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Abstract

Deep learning has been widely applied in neu-
roimaging, including predicting brain-phenotype
relationships from magnetic resonance imaging
(MRI) volumes. MRI data usually requires ex-
tensive preprocessing prior to modeling but vari-
ation introduced by different MRI preprocessing
pipelines may lead to different scientific find-
ings, even when using identical data. Meanwhile,
the machine learning community has emphasized
the importance of shifting from model-centric
to data-centric approaches considering the essen-
tial role of data quality in deep learning appli-
cations. Motivated by the recent data-centric
perspective, we first evaluate how preprocessing
pipeline selection can affect the downstream per-
formance of a supervised learning model. We
next propose two pipeline-invariant representa-
tion learning methodologies, Multi-Pipeline Su-
pervised Learning (MPSL) and Pipeline-based
Contrastive Learning (PXL), to improve robust-
ness in classification performance and to capture
similar neural network representations. Using a
wide range of sample sizes from the UK Biobank
dataset, we demonstrate that two models present
common advantages, in particular that MPSL and
PXL can be used to improve within-sample pre-
diction performance and out-of-sample general-
ization. Both PXL and MPSL can learn more
similar between-pipeline representations. These
results suggest that our proposed models can be
applied to mitigate pipeline-related biases, and to
improve prediction robustness in brain-phenotype
modeling.
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1. Introduction
Deep learning has been widely applied to establish novel
brain-phenotype relationships and to advance our under-
standing of brain disorders, in part because of its effective-
ness in learning nonlinear relationships from neuroimaging
data (e.g., magnetic resonance imaging; MRI) (Abrol et al.,
2021; Plis et al., 2014). MRI data usually requires exten-
sive preprocessing, including brain extraction, tissue seg-
mentation, and spatial normalization, among others. These
steps are necessary to mitigate data collection artifacts and
transform the data to standard spaces for performing sta-
tistical analyses and interpretation of results. In the past
decade, a growing array of MRI preprocessing pipelines
has been developed, but there remains no consensus stan-
dard for preprocessing methods. Though these pipelines
share basic preprocessing components, the specific imple-
mentation at each step can be different. Recent studies have
shown that pipeline-related variation may result in signifi-
cantly different preprocessed results and may lead to con-
flicting scientific conclusions, even when using identical raw
data (Botvinik-Nezer et al., 2020; Li et al., 2021). When
used in the development of deep learning models, these
pipeline-specific biases may be amplified if models learn
shortcut strategies based on unique non-biological features
(Torralba & Efros, 2011; Geirhos et al., 2020). However,
there is little work in the literature assessing how prepro-
cessing pipelines will affect downstream deep learning task
performance.

Recently, the machine learning community has empha-
sized the importance of shifting from model-centric to data-
centric approaches given that data quality plays an essen-
tial role in deep learning applications (Ng, 2021). Mo-
tivated by this data-centric perspective, we first evaluate
how preprocessed data from three commonly-used pipelines
affect the downstream performance of a supervised learn-
ing model. To this end, a uni-pipeline supervised learn-
ing (UPSL) model is trained on a combined age and gen-
der classification task (Abrol et al., 2021), using a dataset
preprocessed by each of three pipelines, respectively. We
then compare models trained across pipelines through 1)
within-sample test accuracy, 2) out-of-sample test accuracy
from transfer learning and 3) representational similarity
of network layers measured by minibatch centered kernel
alignment (CKA) (Nguyen et al., 2020). Our results high-
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light significant pipeline-related variation across learned
UPSL models, and that learned models cannot generalize
to other pipelines. Next, we propose two approaches to
mitigate pipeline-related variation and improve between-
pipeline representational similarity. First, we suggest a
multi-pipeline supervised learning (MPSL) model trained
on a dataset pairs to take features from both datasets into
account. Second, we introduce a pipeline-based contrastive
learning (PXL) model which integrates both supervised
and contrastive learning paradigms. These approaches are
evaluated similarly to the UPSL models, and our findings
demonstrate that both techniques have common strengths.
Specifically, MPSL and PXL can achieve competitive per-
formance within a pipeline set and improve out-of-sample
generalization to new pipelines. Notably, both MPSL and
PXL can improve between-pipeline representational simi-
larity.

