et al., 2021), that when using their
memory efficient methods that a similar trend with other meta-learning algorithms would be observed — especially given we
already showed an initial separation between PT and MAML. Furthermore, our experiments were are extensive over a large
set of formally diverse datasets.

Another potential drawback of our work could be the use of the arbitrary 1% thresholds for our decision rule in 3. In
machine learning, it is not uncommon to accept papers due to 1% differences. We cite this ICCV 2021 paper (Li et al., 2021)
which gives the performance variance of common models on meta-dataset in table 1, which commonly ranges from 0.5 to
1.0. We also cite this ECCV 2020 paper (Rodriguez et al., 2020) that provides the variance for MinilmageNet, where the
standard deviations range around ~ 0.8. However, we’d like to underscore that we do not rely solely on this 1% cutoff to
interpret our experiments. We also report the raw effect size (and test accuracy) and use the classically accepted ranges
for what is considered small effect size (Andrade, 2020). However, there is no silver bullet for statistical analysis. All of
them have assumptions (e.g. CIs, effect size are best for normally distributed data), and some notion of arbitrary values (e.g.
p-values, 95%-confidence intervals, effect size ranges, our 1% threshold, etc.) are always chosen to give meaning to the
results. However, one can avoid confirmation bias by choosing the statistical method before the analysis of the experiments
is done — which we do. In addition, our main rationale to chose effect size is that one can’t manipulate (deliberately or
accidentally) the sample size to have the decision rule match our preconceived assumptions — unlike the p-value in t-tests or
confidence intervals where it has been an issue noted here (Lin et al., 2013) in the large sample size regime. Therefore, we
attempted to protected our interpretations from confirmation bias.

Another criticism of our work could be the lack of theoretical analysis. One reason we choose not to do theoretical analysis
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is that it is often difficult to give non-vacuous bounds in theory. Though some progress has been done here (Chen et al.,
2021) but does not aim to separate pre-training methods vs meta-learning methods. However, our experiments have good
theoretical motivation inspired from (Wang et al., 2021) and align with conjectures we explain in detail in section A.6.2.

The challenges in vectorization of MAML and meta-learning algorithms in general stems from the arises because of the task
are different across a meta-batch, so the support set has different arbitrary labels across tasks. Therefore, vectorization is
not straightforward without custom CUDA implementations. However, instead of vectorizing, one could use the memory-
efficient meta-learning strategy (Bronskill et al., 2021) to speed up MAML. This is an argument in favor of meta-learning
given this new possible memory optimization. We leave this promising direction for future work but conjecture this will
make MAML competitive against pre-training given our results and their results (Bronskill et al., 2021).

Most of our experiments are on small models but hypothesize they are all generalize. There is a debate about emergence in
large language models, however, we hypothesize our results generalize to all size models. We hypothesize this because the
observation of emergence is highly dependent on the metric and the sharp unpredictable jumps go away when using smooth
metrics (Schaeffer et al., 2023).

A.5.1. WHY AND WHEN DOES DIVERSITY MATTER?

We conjecture two main reasons why diversity matters and explain our rationale:

1. Conjecture 1: Diversity matters because it enables learning-to-learn (proxy for General Intelligence). This is the
main conjecture we provide evidence in this paper. The main argument is that if there is high diversity, it means there
are many tasks in the dataset. Therefore, for the model to do well, it has to do well on all tasks. One way to do it is by
learning-to-learn and therefore transfer when challenged with solving a new task. An alternative would be memorizing
all the tasks.

2. Conjecture 2: Diversity matters because it increases changes that training set covers test set. Diversity is a
formalization of coverage — it aims to be the effective (average) number of tasks in a dataset. Therefore, the higher the
diversity, the more tasks a dataset has. This (might) increase the probability that the training set covers the test set and
improves performance. This exploration of this conjecture is left for future work.

