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Abstract
Current trends to pre-train capable Large Lan-
guage Models (LLMs) mostly focus on scaling of
model and dataset size. However, the quality of
pre-training data is an important factor for training
powerful LLMs, yet it is a nebulous concept that
has not been fully characterized. Therefore, we
use the recently proposed Task2Vec diversity co-
efficient to ground and understand formal aspects
of data quality, to go beyond scale alone. Specifi-
cally, we measure the diversity coefficient of pub-
licly available pre-training datasets to demonstrate
that their formal diversity is high when compared
to theoretical lower and upper bounds. In addition,
to build confidence in the diversity coefficient, we
conduct interpretability experiments and find that
the coefficient aligns with intuitive properties of
diversity, e.g., it increases as the number of latent
concepts increases. We conclude the diversity
coefficient is reliable, show it’s high for publicly
available LLM datasets, and conjecture it can be
used to build useful diverse datasets for LLMs.

1. Introduction
Current trends in pre-training Large Language Models
(LLMs) tend to concentrate on model and dataset size scal-
ing (Chowdhery et al., 2022; Nostalgebraist, 2022; OpenAI,
2023; Google, 2023). Therefore, vast amounts of effort have
been invested in understanding neural scaling laws – the
power-law relationship between the loss of deep artificial
networks and the size of the pre-training dataset and model
for a fixed compute budget (Hestness et al., 2017; Rosenfeld
et al., 2019; Henighan et al., 2020; Kaplan et al., 2020; Gor-
don et al., 2021; Hernandez et al., 2021; Jones, 2021; Zhai
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et al., 2022; Hoffmann et al., 2022; Clark et al., 2022; Neu-
mann & Gros, 2022). In addition, recent work focuses on
training a fixed model but using more tokens (Touvron et al.,
2023). However, the effectiveness of these systems also
fundamentally relies on the quality (Longpre et al., 2023)
and coverage of the pre-training data (Hashimoto, 2021;
David et al., 2010) and not only the size. Unfortunately,
data quality and coverage (David et al., 2010) are often over-
looked or discussed in vague and imprecise ways (Longpre
et al., 2023). Hence, we propose to ground the discussion
of data quality through the diversity coefficient (Miranda
et al., 2022a), a data coverage metric that moves beyond
scale alone. We extend the diversity coefficient to formally
quantify data diversity of publicly available datasets and
discover that LLMs are pre-trained on formally diverse data.
We demonstrate the diversity coefficient is high for these
pre-training datasets by comparing their formal diversity
to the non-vacuous conceptually well-motivated lower and
upper bounds of the diversity coefficient. In addition, to
instill confidence in the usage of the diversity coefficient,
we assess the interpretability of the coefficient as it relates to
intuitive and expected properties of such a diversity metric.
Concretely, we demonstrate:

1. The diversity coefficient increases as one concatenates
more pre-training datasets of different sources.

2. We show the task embedding distances used in the di-
versity coefficient groups in a meaningful way, reflect-
ing the conceptual and semantic information humans
expect.

3. Using the Generative IN-Context Learning (GINC)
(Xie et al., 2021) dataset, we show that as the number
of latent concepts1 increases the diversity coefficient
increases.

4. We show that a larger, more diverse vocabulary leads
to a higher diversity coefficient in the Generative IN-
Context Learning (GINC) (Xie et al., 2021) dataset.

Our key contributions are:

1Latent concepts represent document-level features such as
semantics, structure, and style (Xie et al., 2021).
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1. A paradigm shift beyond dataset scale to a data-centric
machine learning perspective through a formal data
quality metric – the diversity coefficient.

2. We advance discussions on data quality by measur-
ing an aspect of quality – data diversity – using the
diversity coefficient.

3. We further validate the diversity coefficient by demon-
strating its interpretability and correlation with intuitive
diversity properties aligned with human intuitions, e.g.,
the coefficient increases as more datasets are concate-
nated, the number of latent concepts increases, and a
richer vocabulary is used.

4. We formally demonstrate the high diversity of pub-
lic datasets for LLM pre-training is high using well-
motivated lower and upper bounds.

5. Lastly, for ease of use of our method, we also study
properties of different parameters for computing the
formal diversity and therefore provide practitioners
with simpler ways to evaluate the diversity coefficient.

Therefore, we conclude the diversity coefficient is reliable,
and conjecture the diversity coefficient can be used to build
quality diverse datasets for capable LLMs. In doing so,
we hope this work inspires more systematic and effective
techniques for dataset design beyond simply increasing the
number of data points, sequences, or tokens.

2. Methods
2.1. Task2Vec Embeddings for Sequence Data

We use the Task2Vec diversity coefficient (Miranda et al.,
2022a) to compute the formal diversity of a dataset. The first
step is to compute Task2Vec (vectorial) embeddings of a
batch of sequences. The original Task2Vec method (Achille
et al., 2019) embeds data (e.g. few-shot learning task) using
the diagonal entries of the Fisher Information Matrix (FIM)
that result from (partially) fine-tuning the final layer of a
fixed neural network (also called a probe network) to solve
the current task (or batch). We implement this framework
by fine-tuning GPT-2 (Radford et al., 2019) to predict the
next token for each sequence in the current batch B, then
compute the FIM as follows:

F̂B = Ex,t,x̂t
∇w log p̂w(x̂t|xt−1:1)∇w log p̂w(x̂t|xt−1:1)

⊤

The Task2Vec embedding f⃗B is the diagonal (Diag) of the
FIM:

f⃗B = Diag(FB)

where x is a sequence of length Tx sampled from a batch B
i.e. x ∈ B, x̂ is a sequence of tokens sampled from the fine-
tune probe network fw (with weights w) conditioned on the

real sequence x i.e. x̂ ∼ p̂w(x̂t | xt−1:1), t indicates taking
the average across the sequence length when computing the
(log) loss.