The key contributions of this study include:

• Evaluation of the impact of neuroimaging preprocess-
ing pipelines in a deep learning prediction task;

• Proposal of methodologies to evaluate learning perfor-
mance including within-sample and out-of-sample test
accuracy, and between-pipeline CKA;

• Development of two pipeline-invariant representation
learning methodologies, MPSL and PXL, to capture
pipeline-invariant latent representations and mitigate
pipeline-related biases in the prediction task, including
when applied to out-of-sample pipelines.

2. Methods
2.1. Data Preprocessing

Dataset We used the T1-weighted structural MRI (sMRI)
images from the UK Biobank dataset (Miller et al., 2016;
Abrol et al., 2021) (application number 34175). Subjects
were grouped into 5 age groups (45− 52, 53− 59, 60− 66,
67 − 73, and 74 − 80 years) and 2 sex groups (males and
females), resulting in 10 labels in total. We chose this chal-
lenging 10-label classification task to investigate how the
model performance is sensitive to pipeline-related variation.
2000 subjects were selected with balanced age and sex cat-
egories in the dataset. 1800 subjects with balanced labels
were randomly selected and then evenly split into 9 folds
for hyperparameter optimization and cross-validation. The
remaining 200 subjects with balanced labels were used as a
hold-out test set. We further studied data efficiency using
a wide range of training sample sizes including 100, 200,
500 and 1000 subjects while keeping the same validation
set and test set.

Preprocessing Workflow The same sMRI dataset was
preprocessed by each of three commonly-used MRI pre-
processing pipelines independently (Figure 1I): 1) the de-
fault pipeline in the Configurable Pipeline for the Anal-
ysis of Connectomes (C-PAC:Default) (Craddock et al.,
2013), 2) the fMRIPrep-options pipeline in C-PAC (C-
PAC:fMRIPrep) (Esteban et al., 2019), 3) the UK Biobank
FSL pipeline followed by SPM (UKB FSL-SPM) (Alfaro-
Almagro et al., 2018; Jenkinson et al., 2012; Friston et al.,
1994).

These three pipelines differ at multiple preprocessing steps
including brain extraction, tissue segmentation and reg-
istration. The detailed preprocessing workflow of each
pipeline is as follows: 1) The C-PAC:Default structural
preprocessing workflow performs brain extraction via AFNI
3dSkullStrip (Cox, 1996), tissue segmentation via FSL
FAST (Zhang et al., 2001), and spatial normalization via
ANTs SyN non-linear alignment (Avants et al., 2008). 2)
The C-PAC:fMRIPrep structural pipeline applies ANTs N4
bias field correction (Tustison et al., 2010) on the raw im-
ages, followed by ANTs brain extraction, a custom thresh-
olding and erosion algorithm to generate tissue segmenta-
tion masks (Esteban et al., 2019), and ANTs SyN alignment
to transform the data to the standard space. ANTs reg-
istration is performed using skull-stripped images, unlike
the C-PAC:Default pipeline which uses whole-head images.
3) The UKB FSL-SPM pipeline runs a gradient distortion
correction and calculates linear and non-linear transforma-
tions via FSL FLIRT (Jenkinson & Smith, 2001; Jenkinson
et al., 2002) and FNIRT (Andersson et al., 2007a;b), re-
spectively. Then it performs brain extraction via FSL BET
(Smith, 2002) and segments the sMRI data into tissue prob-
ability maps. The gray matter images are then warped to
standard space, modulated and smoothed using a Gaussian
kernel with an FWHM = 10mm via SPM12 (Friston et al.,
1994). The preprocessed gray matter volume, a known
biomarker of aging and gender effects (Silva et al., 2021), is
in MNI (2006) space (Grabner et al., 2006) with dimensions
91× 109× 91, corresponding to a voxel size of 2× 2× 2
mm3.