A.6. Motivation

This work is inspired by three ideas/questions: 1. Does explicitly train to “learn to learn" (i.e., meta-learn) improve the
performance of a machine learning algorithm? 2. What is a data-centric inductive bias that might explain when explicit
meta-learning methods are needed? 3. Previous theoretical results hint that pre-training with all the data upper-bounds the
meta-learning episodic loss, therefore, might this be the reason pre-training be slightly worse with imperfect settings? (e.g.
imperfect optimization and limited data). We proceed to explain the latter two in more detail in this section.

A.6.1. WHAT IS THE RIGHT INDUCTIVE BIAS FOR THE APPLICATION OF META-LEARNING?

Our work is motivated by the conjecture that the appropriate inductive bias for meta-learning is when the intrinsic diversity
of a dataset is high. In other words, the distance between tasks sampled from a dataset is often high, i.e. a large variation of
tasks is present. This is what the diversity coefficient is designed to measure (Miranda et al., 2022). The reasoning, behind
this conjecture, is the following: 1. By definition of the problem — solving tasks from a high diversity dataset — we have
tasks sampled from the dataset have large changes/distances 2. Therefore, a model that learns to adapt/learn/change might
experience an advantage, because it has autonomously learns to change to these changing tasks. Consequently, if the tasks
exhibit high variability/diversity, a meta-learning model may be the preferred choice.

The conjecture that meta-learning surpasses pre-training methods finds support in our empirical results 4, because the
effect size is in favor of MAML on average across a wide variety of formally diverse datasets. However, intriguingly,
pre-training methods outperform on low diversity datasets. This observation may clarify the prevailing narrative favoring
pre-training methods. Pre-training methods might be better for lower diversity datasets. We hypothesize MAML may be
"meta-overfitting" (Miranda et al., 2021) on such datasets, unlike pre-training methods with a fixed embedding that might
have a lower (meta) variance.

Our problem/data-centric approach to meta-learning is inspired by applying Marr’s level of analysis (Hamrick & Mohamed,
2020; Marr, 1982) to few-shot learning. Marr emphasized the importance of understanding the computational problem being
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solved and not only analyzing the algorithms or hardware that attempts to solve them. An example Marr gives is marveling
at the rich structure of bird feathers without also understanding the problem they solve: flight. Similarly, there has been an
analysis of MAML models and transfer learning without putting the problem such models should solve into perspective
(Raghu et al., 2020; Tian et al., 2020). Therefore, in this work, we hope to clarify some of these results by partially placing
the current state of affairs in meta-learning from a problem-centric view. We do this by computing the formal diversity of a
dataset using the diversity coefficient.

A.6.2. THEORETICAL MOTIVATION

Our work is also inspired by the theory from (Wang et al., 2021), which theoretically shows the loss of pre-training on all
the data upper bounds the episodic meta-learning loss.

More formally, for a fixed feature embedding model v (x) with weights 6:

Exv)eq [Lee (WY, (¥0(X), Y))] < E(zy)en(@) llee(Weba(z), y)] 4

where Q = {(z;,y:)}.2, is a standard few-shot learning query set, L. is the empirical risk of the learner over few-shot
tasks using the cross-entropy loss (i.e. on the support or a query set), X is a dataset of raw input values x e.g. raw images,
Y is a dataset of target labels e.g. labels for the images, 19(X) = {(¢9(z) | € X} the embedded few-shot task/dataset,
and D(Q) denotes the union of all query tasks from the source dataset e.g. union of all few-shot learning of Minilmagenet.

Equation 4 therefore implies that using a fixed embedding method, that a pre-trained model using all the tasks upper bounds
the true meta-learning loss we wish to minimize for a model to “learn to learn". The main caveat is that this only applies for
a fixed embedding model, so if the left-hand side uses a MAML model and the right-hand side uses a pre-trained model, then
the above inequality doesn’t apply. However, it provides good heuristics for our approach: 1. Get an extremely large dataset,
2. Train both models to convergence, ideally zero train-loss, 3. then compare them. The above suggests the difference
should be small, which is, which is in line with our main contribution. In addition, the effect size is negative which suggests
MAML is better, as one might conjecture using equation 4. In addition, as the meta-train set encompasses all possible tasks,
we conjecture there is no difference between meta-leanring algorithms and pre-training trained on a union of all the data.