To better understand the Task2Vec embedding, observe that
the (diagonal) of the FIM can be interpreted as a measure
of the information that a given parameter contains about the
generative distribution pw(x̂t | xt−1:1). Therefore, it serves
as a unique fingerprint, or feature vector, for a batch, which
defines a task distribution. Empirical findings in (Achille
et al., 2019) show that Task2Vec embeddings cluster in a
way that reflects semantics between different visual concepts
and that Task2Vec cosine distances are positively correlated
with taxonomical distances.

2.2. Diversity Coefficient Computation for Natural
Language Datasets

Using our extension of Task2Vec for sequence data, we
explain how to compute the Task2Vec diversity coefficient
(Miranda et al., 2022a) for natural language datasets using
GPT-2 as a probe network. We compute the Task2Vec diver-
sity coefficient as the expected cosine distance d between
pairs of Task2Vec embeddings of batches:

d̂iv(D) = EB1,B2d(f⃗B1 , f⃗B2)

where D is the natural language dataset from which we
sample batches B1, B2, and f⃗Bi

is the Task2Vec embedding
of a batch Bi using the diagonal of the FIM matrix F̂Bi

.

To compute Task2Vec embeddings, we use GPT-2 (Radford
et al., 2019) pre-trained on the English language as the
probe network fw. Following Task2Vec, we fine-tune only
the final layer (a language modeling head) on each batch.
Figure 5 demonstrates our pipeline.

By measuring the distance between FIMs, the diversity coef-
ficient captures the average intrinsic variability of batches in
the underlying data distribution as a proxy for data coverage
or information contained in the dataset. Another interpreta-
tion is that dataset diversity reflects how different batches
are from each other. Therefore, a low diversity coefficient
implies that batches are not very different.

2.3. Recipe for Establishing if a Diversity Coefficient is
High via the Conceptual Lower and Upper Bounds

To establish if a diversity coefficient ˆdiv(D) of a dataset D
is high (or low), we use two conceptually well-motivated
reference values. We call them the lower and upper bounds
of the diversity coefficient. There, we explain the concep-
tually motivated lower and upper bounds of the diversity
coefficient. Consider a dataset constructed by sampling with
most of the probability mass concentrated on some arbitrary
token. This is a good candidate for a dataset with minimum
diversity. On the other extreme, a dataset constructed by
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sampling any token uniformly at random given a fixed vo-
cabulary (in our case, the GPT-2 tokenizer vocabulary) is a
good candidate to create a dataset with maximum diversity.

Therefore, we measure a conceptual lower bound on a
dataset with a vocabulary size of 2: <eos> token and a
randomly selected non-special token from the GPT-2 tok-
enizer vocabulary. The <eos> token was assigned a prob-
ability weight of 1/{GPT-2 vocab size}. The non-special
token was assigned the remaining weight. Similarly, a high
or maximum diversity dataset would consist of random se-
quences of all possible tokens, with no underlying order
to semantics, formatting, etc. The upper bound of the di-
versity coefficient was therefore measured on a synthetic
dataset with an equal probability of occurrence assigned to
all tokens in the GPT-2 tokenizer vocabulary.

2.4. LLM Pre-training Datasets

Since LLMs are often trained on internal, non-public
datasets2, we used publicly available language datasets from
the same sources as LLM pre-training data:

C4, a 305GB cleaned version of Common Crawl’s web
crawl corpus in English (Raffel et al., 2019). Sequences in
C4 were extracted from the web via de-duplication methods
and heuristics to remove boiler-plate and gibberish.

WikiText-103, a 500MB collection of over 100 million
tokens extracted from the set of verified Good and Featured
articles on Wikipedia (Merity et al., 2016).

The Pile, a 825 GiB open-source English-text corpus for
language modeling that combines 22 smaller, high-quality
datasets from diverse sources (Gao et al., 2020). These
sources include Pile-CC (Common Crawl), PubMed Ab-
stracts, Books3, OpenWebText2, ArXiv, and GitHub.

For instance, GPT-3 was trained on a filtered Common
Crawl dataset and Wikipedia (Brown et al., 2020), which are
represented by C4 and WikiText-103. It was also trained on
WebText2 and Books, which are sub-datasets of The Pile.

We also evaluate the diversity coefficient of the following
five sub-datasets of The Pile:

Pile-CC, a 227 GiB preprocessed version of Common
Crawl’s web crawl corpus (Gao et al., 2020). While both
Pile-CC and C4 are sourced from Common Crawl, Pile-
CC was preprocessed from Web Archive files, which are
raw HTTP responses and page HTML, whereas C4 was
preprocessed from WET files, which consist of plaintext.
Nonetheless, we expect that both datasets are non-mutually-
exclusive.

HackerNews, a 4 GiB scraped and parsed dataset of com-

2For instance, Gopher was trained on Google’s internal dataset
MassiveText.

Table 1. Diversity coefficients of LLM pre-training datasets
with 95% confidence intervals are 3-5 times higher than the
conceptual lower bound and more than half that of the upper
bound.

DATASET DIVERSITY COEFF.

LOWER BOUND 0.0525 ± 3.41E-4
NIH EXPORTER 0.15± 3.218E-5
USPTO 0.1582± 4.09E-5
PUBMED ABSTRACTS 0.168± 2.63E-5
HACKERNEWS 0.201± 4.52E-5
WIKITEXT-103 0.2140± 7.93E-5
C4 0.2374± 2.785E-5
THE PILE 0.2463± 3.034E-5
PILE-CC 0.2497± 3.41E-5
C4 AND WIKITEXT-103 0.2711± 3.22E-4
CONCATENATION OF FIVE DATASETS 0.2939 ± 2.03E-4
UPPER BOUND 0.4037 ± 1.932E-5

ment trees from Hacker News, a social news website that
aggregates article links (Gao et al., 2020). Articles are
generally focused on topics in computer science and en-
trepreneurship.

NIH ExPorter, a 1.9 GiB dataset of NIH Grant abstracts
for awarded applications from 1985-present hosted on the
ExPORTER initiative (Gao et al., 2020).