2.2. Model Architectures

We applied a uni-pipeline supervised learning (UPSL)
model to demonstrate pipeline-related variation in the
within-sample and out-of-sample test performance of a
downstream prediction task. We next proposed two models,
multi-pipeline supervised learning (MPSL) and pipeline-
based contrastive learning (PXL), to mitigate pipeline-
related biases and improve between-pipeline representa-
tional similarity.

Encoder Architecture The encoder network was devel-
oped based on AlexNet (Krizhevsky et al., 2012) because
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Figure 1. Experiment overview. I: Data preprocessing. The UK Biobank sMRI dataset D is independently preprocessed by each of
three commonly-used pipelines (C-PAC:Default, C-PAC:fMRIPrep, UKB FSL-SPM), resulting in three preprocessed datasets Di where
i ∈ {1, 2, 3}. II: Uni-pipeline supervised learning (UPSL). Each dataset Di is used to train an encoder Ei to learn representations zi

and predict labels ŷi. III: Multi-pipeline supervised learning (MPSL). Two datasets Di and Dj are used to train an encoder Eij to
learn representations zij and predict labels ŷij . IV: Pipeline-based contrastive learning (PXL). Two encoders Ei and Ej are trained and
the PXL objective LPXL maximizes representations zi and zj learned from two datasets Di and Dj .

it is widely-used in the neuroimaging literature (Lin et al.,
2021; Zhang et al., 2020; Fedorov et al., 2019) and previous
work (Abrol et al., 2021) provides a performance bench-
mark. The AlexNet encoder includes 5 convolutional layers
and 1 average pooling layer. The convolutional layers have
64, 128, 192, 192, 64 output units, and 623, 183, 63, 63,
63 output dimensions, respectively. The last convolutional
layer with 64 output units defines a 64 dimensional repre-
sentation.

To further investigate whether pipeline-related variation per-
sists across different encoder architectures, we replicated
the UPSL experiment using an effective unsupervised repre-
sentation learning encoder – deep convolutional generative
adversarial network (DCGAN) (Radford et al., 2015).

Uni-Pipeline Supervised Learning To evaluate how data
preprocessing affects model performance, we trained a su-
pervised learning model in a combined age and gender
prediction task for each preprocessed dataset separately,
denoted as uni-pipeline supervised learning (UPSL). The
UPSL model includes one encoder E i, taking each of three
preprocessed datasets Di as the input and producing the
predicted labels ŷi (Figure 1II).

Multi-Pipeline Supervised Learning Our first proposed
architecture, multi-pipeline supervised learning (MPSL),
includes one encoder E ij taking the UK Biobank dataset
preprocessed by two pipelines Di and Dj to predict la-
bels ŷij (Figure 1III). MPSL treats pipelines as unique data
augmentation transformations and aims to learn pipeline-
invariant representations. Such strategy doubles the dataset

size, but the training process and the model implementation
are identical to the UPSL.

Pipeline-based Contrastive Learning Our second pro-
posed approach, pipeline-based contrastive learning (PXL),
aims to learn pipeline-invariant representations by maximiz-
ing agreement between differently preprocessed views of
data via a contrastive loss (Bachman et al., 2019). This
approach consists of two encoders (E i, Ej) using the dataset
preprocessed by two different pipelines (Di, Dj) as the in-
puts separately, and each producing their own sets of output
labels (ŷi and ŷj) (Figure 1IV). The novel contribution in
PXL is the addition of a contrastive term to the supervised
loss function. The goal of a contrastive loss is to bring the
representations from different pipelines closer to each other
in the latent space for the same subject, while pushing away
the representations for different subjects.

Pipeline-based Contrastive Learning Objective The
pipeline-based contrastive learning (PXL) objective function
LPXL is explained in detail as follows.