A.7. MAML experiments on GPT-2

Extending MAML for language modelling is a challenging task. Large language models (LLMs) including GPT-2 are
typically trained in a supervised learning setting where the model is trained to predict the token coming after each token in a
sentence(Radford et al., 2019). This does not naturally translate to a k-shot learning task which MAML was intended for. In
particular, we note that the vocabulary size for each token is in the order of tens of thousands (50257 for GPT-2) which is a
lot bigger than the few thousand (1623 for Omniglot(Lake et al., 2015)) classes MAML is typically used for. Additionally,
each token does not have an equal number of instances in the language. Finally and most importantly, training a model to
chose between a few classes given example occurrences of those classes, and comparing it against a model trained to predict
one class out of 50257 is an apples to oranges comparison.

We however note the primary motivation of the paper to establish the performance of "learning a task" against "learning
to learn the same task". Hence instead of using examples of specific target classes as the support set as is usually done
for MAML, we use example sequences as the support set and example sequences as the query set. An initial idea is for
each batch size of size b, we can train the model to learn from the first b/2 examples and predict the next b/2 correctly.
However, since the batches are independent, we don’t give the model a chance to learn from context and this implementation
of MAML reduces to a harder to optimize version of the usual supervised learning setting.

We solve this issue by separating the support and query sets within examples in a batch instead of within batches. That is, if
the token size of the model is ¢, we split each example of ¢ tokens into support and query sets. We make the first ¢/2 tokens
of each example as the support set and the next ¢/2 tokens as the query set. Hence given a token size ¢, we train the model to
learn to predict the last ¢/2 tokens based on the first ¢/2 tokens. Formally, for each example in the batch, we perform an
inner loop optimization on the cross-entropy loss of next-token predictions for the first ¢/2 tokens. We then perform the
outer loop optimization on the cross-entropy loss of next-token predictions using the obtained model on the last ¢/2 tokens.

Evaluation comparison between the two training techniques is done by following a similar approach of inner loop optimiza-
tion using the first half tokens and reporting accuracy values on the second half post inner loop optimization.
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A.8. Fair comparison

Unlike previous, we ensure fair comparison between pre-training vs MAML by using a consistent neural network architecture,
optimizer, and all models trained to convergence.

Architecture: We only compared pre-training vs MAML when they both had the same architecture. When we used a
ResNet we used the one described in (Tian et al., 2020).

Optimization: We only compared pre-training vs MAML when they both had the same optimization and scheduling
rate. We used the Adam optimizer for all experiments except for GPT2 and Resnet50 on Meta-DataSet (MDS) where we
used Adafactor with default hyperparameters. We did this because Adafactor has a setting in the Fairseq that requires no
hyperparameter search and since Meta-DataSet is a large we scale dataset. It took us about 1 month to train on MDS with
Resnet50. In addition, previous work demonstrated Adafactor can be fast 1 order of magnitude faster (speedup of 2 hours to
39 hours) than Adam with hyperparameter search when training transformer models (Miranda et al., 2023).

Training to Convergence: We show how our models were trained by providing some sample learning curves for pre-training
and MAML in the following figures 6, 7, 8, 5,2, 3 .
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Figure 2. Plot showing convergence of Resnet12 on a high-diversity benchmark (MICOD). The left-most plot depicts the training loss
curve for the pre-training algorithm, and the rightmost plot depicts the training loss curve for MAML.
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Figure 3. Plot showing convergence of Resnet50 on a high-diversity benchmark Meta-DataSet (MDS) (Triantafillou et al., 2019). The
left-most plot depicts the training loss curve for the pre-training algorithm, and the rightmost plot depicts the training loss curve for
MAML.