PubMed Abstracts, a 19 GiB dataset of abstracts from 30
million publications in PubMed (Gao et al., 2020).

USPTO Backgrounds, a 23 GiB dataset of background
sections from patents granted by the United States Patent
and Trademark Office (USPTO) (Gao et al., 2020).

3. Experiments & Results
In this section, we describe the experiments and results
supporting the contributions outlined in the introduction.

3.1. Diversity Coefficients of Pre-training Data shows
LLMs are Pre-trained on Formally Highly Diverse
Data

Experiments: We evaluate the diversity coefficient (de-
scribed in section 2) of eight publicly available LLM pre-
training datasets (described in section 2.4). We also compute
the diversity coefficient of two concatenated datasets: 1) C4
and WikiText-103, and 2) five sub-datasets of The Pile: Pile-
CC, HackerNews, NIH ExPorter, PubMed, and USPTO
(section D.4). In addition, we compute our conceptually
well-motivated lower and upper bounds on the diversity
coefficient (section 2.3).

Results: Table 1 reports the measured diversity coefficients
of eight publicly available LLM pre-training datasets, in
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addition to the conceptually well-motivated lower and upper
bounds. Table 1 also reports the measured diversity coeffi-
cients of the concatenation of different publicly available
datasets. The key observations from our results are:
• The diversity coefficients of pre-training datasets tend to

be 3-5 times greater than the theoretical lower bound
and, on average, half the upper bound. Prominently,
WikiText-103, C4, The Pile, and Pile-CC exhibit high
diversity coefficients (0.21, 0.25).

• The measured diversity of Pile-CC is higher than that of
C4, indicating a potentially more stringent preprocessing
method applied to the Common Crawl corpus for Pile-CC,
which contributes to enhanced data diversity.

• Three sub-datasets of The Pile, namely NIH ExPorter,
PubMed Abstracts, and USPTO, show relatively low di-
versity (0.15-0.17), approximately half of the upper bound
(0.4). The nature of these datasets, curated from special-
ized fields, may account for this observation. For instance,
patent backgrounds in USPTO may share similar format-
ting and semantics as do abstracts in NIH ExPorter or
PubMed Abstracts.

• However, we observe that Pile-CC and HackerNews have
higher diversity, which may be attributed to their coverage
of a broad range of topics. Among these, Pile-CC exhibits
higher diversity, in line with its heterogeneous content
composition.

3.2. Concatenation of Datasets of Different Sources
Produces Higher Measured Diversity

Experiments: To show that the concatenation of different
datasets produces high diversity datasets, we measure the
diversity coefficient of C4 plus WikiText-103, as well as the
diversity coefficient of the five sub-datasets of The Pile in
Table 1. To understand the source of this increased diversity,
we plot the Task2Vec (cosine) distances between batches
from individual datasets and distances of batches from the
different datasets. We report these distances in Figure 1.

Results: Our key observations are:
• The diversity coefficient for the C4 and WikiText-103

concatenated dataset is 0.2711, about +0.03-0.05 higher
than that of each individual dataset.

• The diversity coefficient for the concatenation of the five
sub-datasets of the Pile is 0.2939 (Table 1), which is about
+0.04-0.1 (Figure 1) that of each individual dataset.

• The concatenation of the five sub-datasets of The Pile
achieves the highest diversity coefficient in Table 1.

This increase in diversity occurs because concatenating
datasets produces higher pairwise Task2Vec distances be-
tween batches from different datasets (see Figure 1). This
results in a higher diversity coefficient, since the coefficient
is an average of all pairwise Task2Vec distances. Note that,
this aligns with human intuition that combining data from
heterogeneous sources increases the overall diversity of the
data.

3.3. Distribution of Pairwise Batch Distances Reflects
Conceptual and Semantic Dataset Information

To increase our confidence in the diversity coefficient as a
diversity metric, we study distributions of the Task2Vec (co-
sine) distances used to compute the coefficient. In particular,
we examine the alignment of the grouping of these distances
with (human) conceptual and semantic understanding.

Experiments: Therefore, we analyze Task2Vec (cosine)
distances between batches from five sub-datasets of The
Pile. In particular, we compare distances between batches
of individual sub-datasets and distances across different
sub-datasets. We show the resulting histograms and violin
plots in Figure 1. We also segment these distances between
batches across C4 and WikiText-103 in Figure 1.

Results: Our key observations are:
• Figure 1 (top, left) shows 3 modes. We confirm that the

modes correspond to pairings of datasets in Figure 1 (top,
right). For instance, the right-most mode, corresponding
to distances with values higher than the diversity coef-
ficient, consists of pairwise distances between C4 and
WikiText-103 batches. This confirms intuitive properties
we’d expect, i.e. we’d expect 3 modes given 2 datasets
(C2

2 + 2 = 3).
• Similarly to the preceding point, Figure 1 (bottom, left)

shows 15 modes, which is exactly the number expected in
enumerating all possible pairs of batches from 5 datasets.3

Due to overlaps in distance values we only see 11 modes
in the Figure 1 (bottom, right).

• We also observe that the combined datasets have an in-
creased diversity coefficient compared to the individual
data sets. We outlined this in the previous section, but we
underscore it here to emphasize this semantic property.

• We expect pairings of unrelated datasets to have higher
diversity compared to pairings of related datasets. We
observe this in Figure 1 (right). For the concatenated
dataset of C4 and WikiText-103, the distribution of pair-
wise distances where one batch is from C4 and one is
from WikiText-103 (right-most violin) is higher than that
of individual datasets. For the concatenated sub-datasets
of The Pile, the violin plots for combinations of concep-
tually unrelated datasets group above the dotted line (e.g.
Hacker News and PubMed), while the violin plots of tech-
nical subjects written in a similar style4 are below the
dotted line (e.g. PubMed and USPTO). Note however that
all combined diversities always increased after a concate-
nation.