Let D = {(xi, xj ; y) ∼ (Di,Dj)} be a dataset of paired
samples (xi, xj ; y), where xi is an input image from one
dataset Di, xj is an input image from another dataset Dj ,
and y is a class label where y ∈ {1, . . . , 10} in our case. In
PXL, two independent encoders E i and Ej parameterized
by convolutional neural networks map input images xi and
xj to representations zi = E i(xi) and zj = Ej(xj), respec-
tively. To learn the parameters of the encoders, we optimize
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the following PXL objective LPXL:

LPXL = λ · ℓsupervised + (1− λ) · ℓcontrastive, (1)

where λ is a trade-off hyperparameter between the super-
vised loss ℓsupervised and the contrastive loss ℓcontrastive.
Note that the approach can become a fully self-supervised
model by setting λ = 0, or a fully supervised model by
setting λ = 1, equivalent to MPSL with two encoders.

The supervised loss ℓsupervised is defined as the sum of
cross-entropy losses ℓCE for pipelines i and j:

ℓsupervised = ℓCE(g
i(zi); y) + ℓCE(g

j(zj); y), (2)

where g is a linear projection head from representations to
class labels.

The contrastive loss ℓcontrastive follows the Noise Con-
trastive Estimation (NCE) lower bound definition (Gutmann
& Hyvärinen, 2010). For the n-th sample with a positive
pair (zin, z

j
n), the contrastive objective from pipeline i to

pipeline j is defined as:

ℓi→j(z
i
n, z

j
n) = − log

ef(h
i(zi

n),h
j(zj

n))∑N
m=1 1[m ̸=n]ef(h

i(zi
n),h

j(zj
m))

,

(3)
where N is the total number of subjects in the training set,
f is the critic function, hi and hj are the projection heads
for pipelines i and j, respectively (Chen et al., 2020). We
use scaled dot product as the critic function f to obtain
critic scores and then apply L2 regularization and soft tanh
clipping on the critic scores (Bachman et al., 2019).

The contrastive loss ℓcontrastive is calculated in both direc-
tions to ensure its symmetry:

ℓcontrastive = ℓi→j + ℓj→i. (4)

Hyperparameter Search We performed hyperparameter
tuning by varying batch size (2, 4, 8, 16, 32, 64) and learning
rate (10−2, 10−3, 10−4, 10−5) options for all three models,
and we selected the optimal batch size and learning rate
according to the cross-validation performance. Additionally,
we tuned two other parameters for PXL – the projection head
h and the trade-off parameter λ between the supervised loss
and the contrastive loss in the PXL objective (see Equation
1). For the choice of the projection head h, we searched over
identity projection, linear projection and projection with 1,
2 or 3 hidden layers with dimensionality identical to the
representation z. For the choice of the trade-off parameter λ,
we evaluated 5 different options (λ = 0, 0.25, 0.5, 0.75, 1).
According to the hyperparameter search result, we selected
a batch size of 4 and a learning rate of 10−3 for UPSL; a
batch size of 32 and a learning rate of 10−3 for MPSL; an
identity projection head, a batch size of 4, a learning rate of
10−4, a trade-off parameter λ of 0.75 for PXL.

Cross-Validation Each of three model was trained using
the Adam optimizer (Kingma & Ba, 2014) for 200 epochs
until convergence. We repeated the experiment across 9
folds of training and validation data with balanced labels.
We reported the inference performance on the hold-out test
set from models trained on 9 folds. All models were imple-
mented in the PyTorch framework and trained with NVIDIA
A40 GPUs.

2.3. Ablation Study

Data Efficiency To characterize the relationship be-
tween the model performance and the training sample
size, we compared the inference performance on the hold-
out test set using a wide range of training sample sizes
(n = 100, 200, 500, 1000, 1600).