A.9. Summary of CI decision results

When comparing PT (pre-training) and MAML using confidence intervals, our experiments indicate that MAML and PT
tend to perform equivalently under high-diversity benchmarks, while MAML and PT perform differently (either MAML
outperforming or underperforming PT) under lower-diversity benchmarks.
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Figure 4. Plot showing convergence of Resnet12 on a low-diversity benchmark (fc100). The left-most plot depicts the training loss curve

for the pre-training algorithm, the center plot depicts the training loss curve for first-order MAML, and the rightmost plot depicts the
training loss curve for higher-order MAML.
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Figure 5. Plot showing convergence of Resnetl2 on a low-diversity benchmark (aircraft). The left-most plot depicts the training loss

curve for the pre-training algorithm, the center plot depicts the training loss curve for first-order MAML, and the rightmost plot depicts
the training loss curve for higher-order MAML.
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Figure 6. Plot showing convergence of Resnet12 on a high-diversity benchmark (hdb8-cado).The left plot depicts the training loss curve
for the pre-training algorithm and the right plot depicts the training loss curve for MAML.

Figure 11 shows how average MAML(5,10) performs better than PT. This supports our main hypothesis because 1. MAML

is better than PT in the high diversity regime but 2. The difference is marginal, as shown by the confidence intervals being
close.

A.10. L2 model norms and validation loss curves suggest that MAML has less meta-overfitting than PT

We demonstrate evidence that may suggest that MAML has less overfitting than PT, both via MAML and PT validation loss
curves (see Figures 9 and 10), as well as the L2 model norms of trained MAML and PT models (see Tables 23, 24, 25).
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Figure 7. Plot showing convergence of Resnetl2 on a high-diversity benchmark (hdb9-cavdo). The left plot depicts the training loss
curve for the pre-training algorithm and the right plot depicts the training loss curve for MAML.

Dataset pt vs maml5 CI decision | pt vs maml10 CI decision
hdb6-afdo HO no diff HO no diff
hdb7-afto HO no diff HO no diff
hdb8-cado HO no diff HO no diff

hdb9-cavdo HO no diff HO no diff
hdb10-micova H1 maml5 H1 maml10

Table 14. Results of performance comparison between pre-training and MAML using confidence intervals for high-diversity
benchmarks. These performance comparison experiments were conducted using a batch size of 300. The summary for the decision
counts is as follows: we failed to reject the null hypothesis HO (no difference) 8 times and we rejected the null hypothesis in favor of the
MAML alternative 2 times (once for MAMLS5 and once for MAML10). The diversity for them is high, as shown in table 9.
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Figure 8. Plot showing convergence of Resnetl2 on a low-diversity benchmark (fc100). The left-most plot depicts the training loss curve
for the pre-training algorithm, the center plot depicts the training loss curve for first-order MAML, and the rightmost plot depicts the
training loss curve for higher-order MAML.

Dataset pt vs maml5 CI decision (1% overlap) | pt vs maml10 CI decision (1% overlap)
hdb6-afdo HO no diff HO no diff
hdb7-afto HO no diff HO no diff
hdb8§-cado HO no diff HO no diff
hdb9-cavdo HO no diff HO no diff
hdb10-micova H1 maml5 H1 maml10

Table 15. Results of performance comparison between pre-training and MAML using confidence intervals for high-diversity
benchmarks with a 1% overlap threshold. These performance comparison experiments were conducted using a batch size of 300. The
summary for the decision counts is as follows: we failed to reject the null hypothesis HO (no difference) 8 times and we rejected the null
hypothesis in favor of the MAML alternative 2 times (once for MAMLS and once for MAMLI10). The diversity for them is high, as shown
in table 9.
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Dataset pt vs maml5 CI decision | pt vs maml10 CI decision

aircraft HI no diff HI no diff

flower HI pt HI1 pt

ded H1 pt H1 pt

delaunay HI pt HI1 pt
cubirds H1 maml5 H1 maml10
cifar-fs H1 maml5 HI maml10
fc100 HI1 maml5 HI maml10
mini-imagenet HI1 pt HO no diff
omniglot HO no diff HO no diff
tiered-imagenet HO no diff HO no diff
vggair HO no diff HO no diff
vggdtd HO no diff HO no diff

Table 16. Results of performance comparison between pre-training and (fo) MAML using confidence intervals for low-diversity
benchmarks. These performance comparison experiments were conducted using a batch size of 300. The summary for the decision
counts is as follows: we failed to reject the null hypothesis HO (no difference) 11 times, we rejected the null hypothesis in favor of the
PT alternative 7 times, and rejected the null hypothesis in favor of the MAML alternative 6 times (MAMLS accounted for 3 of these
rejections while MAML 10 accounted for 3). The diversity for them is low, as shown in table 8.