• We expect Pile-CC and HackerNews to cover the most

3Given a 5 by 5 distance matrix, we’d expect the lower trian-
gular portion plus the diagonal to be the number of pairings, so
C5

2 + 5 = 15.
4e.g. NIH ExPorter and PubMed Abstracts both contain medi-

cal abstracts, and have the lowest distances (third violin from the
right) among combinations of different datasets.
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Figure 1. Distribution of pairwise batch distances reflect conceptual and semantic dataset properties, therefore increasing trust in
the diversity coefficient. Pairwise task distances from concatenated C4 and WikiText-103 dataset (top) and concatenated five sub-datasets
of The Pile (bottom) take on a multi-modal form according to dataset comparisons. Pairwise distances are segmented by source datasets
for each pair of batches (right), where each sub-distribution corresponds to a mode from the histograms (left). Dotted lines denote the
diversity coefficient of the concatenated C4 and WikiText-103 dataset (top) and concatenation of five sub-datasets of The Pile (bottom).
These results show that combining batches from two different datasets computes a higher diversity, as expected. Therefore, these results
align with human intuition, increasing the confidence in the diversity coefficient as a diversity metric.

diverse topics since they are broad web-scale datasets,
unlike the remaining which are technical in nature. There-
fore, we anticipate 1) these two to have the highest indi-
vidual diversities, as shown in the first two violin plots in
Figure 1, and 2) to have the highest increase when com-
bined with other datasets, as shown in the 6th to the 12th
violin plots when counting from the left, in Figure 1.

• Distances between batches from Pile-CC and Hack-
erNews (sixth violin from the left) are the lowest among
pairwise distances of concatenated datasets above the di-
versity coefficient. This aligns with human conceptual
intuition because the Pile-CC and HackerNews are the
most similar in those sub-datasets, since they are both
web-scale datasets.

These findings build trust in the diversity coefficient as a
dataset diversity metric, since the coefficient and underlying
Task2Vec distances of batches behave in interpretable ways

that align with human intuition.

3.4. Diversity Coefficient Captures LLM Pre-training
Data Distributional Properties

To instill further confidence in the diversity coefficient,
we perform a correlation analysis with data distributional
properties on a synthetic language dataset. We use the
GINC dataset (Xie et al., 2021), which generates sequences
by modeling how real documents are generated given a
fixed number of latent document concepts. It achieves this
through a mixture of Hidden Markov Models (HMM) where
each HMM has a latent concept that models document statis-
tics, e.g. wiki bio. Further details on GINC can be found in
section F.

Experiments: Given that each GINC dataset is a mixture of
HMMs with a fixed number of latent concepts (1-10,000),
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we plot how the diversity coefficient varies as the number
of latent concepts increases for each dataset. We plot this in
Figure 2 (top) and fit a curve for GINC datasets with fixed
vocabulary sizes of 50 and 150. Then we fix the number
of latent concepts at 5 and 5000 and similarly plot how
increasing the vocabulary size for the GINC dataset (50-
10,000 unique tokens) increases the diversity coefficient.
We plot this in Figure 2 (bottom) and fit a curve for GINC
datasets with 5 latent concepts and 5000 latent concepts.

Results: Our observations are as follows:
• Diversity coefficient increases with greater number

of latent concepts. Figure 2 (top) shows adding more
latent concepts increases the diversity coefficient with di-
minishing returns. We hypothesize that additional latent
concepts introduce new and varied document-level statis-
tics, resulting in an increase in the diversity coefficient.
The R2 is high with values 0.952 and 0.898.

• The diversity coefficient saturates as more latent concepts
are added. We hypothesize this may be due to marginal
increases in variation from increased overlap, e.g. wiki
bios and autobiographical web pages may have syntactical
and semantic similarities.

• Diversity coefficient increases with larger vocabularies.
Figure 2 (bottom) shows the measured diversity coeffi-
cient increases at a seemingly exponential pace for larger
vocab sizes. The R2 is high with values 0.993 and 0.984.

• We hypothesize the growth might be exponential because
scaling the number of tokens produces a more diverse
dataset by vastly increasing the number of ways to rep-
resent any sequence. More formally, given a sequence x
of length Tx and vocab size |V |, the number of ways to
represent that sequence is approximately |V |Tx . There-
fore, as |V | increases, the growth rate of the exponential
increases.

These results show the diversity coefficient successfully
captures different distributional sources of variation of the
data.

4. Using the Diversity Coefficient in Practice:
Setting Batch Size and Network Parameters

Experiments: We test the sensitivity of the computed di-
versity coefficient value to changes in batch size and probe
network parameters in order to gauge how these parameters
should be set in practice for natural language datasets.

We vary the batch size and observe the impact on the diver-
sity coefficient. For the same number of batches (200) and
probe network (pretrained, fine-tuned GPT-2), we computed
the diversity coefficient of C4 for batch sizes of 128, 256,
512, and 1024, and plot the results in Figure 3 (left).

We test the following probe network configurations to mea-
sure the diversity coefficient of C4 and of WikiText-103:
1. Pretrained GPT-2 with fine-tuning, 2. Pretrained GPT-2

Figure 2. Diversity coefficient of GINC datasets with varying
number of latent concepts and vocab sizes shows the diver-
sity coefficient behaves as expected. The diversity coefficient
increases and saturates with an increasing number of latent con-
cepts (top) and exponentially increases with increasing vocab size
(bottom). This implies that increases in the measured diversity
coefficient correspond to changes in LM pre-training data distribu-
tional properties that intuitively enable more diverse data.

without fine-tuning, 3. Randomly initialized GPT-2 with
fine-tuning, 4. Randomly initialized GPT-2 without fine-
tuning. Since using a random and/or non fine-tuned network
is more resource efficient and easily accessible in practice,
our motivation is to assess the necessity of using pre-trained
and fine-tuned probe network, which is the original con-
figuration used for Task2Vec in (Achille et al., 2019). We
aim to determine if a good approximation of diversity can
be computed without fine-tuning. We plot the diversity of
coefficients measured using each of the four probe network
configurations in Figure 3 (right).