Smoothing Effect Spatial smoothing is a key prepro-
cessing step. Among three pipelines used in this study,
the UKB FSL-SPM pipeline implements spatial smoothing
using a Gaussian kernel with an FWHM = 10mm while
the other two pipelines do not perform smoothing. To in-
vestigate the smoothing effect on the other two pipelines,
we applied a Gaussian kernel with an FWHM uniformly
sampled from 0 to 10mm on the C-PAC:Default and C-
PAC:fMRIPrep preprocessed datasets. To further assess
how different levels of smoothing affect the model perfor-
mance, we applied smoothing with different probability
options (p = 0, 0.25, 0.5, 0.75, 1). According to the cross-
validation performance, we reported the inference perfor-
mance using MPSL with smoothing probability p = 1 and
PXL with smoothing probability p = 0.75.

2.4. Evaluation Metrics

Prediction Performance We used two metrics to measure
model performance: within-sample and out-of-sample in-
ference performance. The within-sample test accuracy was
obtained by applying the trained model on the hold-out test
set preprocessed by the same pipeline. To measure out-
of-sample generalizability, we trained a logistic regression
model from scikit-learn (Pedregosa et al., 2011) using the
training set from a different pipeline and reported the test
accuracy.

Representational Similarity Minibatch centered kernel
alignment (CKA) (Nguyen et al., 2020) was used to effi-
ciently measure neural network representational similarity
of high-dimensional neuroimaging features from pipeline
pairs.

We describe minibatch CKA in detail as follows. Let X ∈
Rm×u1 and Y ∈ Rm×u2 denote representations of two
layers, where m is the number of samples, and u1 and u2

are the number of neuron units in X and Y, respectively.
Here, m refers to 200 subjects in the test set. We flatten
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Figure 2. Within-sample and out-of-sample inference performance. The box plot shows the median and the interquartile range of the
within-sample (top) and out-of-sample (bottom) test accuracies on the hold-out test set across 9 folds. The vertical y-axis label shows the
test set for performance evaluation, with the training set (pair) indicated in brackets. The label denotes “the test set” in panel I and “the
test set (the training set)” in panels II-VI. For example, in panel II, Default (Default,fMRIPrep) indicates that the test set is Default and the
training set pair is Default and fMRIPrep. In panel VI, the first dataset in the training set pair indicates the encoder used for evaluation.
For example, Default (fMRIPrep,UKB) indicates that the test set is Default, the training set pair is fMRIPrep and UKB, and the encoder is
trained on fMRIPrep. UPSL shows significant within-sample prediction variation and poor out-of-sample generalization. MPSL achieves
the best within-sample test performance on the UKB test set while PXL achieves competitive performance on the Default and fMRIPrep
test sets. Both PXL and MPSL show more robust out-of-sample generalization compared to UPSL.

channels c and three spatial dimensions (width w, height h,
depth d) of a convolutional layer into u neurons to compare
representations of different layers, i.e. u = c× h× w × d
(Raghu et al., 2017). We then randomly split m subjects
into k minibatches and each minibatch contains n subjects.
Here, we include n = 8 subjects in each minibatch. Let
Xi ∈ Rn×u1 and Yi ∈ Rn×u2 denote representations of
two layers in the ith batch. We then compute the similarity
matrices K = XiX

⊤
i and L = YiY

⊤
i and estimate the

similarity of the similarity matrices using Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al., 2005).

Minibatch CKA is computed by averaging the linear CKA
across k minibatches:

CKA =
1
k

∑k
i=1 H(K,L)√

1
k

∑k
i=1 H(K,K)

√
1
k

∑k
i=1 H(L,L)

. (5)

An unbiased estimator of HSIC (Song et al., 2012) is used
in minibatch CKA:

H(K,L) =
1

n(n − 3)
(tr(K̃L̃)+

1⊤K̃11⊤L̃1

(n − 1)(n − 2)
−

2

n − 2
1
⊤
K̃L̃1), (6)

where K̃ and L̃ are obtained by setting the diagonal entries
of K and L to zeros.

Note that the CKA values are independent of the selection
of batch sizes because of the unbiased estimator of HSIC.
Detailed proof of the feasibility of using minibatch CKA to
approximate CKA can be found in (Nguyen et al., 2020).