Dataset pt vs mamlS5 decision (1% overlap) | pt vs maml10 decision (1% overlap)

aircraft HO no diff HO no diff

flower HI pt HI pt

dtd HI pt HI pt

delaunay HI1 pt HI1 pt
cubirds HI1 maml5 H1 maml10
cifar-fs HO no diff H1 maml10
fc100 HO no diff HO no diff
mini-imagenet HI pt HO no diff
omniglot HO no diff HO no diff
tiered-imagenet HO no diff HO no diff
vggair HO no diff HO no diff
vggdtd HO no diff HO no diff

Table 17. Results of performance comparison between pre-training and (fo) MAML using confidence intervals for low-diversity
benchmarks with a 1% overlap threshold. These performance comparison experiments were conducted using a batch size of 300. The
summary for the decision counts is as follows: we failed to reject the null hypothesis HO (no difference) 14 times, we rejected the null
hypothesis in favor of the PT alternative 7 times, and rejected the null hypothesis in favor of the MAML alternative 3 times (MAMLS5
accounted for 1 of these rejections while MAML10 accounted for 2). The diversity for them is low, as shown in table 8.
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Dataset pt vs maml5S CI decision | pt vs maml10 CI decision
aircraft HI1 maml5 HI maml10
flower HI1 pt HI1 pt
dtd HI pt H1 pt
delaunay HI pt HI1 pt
cubirds H1 maml5 H1 maml10
cifar-fs H1 maml5 HI maml10
fc100 H1 maml5 H1 maml10
mini-imagenet HO no diff HO no diff
omniglot HI pt HI pt
tiered-imagenet H1 pt HI pt

Table 18. Results of performance comparison between pre-training and (ho) MAML using confidence intervals for low-diversity
benchmarks. These performance comparison experiments were conducted using a batch size of 300. The summary for the decision
counts is as follows: we failed to reject the null hypothesis HO (no difference) 2 times, we rejected the null hypothesis in favor of the
PT alternative 10 times, and rejected the null hypothesis in favor of the MAML alternative 8 times (MAMLS accounted for 4 of these
rejections while MAML10 accounted for 4). The diversity for them is low, as shown in table 8.

Dataset pt vs maml5 CI decision (1% overlap) | pt vs maml10 CI decision (1% overlap)
aircraft H1 maml5 H1 maml10
flower HO no diff HI pt
dtd H1 pt HI pt
delaunay HI1 pt HI1 pt
cubirds H1 maml5 H1 maml10
cifar-fs H1 maml5 H1 maml10
fc100 H1 maml5 H1 maml10
mini-imagenet HO no diff HO no diff
omniglot HO no diff HO no diff
tiered-imagenet HO no diff HI pt

Table 19. Results of performance comparison between pre-training and (ho) MAML using confidence intervals for low-diversity
benchmarks with a 1% overlap threshold. These performance comparison experiments were conducted using a batch size of 300. The
summary for the decision counts is as follows: we failed to reject the null hypothesis HO (no difference) 6 times, we rejected the null
hypothesis in favor of the PT alternative 6 times, and rejected the null hypothesis in favor of the MAML alternative 8 times (MAMLS
accounted for 4 of these rejections while MAML10 accounted for 4). The diversity for them is low, as shown in table 8.