Results: We observe that
• Diversity coefficient increases with task batch size, but

with diminishing returns. Figure 3 (left) shows positive
correlation between the diversity coefficient and batch
size. T his may be because larger batch sizes enable
more unique tokens per batch, which may result in higher
distances between batches.

• However, we observe diminishing returns to the increase
in diversity coefficient with increasing batch size. We
hypothesize that as the batch size continues to increase,
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Figure 3. Diversity coefficients of C4 computed using different task batch sizes show positive and diminishing returns with
increasing batch size (left). Diversity coefficients of C4 and WikiText-103 computed using different GPT-2 probe network
configurations show that random networks underestimate diversity vs. pretrained networks, and non-finetuned networks
overestimate diversity vs. finetuned networks (right). 95% confidence intervals for diversity coefficients are plotted, but are so small
that they do not show. ”pt” refers to pretrained network and ”rand” refers to randomly initialized network. ”ft” refers to a network that
was finetuned per task and ”no ft” refers to no finetuning performed.

there is greater coverage in tokens, topics, document for-
mats, etc. between batches, so the increase in the diversity
coefficient saturates.

• Using a random probe network underestimates diver-
sity. Since the Task2Vec method (Achille et al., 2019)
uses a pretrained and fine-tuned network, we consider the
diversity computed using this configuration as a source
of truth. Figure 3 (left) shows that using random probe
networks underestimates diversity compared to pretrained
networks, which is in accordance with results from (Mi-
randa et al., 2022b) on vision datasets. We hypothesize
that for random networks, the probe network parameters
are not as calibrated to performing autoregressive lan-
guage modeling, so batch representations from model
parameters are similar, and the diversity is underestimated
compared to pretrained networks.

• Using a non fine-tuned network overestimates diver-
sity. Lightly fine-tuning (the final layer (Achille et al.,
2019)) of the probe network ensures the final Task2Vec
embedding is more faithful to the dataset in question, as
it adjusts the batch/task representation to a more simi-
lar distribution. This is due to batches – while different
content-wise – being conditioned on the same dataset.
On the other hand, a non-fine-tuned network may have
more variable representations across batches, as it is not
well-adapted to the dataset. This may explain the overes-
timation of the diversity coefficient that we observe.

• Trends in diversity coefficient overestimation vs. under-
estimation for different probe network configurations are
consistent across C4 and WikiText-103.

Based on these findings, we recommend using a batch size
of 512 sequences for faster computations and fewer out of
memory issues. We conjecture that our proposed diversity

coefficient can be computed more efficiently using random
and non fine-tuned networks, as eliminating pre-training and
fine-tuning saves computational costs. While the absolute
diversity coefficient values differ compared to values com-
puted using a pre-trained and fine-tuned network, this is not
a serious issue as long as the same network configuration
is used consistently (see section G). Further validation is
required to determine if indeed forgoing pre-trained and/or
fine-tuned probe networks can produce as robust embed-
dings as the original Task2Vec method.

5. Related Work
Existing diversity metrics have concentrated on data pro-
duced by General Adversarial Networks (GANs) and in-
volve variations of a precision- and recall-based framework
originally proposed in (Sajjadi et al., 2018) to measure qual-
ity and diversity, respectively (Kynkäänniemi et al., 2019;
Simon et al., 2019; Naeem et al., 2020). Similar to the
Task2Vec diversity coefficient, these methods utilize em-
bedding functions, These methods argue that data quality is
not synonymous with data diversity in the context of GANs
(Fowl et al., 2020) and hence take a two-metric approach.
In the context of LLMs, we argue that data diversity is a
subset of data quality, which is demonstrably important
to enable capabilities not explicitly trained for such as in-
context learning. Therefore, a diversity metric is sufficient
to capture an important aspect of data quality. In addition,
a diverse enough dataset increases the coverage and likeli-
hood that a task in the test dataset is covered. Furthermore,
large LLMs are robust to noise and therefore even if the
diversity is made high, the models might still generalize.
Therefore, we conjecture that high diversity is preferred and
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provide evidence that current datasets for open LLMs do
have that property.

A recently proposed diversity metric that does not rely on
an embedding function is the Vendi Score (Friedman & Di-
eng, 2022). The Vendi Score is given by the exponential
of the Shannon entropy of the eigenvalues of a similarity
matrix or kernel. However, the benefits of this more sophis-
ticated aggregation method are not clear, and its computa-
tion O(n3) is more expensive than the diversity coefficient
O(n2), as it requires eigenvalue decomposition. Moreover,
the Vendi Score assumes the availability of a suitable sim-
ilarity function (or kernel) for the data, and thus does not
provide guidance on data representation – which is arguably
the most challenging and important ingredient in machine
learning. Furthermore, they suggest that utilizing data rep-
resentational methods such as embedding networks that re-
quire pretrained models may be limiting. We argue instead
that data representation is a fundamental property of data
processing that has led to the overwhelming success in ma-
chine learning due to deep learning, e.g. in computer vision
(Krizhevsky et al., 2012; He et al., 2015), natural language
processing (Devlin et al., 2018; Brown et al., 2020; Chowd-
hery et al., 2022; OpenAI, 2023; Google, 2023), game play-
ing (Silver et al., 2016; Mnih et al., 2013; Ye et al., 2021),
theorem proving (Rabe et al.; Polu & Sutskever, 2020; Han
et al.), code (Chen et al.) and more. Given the success of
deep learning data representations and our work, we demon-
strate deep learning is a strong way to create dataset/task
embeddings. In contrast to the Vendi Score, our approach
learns effective embeddings of tasks, batches, and datasets
in an end-to-end manner, whereas the Vendi Score is fo-
cused on measuring diversity between specific data points.
Since many canonical datasets already exist and are publicly
available (e.g. Common Crawl, Wikipedia), data used to
train new models may be curated from such datasets, ne-
cessitating a metric that captures overall dataset diversity.
These scenarios are thus in favor of using the Task2Vec
diversity coefficient. Therefore, our method is more general,
flexible, and scalable than the Vendi Score. We leave a
detailed comparison with the Vendi Score as future work.