3. Results
3.1. UPSL shows significant within-sample prediction

variation and poor out-of-sample generalization.

The median of UPSL within-sample test accuracies ranges
from 39.8% (fMRIPrep) to 49.2% (UKB), with a differ-
ence of 9.4% (chance accuracy: 10%), highlighting notable
prediction difference when applying different preprocess-
ing pipelines on identical data (Figure 2I)1. The statistical
analysis reveals that the UKB test result is significantly
different from the Default test result (p-value = 0.0078,
two-sided Wilcoxon signed-rank test, Bonferroni corrected
critical value α = 0.05

3 = 0.0167) and the fMRIPrep test
result (p-value = 0.0039), though the performance dif-
ference between Default and fMRIPrep is not significant
(p-value = 0.3594). To further investigate whether pipeline-
related variation exists across different encoder architec-

1For conciseness, Default, fMRIPrep and UKB are used to
denote C-PAC:Default, C-PAC:fMRIPrep and UKB FSL-SPM,
respectively.
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Figure 3. UPSL within-sample inference performance using the
DCGAN encoder. The box plot shows the median and the interquar-
tile range of the within-sample test accuracies on the hold-out test
set across 9 folds. Similarly, significant UPSL within-sample pre-
diction variation exists using the DCGAN encoder.

tures, we replicated the UPSL experiment using the DCGAN
encoder. Similarly, we observe a similar pipeline-related ef-
fect using the DCGAN encoder – the median within-sample
test accuracies across 9 folds are 36.0%, 37.0%, 42.5% for
Default, fMRIPrep and UKB, respectively (Figure 3). The
maximum difference of the medians of within-sample test
accuracies is as high as 6.5% across pipelines. The statisti-
cal test also shows that UKB is significantly different from
Default and fMRIPrep (p-value = 0.0039 and 0.0078). The
UPSL result indicates that preprocessed data from different
pipelines will significantly affect downstream prediction
performance and variation persists across two encoder ar-
chitectures.

Moreover, UPSL out-of-sample transfer learning perfor-
mance is relatively poor with a median of 25.5% across all
test accuracies (Figure 2IV), indicating that a naive UPSL
approach cannot generalize well across pipeline populations.

3.2. MPSL and PXL achieve competitive within-sample
inference performance.

To mitigate pipeline-related biases, we developed two
pipeline-invariant representation learning methodologies
MPSL and PXL. The MPSL design inspired by data aug-
mentation shows the potential to improve prediction perfor-
mance. Particularly, the mean of the UKB within-sample
test accuracies from the UKB and fMRIPrep training set
pair is 48.8%, the highest score across three models (Figure
2II, Table 1).

In PXL, we observe within-sample performance gains for
the Default and fMRIPrep test sets compared to UPSL and
MPSL (Figure 2III, Table 1). Specifically, PXL achieves
the highest within-sample test accuracies on the Default
test set (mean ± std: 48.9% ± 4.1%) and the fMRIPrep
test set (mean ± std: 40.4% ± 1.3%). These results sug-

Table 1. Within-sample inference performance. The mean ± the
standard deviation of within-sample test accuracies (%) across 9
folds. The test set order matches the vertical y-axis label order
in Figure 2. UPSL shows significant within-sample prediction
variation. MPSL and PXL achieve competitive within-sample
inference performance.

DEFAULT FMRIPREP UKB

UPSL 42.0± 6.4 39.0± 3.2 48.2± 3.0
MPSL 41.9± 3.4 39.3± 1.9 48.8± 1.5

40.7± 3.2 39.7± 2.1 45.7± 1.6
PXL 48.9± 4.1 39.1± 1.7 45.7± 3.3

48.1± 2.7 40.4± 1.3 48.5± 2.1

Table 2. Out-of-sample transfer learning inference performance.
The mean ± the standard deviation of out-of-sample test accuracies
(%) across 9 folds. The test set order matches the vertical y-
axis label order in Figure 2. UPSL shows poor out-of-sample
generalization while PXL and MPSL demonstrate robust out-of-
sample generalization.