Dataset pt vs maml5 1% ES | pt vs maml10 1% ES
aircraft 0.100 0.109
flower 0.171 0.195
dtd 0.122 0.125
delaunay 0.106 0.122
cubirds 0.135 0.133
cifar-fs 0.114 0.113
fc100 0.121 0.117
mini-imagenet 0.123 0.117
omniglot 0.789 0.727
tiered-imagenet 0.112 0.113
vggair 0.059 0.059
vggdtd 0.056 0.056

Table 20. 1% effect sizes for performance comparison between pre-training and (fo) MAML for low-diversity benchmarks.
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Dataset pt vs maml5 1% ES | pt vs maml10 1% ES
aircraft 0.094 0.100
flower 0.201 0.204
dtd 0.125 0.126
delaunay 0.116 0.115
cubirds 0.145 0.145
fc100 0.113 0.113
cifar-fs 0.118 0.113
mini-imagenet 0.120 0.123
omniglot 0.655 0.762
tiered-imagenet 0.116 0.080

Table 21. 1% effect sizes for performance comparison between pre-training and (ho) MAML for low-diversity benchmarks.

Dataset pt vs maml5 1% ES | pt vs maml10 1% ES
hdb6-afdo 0.057 0.059
hdb7-afto 0.050 0.051
hdb8-cado 0.051 0.053

hdb9-cavdo 0.054 0.054
hdb10-micova 0.056 0.057

Table 22. 1% effect sizes for performance comparison between pre-training and (fo) MAML for high-diversity benchmarks.
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Figure 9. On a high-diversity dataset, the validation loss of MAML stays relatively unchanged over time, while the validation loss
of PT increases over time, suggesting that MAML has less meta-overfitting than PT. The left plot depicts the validation loss curve
for the MAML algorithm and the right plot depicts the validation loss curve for the PT algorithm, both on the high-diversity hdb8-cado
dataset.
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Figure 10. On a low-diversity dataset, the validation loss of MAML stays relatively unchanged over time, while the validation loss
of PT increases over time, suggesting that MAML has less meta-overfitting than PT. The left plot depicts the validation loss curve for
the MAML algorithm and the right plot depicts the validation loss curve for the PT algorithm, both on the low-diversity DTD dataset.
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Dataset L2 model norm (MAML) | L2 model norm (PT)
cifar-fs 851.012 9813.269
fc100 919.964 8302.170
omniglot 663.715 4676.182
mini-imagenet 930.304 5776.625
tiered-imagenet 926.896 11097.097

Table 23. The L2 norm of a trained first-order MAML model is less than the L2 norm of a trained PT model for each low-diversity
benchmark, suggesting that MAML has less meta-overfitting than PT.

Dataset L2 model norm (MAML) | L2 model norm (PT)
dtd 2949.312 5548.194
tiered-imagenet 731.893 11097.097
omniglot 594.381 4676.182
fc100 758.372 8302.170
delaunay 2810.343 4856.295
aircraft 1517.484 6144.078
cifar-fs 725.017 9813.269
mini-imagenet 752.201 5776.625
cubirds 3127.715 5252.014
flower 2333.556 7307.350

Table 24. The L2 norm of a trained higher-order MAML model is less than the L2 norm of a trained PT model for each low-
diversity benchmark, suggesting that MAML has less meta-overfitting than PT.

Dataset L2 model norm (MAML) | L2 model norm (PT)
hdb6-afdo 2426.827 7699.514
hdb7-afto 2598.023 3573.5355
hdb8-afdo 3441.040 8072.174

hdb9-cavdo 3997.130 7919.635
hdb10-micova 3810.151 7757.541

Table 25. The L2 norm of a trained higher-order MAML model is less than the L2 norm of a trained PT model for each high-
diversity benchmark, suggesting that MAML has less meta-overfitting than PT.
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Meta Test Accuracy of PT vs MAML
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Figure 11. Shows how meta-test accuracy between PT and MAML(5,10) intersects in the high diversity data set MICOD. However,
on average MAML(5,10) performs better than PT. This supports our main hypothesis because: 1. MAML is better than PT in the high
diversity regime but 2. The difference is marginal, as shown by the confidence intervals being close.
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