6. Discussion
Our work extends, examines, and thus validates the applica-
tion of the Task2Vec diversity coefficient to a new modality
– natural language data – and demonstrates that open LLMs
are pre-trained on formally diverse data. Our approach has
a number of advantages. Through an extensive set of exper-
iments that verifies intuitive properties of a diversity metric,
we instill confidence in the diversity coefficient method, and
therefore effectively concretize/ground the concept of data
diversity. Our conceptually well-motivated lower and upper
bounds on the diversity coefficient aid in the understand-

ing of the magnitude of the diversity coefficient. However,
the bounds we propose only apply to sequence data with
a symbolic vocabulary. Using a multi-modal embedding
method that embeds our proposed lower & upper bounds
across modalities would solve this limitation by providing
aligned comparable embedding distances. Another bene-
fit is that our method does not rely on activations from an
arbitrarily selected layer in a network. Lastly, note that
activations may be unreliable for embedding dataset/tasks
because large distances between datasets/tasks may be due
to well-separated decision boundaries instead of intrinsic
semantic properties of the dataset/task. In contrast, the di-
versity coefficient is well-justified, extensively tested in our
work and previous work, e.g. the diversity coefficient cor-
relates with ground truth diversities, cluster according to
semantics, taxonomy etc. (see section B and (Achille et al.,
2019; Miranda et al., 2022a)). In short, FIM-based represen-
tations are motivated by information theory (e.g. FIMs are
metrics in distributions) and have been extensively tested by
independent sources (Miranda et al., 2022a; Achille et al.,
2019; Vu et al., 2020).

One potential limitation of our method is the need for a
data representation. Although the requirement for a data
representation might seem restrictive, we argue that it is an
inherent aspect of data processing. Choosing symbols or
raw pixels (or anything else) is a choice of data representa-
tion. We suggest deep learning representations due to their
overwhelming success in machine learning, e.g. in computer
vision (Krizhevsky et al., 2012; He et al., 2015), natural lan-
guage processing (Devlin et al., 2018; Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023; Google, 2023),
game playing (Silver et al., 2016; Mnih et al., 2013; Ye
et al., 2021), theorem proving (Rabe et al.; Polu & Sutskever,
2020; Han et al.), code (Chen et al.) and more. In addition,
widely available open-source pre-trained models (e.g. CLIP
(Radford et al., 2021), LLaMA (Touvron et al., 2023), etc.)
has made choosing a good embedding method easier. In
addition, we explore random networks and models with no
fine-tuning, to make our method more accessible 4. We hy-
pothesize that as long a consistent model/method is used to
create the task embeddings, the exact model/method might
not play a crucial role – because we only need comparable
distances that depend on the data/task.

Data has taken a central role in the success of modern ma-
chine learning methods – like GPT4 (OpenAI, 2023), CLIP
(Radford et al., 2021), and PaLM 2 (Google, 2023). This
seems especially relevant for architectures with few induc-
tive biases, like the popular Transformer (Vaswani et al.,
2017). Therefore, it has become paramount to understand
the pre-training data we use beyond scale alone. We con-
clude the diversity coefficient is a reliable trustworthy met-
ric, and conjecture the diversity coefficient can be used to
build quality diverse datasets for capable LLMs. We hope
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our contributions inspire more effective and quantitative
data collection and curation processes in machine learning
that go beyond scale alone, yet improve performance.
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A. Future Work
Our future research will explore the potential of the Task2Vec distance function for pre-training dataset curation. Given that
the objective of pre-training is to maximize downstream task performance, we define high-quality training data as data that
facilitates the best achievable performance on such tasks. We anticipate that higher diversity in the dataset will increase
the likelihood of achieving this objective. The rationale is that a higher data diversity implies a broader coverage of tasks
or batches, thereby increasing the probability of training the model on tasks or data representations that are relevant to
evaluation tasks. Our focus will be to leverage Task2Vec to assess the similarity between individual data points, batches,
or datasets to a target task. This assessment will enable us to curate the training data by selectively removing tasks that
resemble random, noisy, or irrelevant sequences, which may adversely affect downstream performance.

B. Task2Vec Diversity Coefficient Correlates with Ground Truth Diversity

Figure 4. Task2Vec diversity coefficient correlates with ground truth diversity for synthetic Gaussian benchmark. Source: (Miranda
et al., 2022b)

As shown in (Miranda et al., 2022b), when the ground truth diversity is available for a synthetic Gaussian benchmark, the
Task2Vec diversity coefficient correlates with the ground truth diversity. These results provide confidence in the Task2Vec
diversity coefficient as diversity metric.

C. Pipeline for Diversity Coefficient Computation of Natural Language Datasets
Figure 5 shows our pipeline for computing the diversity coefficient of large scale, natural language datasets. See section 2.2
for more details on our method.

D. Experimental Details
D.1. Dataset Preprocessing

In accordance with (Achille et al., 2019), we used the training split of datasets to finetune the probe network when computing
Task2Vec embeddings per dataset. Sequences were tokenized using a pre-trained HuggingFace GPT-2 tokenizer based on
byte-level Byte-Pair-Encoding, and padded or truncated to a max length of 128. Because the WikiText-103 dataset contained
empty text examples, we removed these examples before sampling batches to compute embeddings.

D.2. Model Architecture and Finetuning

We used a pre-trained GPT-2 model with a language modeling (LM) head on top. The pre-trained GPT-2 model itself has 12
layers, 12 heads, 768-d hidden size, and 117M total parameters. The LM head is a linear layer with weights corresponding
to the input embedding layers. The model was pre-trained on the English language and the pre-trained GPT-2 tokenizer
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Figure 5. A depiction of a pipeline to compute the Task2Vec diversity coefficient for a natural language dataset.

has a vocab size of ≈ 50k tokens. For all finetuning experiments, we fine-tuned only the LM head for 10 epochs. We used
no learning rate scheduler and no gradient accumulation. We used the AdamW optimizer, since AdamW has been shown
empirically to give better training loss and improved generalization.