DEFAULT FMRIPREP UKB

UPSL 29.7± 2.7 26.5± 3.0 25.6± 2.4
22.2± 2.3 20.7± 2.4 26.6± 1.9

MPSL 28.8± 2.7 31.3± 2.8 35.3± 3.0
PXL 33.8± 2.8 32.0± 2.9 32.4± 2.2

22.2± 4.2 20.6± 3.7 38.9± 2.1

gest that PXL can achieve competitive within-sample test
performance by utilizing a contrastive objective.

3.3. PXL and MPSL demonstrate robust out-of-sample
generalization.

Compared to UPSL, MPSL models improve generalization
performance with average out-of-sample transfer learning
accuracies of 31.3% and 35.3% for fMRIPrep and UKB,
respectively (Figure 2V, Table 2). PXL models also demon-
strate robust out-of-sample performance (Figure 2VI, Table
2). Notably, PXL achieves the highest out-of-sample infer-
ence performance on all three preprocessed datasets (mean
± std: Default 33.8% ± 2.8%; fMRIPrep 32.0% ± 2.9%;
UKB 38.9% ± 2.1%). These results highlight that the
learned representations in MPSL and PXL models can gen-
eralize better across pipeline populations.

3.4. PXL and MPSL capture more similar
between-pipeline representations.

We measured representational similarity between network
layers using minibatch CKA (Nguyen et al., 2020). A higher
CKA value indicates a more similar representation captured
between layers. As shown in Figure 4, between-pipeline
representations from the last three layers are more simi-
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Figure 4. Between-pipeline CKA across network layers. PXL
and MPSL capture more similar between-pipeline representations
across the last three layers.

lar while those from the first three layers are less similar.
Among three models, PXL and MPSL capture more similar
between-pipeline representations across the last three layers
than UPSL. Particularly, CKA values across the last three
layers from PXL are significantly higher than those from
MPSL (p-value = 0.0039), while MPSL shows a significant
improvement over UPSL (p-value = 0.0003). PXL shows
the highest average CKA value 0.718 across the last three
layers.

Taken together, these results demonstrate that datasets pre-
processed by different pipelines result in significantly dif-
ferent downstream performance, and that learned models
may not generalize to other pipelines in UPSL. As exten-
sions beyond naive UPSL approaches, both MPSL and PXL
can achieve competitive within-sample and out-of-sample
inference performance. Moreover, both MPSL and PXL
can capture more similar between-pipeline representations
compared to UPSL.

3.5. Ablation: Pipeline-related variation exists across a
wide range of training sample sizes.

To evaluate how the number of training samples affects
prediction performance, we compared the model perfor-
mance using a wide range of training sample sizes (n =
100, 200, 500, 1000, 1600). As the training sample size in-
creases from 100 to 1600 subjects, we observe that the pre-
diction performance increases from 16.3%, 20.5%, 23.9%
to 42.0%, 39.0%, 48.2% for Default, fMRIPrep and UKB,
respectively. However, prediction variation induced by
pipelines exists regardless of the number of training sam-

ples (Figure 5I). When comparing within-sample test per-
formance across three models, we note that PXL achieves
the best performance when the sample size is small (Fig-
ure 5III), suggesting that PXL can more efficiently learn
predictive features from minimal training samples. MPSL
out-of-sample test accuracy increases as the sample size
increases, and three pipelines converge to statistically con-
sistent performance when the sample size reaches more
than 1000 subjects (p-value > 0.05

3 , Figure 5V). It might
be practically meaningful that MPSL can lead to consis-
tent generalization across pipelines when the sample size is
sufficiently large.

As shown in Figure 6, when the training sample size is
sufficiently large (> 1000 subjects), both PXL and MPSL
show significantly higher average CKA values across the
last three layers than UPSL (p-value < 0.05

3 ). When the
training sample size is small (100 subjects), we observe
that CKA values from MPSL are relatively low, which is
probably associated with its relatively poor within-sample
test performance. This indicates that MPSL would require a
relatively large training sample size to achieve competitive
performance.