We note that, in principle, the Task2vec diversity coefficient can be computed with any LLM. The metric itself is not specific
to any particular LLM architecture or model version. We chose GPT-2 for our experiments due to computational efficiency
and resource constraints. However, more powerful LLMs like LLaMA can also be used to compute the diversity coefficient.
As long as the probe network used is consistent across experiments, the relative differences in the diversity coefficient value
between datasets are directly comparable. The same goes for using pretrained vs. non-pretrained probe networks.

D.3. Number of Batches and Batch Size Selection

Diversity coefficients in Table 1 were computed using randomly selected batches of size 512 sequences and a pre-trained,
finetuned GPT-2 probe network. Diversity coefficients of C4, WikiText-103, The Pile, Pile-CC, HackerNews, NIH ExPorter,
PubMed Abstracts, and USPTO were each computed using 200 sampled batches. Given resource constraints, we found 200
batches5 to be a sufficiently large number of batches to estimate the diversity coefficient with tight 95% confidence intervals
on the order of 1e-5. We chose 512 as the batch size, since it is a relatively large and feasible batch size to fine-tune the
probe network on 200 batches using Azure NV12s v3 instances equipped with Tesla M60 GPUs in a reasonable amount of
time (30+ hours).

D.4. Diversity Coefficient Computation of Concatenated Datasets

The diversity coefficient of a concatenated dataset of C4 and WikiText-103 was measured over a combined set of batches.
Each batch consisted of sequences sampled from one of these datasets, e.g. a batch could have sequences randomly sampled
from C4 or WikiText-103 but not both. The coefficient was computed over 400 batches of batch size 512 (200 batches from
each dataset). Note that for the concatenated dataset, we utilized the same 200 batches per dataset that were used to compute
the coefficients of C4 and of WikiText-103 individually.

The diversity coefficient of concatenated five sub-datasets of The Pile was computed over 1000 batches (200 batches from
each dataset) of batch size 512. Similarly to the concatenated dataset of C4 and WikiText-103, we utilized the same 200
batches per dataset that were used to compute the coefficients of each individual sub-dataset.

5This results in (2002 − 200)/2 = 19, 900 pairwise distances used to compute the diversity coefficient.
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D.5. Diversity Coefficient of The Pile vs. Concatenation of Five Sub-Datasets

We make a clarification on the approach taken to evaluate the diversity coefficient for The Pile vs. for concatenation of its
five sub-datasets.

The diversity coefficient of The Pile was computed over 200 batches sampled across all 22 sub-datasets of The Pile. This
means that any given batch could contain sequences across all 22 sub-datasets, i.e. a batch could have sequences from
Pile-CC, HackerNews, and NIH ExPorter.

The diversity coefficient of the concatenated dataset was computed over 1000 batches comprised of 200 batches separately
sampled from each of the five sub-datasets. Each batch contained sequences from only one sub-dataset, i.e. a batch could
only have sequences from Pile-CC or HackerNews or NIH ExPorter.

We hypothesize this distinction in the diversity coefficient computation explains why the concatenated dataset has higher
diversity, even though it consists of only five of the 22 sub-datasets of The Pile. For the diversity coefficient of The
Pile, because batches were sampled such that any batch contains sequences from across the 22 sub-datasets, the batch
representations learned by the probe network may have been more similar, resulting in lower diversity relative to the
concatenated dataset.

E. Pairwise Distance Distributions of C4, WikiText-103, and The Pile

Figure 6. Distributions of pairwise batch distances from C4 (top left), WikiText-103 (top right), and The Pile (bottom) are
approximately Gaussian, which justifies the use of a sample of batches to measure the diversity coefficient. Dotted lines indicate the
average distance, i.e. the diversity coefficient, for each dataset.

Experiments: To provide confidence in the magnitude of the coefficient values of C4, WikiText-103, and The Pile, we
plot the distribution of distances per dataset in Figure 6. We aim to show that a subsample of batches can provide a good
estimation of population statistics, such as the diversity coefficient, which measures the expected Task2Vec (cosine) distance
between batches.

Results: For each dataset, the pairwise distances take on unimodal and approximately Gaussian distributions with few
outliers. These results suggest the Task2Vec distances are approximately normally distributed. This suggests we can make
strong inferences about the population. Specifically, we are able to compute a good estimate of the diversity coefficient
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using 200 batches using the mean. This is in fact the same argument from (Miranda et al., 2022a) – but we verified it applied
in our setting. Figure 6 also shows few outlier batches – the presence of which could influence the computed diversity
coefficient. This provides further confidence in the coefficient values computed and justifies our use of a sample of batches
to estimate diversity.

F. Generative IN-Context Learning (GINC) Dataset
F.1. Background

The GINC dataset is generated using the latent concept framework proposed in (Xie et al., 2021), where language models
condition on a prompt to infer latent document concepts learned during pre-training. The pretraining distribution is defined
using a uniform mixture of Hidden Markov Models (HMMs) parameterized over a family Θ of latent concepts.

F.2. Definitions of GINC Dataset Parameters

Number of latent concepts: A latent concept θ parameterizes the transitions of a HMM in the mixture. A latent concept
(e.g. a wiki bio) contains document statistics, such as semantics, syntax, and the formatting of and distribution of tokens.

Vocabulary size: Each HMM in a given mixture outputs a fixed number of tokens, defined as the vocabulary size. The
vocabulary is generated by enumerating combinations of letters from a to z, aa to az, etc. The delimiter token is designated
by a backslash. Sequences are tokenized by whitespace.