3.6. Ablation: Spatial smoothing improves MPSL and
PXL performance.

In UPSL experiment (Figure 2), we observe that UKB
within-sample test performance is significantly different
from others. One potential reason could be that UKB is
the only pipeline which implements spatial smoothing in
this study. To investigate how different levels of smoothing
affect model performance, we tested different smoothing
probability options (p = 0, 0.25, 0.5, 0.75, 1). As shown
in Figure 7, the application of spatial smoothing improves
MPSL and PXL model performance to different extents.
More specifically, an intermediate level of smoothing (e.g.,
p = 0.5) improves MPSL model performance while a high
level of smoothing (e.g., p = 1) increases PXL model per-
formance.

4. Discussion
The contributions of the present work are two-fold.

First, we evaluated the impact of neuroimaging preprocess-
ing pipelines and preprocessed data quality in a prediction
task, and demonstrated current limitations of UPSL. The
UPSL performance demonstrates that the same dataset pre-
processed by different pipelines can result in significantly
different prediction performance. As shown in Figure 2I, the
test accuracy difference from UPSL can be as high as 9.4%
(chance accuracy: 10%) when using datasets preprocessed
by different pipelines. The result emphasizes the importance
of clear scientific communication surrounding decisions in
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Figure 5. Within-sample and out-of-sample inference performance across different training sample sizes. The line plot shows the mean ±
the standard error of test accuracies on the hold-out test set across 9 folds. Pipeline-related variation exists across different sample sizes.
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neuroimaging preprocessing, and making pipelines publicly
available to allow for evaluation, comparison, and reproduc-
tion in the context of downstream prediction tasks.

Next, we proposed two approaches, MPSL and PXL, to mit-
igate pipeline-related variation in the construction of deep
learning models. While the MPSL approach is a naive ex-
tension of UPSL, we note that the MPSL approach leads to
competitive within-sample performance (Figure 2II). One
reason could be that the MPSL encoder learns features
from datasets preprocessed by two pipelines, whereas the
UPSL encoder is trained on a single dataset. Our novel
approach PXL adopts a contrastive loss function leading to
the improved within-sample performance and representa-
tional similarity across pipelines. Specifically, PXL is able
to achieve the highest within-sample test accuracies on the
C-PAC:Default and C-PAC:fMRIPrep datasets (Figure 2III).
Additionally, it exhibits better performance when training
sample size is small (Figure 5III) across three models. Both
MPSL and PXL show competitive out-of-sample transfer
learning performance, demonstrating their robust general-
izability on new pipelines (Figure 2V, VI). Notably, both
MPSL and PXL capture more similar representations in the
last three layers (Figure 4), supporting their potentials to
achieve pipeline-invariant learning. In practice, our results
suggest that prediction performance can be improved by
integrating datasets preprocessed by at least two pipelines
as well as utilizing MPSL and PXL architectures.

It is important to recognize the limitations of the present
study. Here, we used structural MRI due to the simplicity of
building three-dimensional models and we only performed
a combined age and sex prediction task. In future work, it is
worth evaluating these approaches on other neuroimaging
modalities such as functional MRI that incorporates tempo-
ral dynamics as well as on other tasks such as brain disorder
prediction.

5. Conclusion
We show that pipeline-related variation can make a signifi-
cant difference in the deep learning model performance of a
downstream age and sex prediction task. We then propose
two pipeline-invariant representation learning approaches,
MPSL and PXL, to mitigate biases introduced by data pre-
processing. Our results demonstrate that both MPSL and
PXL can achieve competitive and robust inference perfor-
mance and improve representational similarity of network
layers. The proposed models can be applied to mitigate
pipeline-related variation, and even site effects and data
acquisition-related effects, as well as improve prediction
robustness in brain-phenotype modeling.
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