F.3. Supplemental Figures for Diversity Coefficient vs. GINC Parameters

Figure 7. Trends noted in Section 3.4 are consistent for diversity coefficient vs. number of latent concepts (left) and coefficient vs.
vocab size (right) when the other parameter changes. The diversity coefficient with 95% confidence intervals saturates with increasing
number of latent concepts (left) even as vocab size is varied between 50-1000. Larger vocab sizes generally produce higher diversity
coefficients (right) even as the number of latent concepts is varied between 1-5000.

Figure 7 confirms that the trends between the diversity coefficient and number of latent concepts (left) hold even as vocab
size is varied. Similarly, trends between the diversity coefficient and the vocabulary size (right) hold as the number of latent
concepts is varied. These trends were noted in Section 3.4.

G. Discussion (cont.)
Our paper introduces a metric that leverages tunable parameters, such as the number of batches, batch size, probe network
configuration (pre-trained vs. random, fine-tuned vs. not) and depth. While these elements influence the diversity
coefficient’s absolute value and necessitate the recalibration of lower and upper bounds (see sections D.3 and 4), a consistent
choice of hyperparameters can mitigate these effects.

Intriguingly, our proposed diversity may not always correlate with model performance, as high diversity could simply be
due to uniform noise. Nevertheless, we contend that a higher diversity, in the context of a sufficiently large model, likely
indicates superior performance and data quality. Furthermore, our diversity metric is intentionally designed to be widely
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applicable, albeit concealing causal factors, rendering it an effective tool for ablation studies.

Despite our diversity metric’s broader applicability, it may obscure certain causal factors. This limitation is intentional to
enhance its practical usage – since causality is often difficult to infer and is out of scope. This can be overcome with data
property ablation studies, as we showed in our GINC dataset experiments.

Currently, our proposed bounds are specific to sequence data with a symbolic vocabulary, limiting their applicability across
different modalities. To overcome this limitation, we suggest using a multimodal embedding method for embedding diversity
coefficients and lower/upper bounds across tasks.

To really clarify why FIM is better than activations, we provide this intuitive explanation. FIM gives a weight/feature of
which parameter of the generative distribution matters, e.g. the first coordinate of Task2Vec corresponds to how artsy the
text sequence is. This is a feature of a task or dataset itself. Therefore, FIM exactly approximates the (task) data generative
distribution we are trying to embed. Therefore, we conjecture it results in superior representations for datasets compared
to activations since it directly approximates the data (or task) generative distribution. Our study, and references, provide
positive evidence in favor of this argument.

The strength of embeddings is their ability to approximate semantics in a way that symbols may struggle with, such as
distinguishing the equivalence of two sentences with different symbols but identical meanings. In NLP there is no easy
way to determine this equivalence. In formal mathematics, symbolic semantics and thus equivalence can sometimes be
done exactly. Though it does not come without its costs, e.g. requires expert knowledge, computationally demanding or
(approximately) exhaustive representations like e-graphs. Therefore, embedding methods for data diversity, quality, etc.
have the unique advantage of being more generally applicable.

Our diversity calculations predominantly utilize a small model (GPT-2). Despite the ongoing discussion concerning the
emergence of large language models (LLMs), our conjecture extends the results to models of all sizes. We base this
inference on the fact that the manifestation of emergence is intimately tied to the specific metric employed, and the sudden
unpredictable jumps disappear when smooth metrics are applied (Schaeffer et al., 2023). The cosine distance is smooth and
does not have this issue.

Why and when does diversity matter? We propose two central conjectures for the importance of diversity and provide the
underlying rationale:

1. Conjecture 1: Diversity is essential because it promotes learning-to-learn (a surrogate for General Intelligence).
The main argument is that a significant level of diversity corresponds to a multitude of tasks in the dataset. Therefore, to
achieve high (test) performance, the model must perform well on all tasks. One potential strategy is by learning-to-learn,
thereby allowing transferability when tasked with a new problem. Another alternative could be to memorize all tasks.

2. Conjecture 2: Diversity is crucial because it enhances the probability that the pre-training set covers the test set.
Diversity is a formal score of coverage – it aims to reflect the effective number of tasks in a dataset. Thus, increased
diversity equates to more tasks in a dataset. This (could) boosts the chance of the training set covering the test set,
hence improving performance, given a sufficiently large model like an LLM. The direct exploration of this conjecture
is slated for future investigation, but we provide a suggestive (correlative) analysis of one reason why LLMs might
perform so well.

Limitations:

• The diversity coefficient presents an aggregate measure that masks the underlying causal factors. Despite this, we
illustrate how it might be employed to uncover these factors. We show this through the use of vocabulary size and latent
space, acknowledging that these experiments could be resource-intensive. Causality is a challenging topic, and we do
not claim to solve it through our experiments. Our experiments in this regime are mostly to show that the diversity
coefficient (might) correlates/captures different sources of diversity beyond number of concepts or tasks.

• The computation of Task2Vec embeddings requires more resources than computing simply the activations. However,
given the proven correlation with ground truth task generative parameters from previous studies, we posit that it
supersedes activations. Furthermore, we hypothesize that using activations could result in high distances due to
optimization for decision boundaries, making it less reliable for measuring distances i.e., high distances in activation
space might be artificially high. We observed this but plan to give more detailed study in the future.
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• The choice of an expectation as the aggregation function could be seen as arbitrary. Alternatives such as the Vendi
score are promising, but still under-explored and computationally demanding compared to expectations/sums. Future
work could focus on the comparative analysis of the total distance sum and the Vendi score. We hypothesize, in line
with the Central Limit Theorem (CLT), that the results might not differ significantly e.g., CLT still converges to (unit)
Normal given the proper normalization procedure.

• We reject the notion that the use of models is a limitation. As discussed earlier, models can provide superior data
embeddings, and all forms of data representations are always required. For example, the identity function or symbols
are data representations.

Implications:

• Given the impressive performance of LLMs, our study suggests a correlation with our diversity measure, potentially
providing an explanation for this high level of performance.

• High diversity implies a larger task coverage. Therefore, we conjecture that a highly diverse pre-training set could
increase the probability of including relevant pre-training data for the target task/testing. This suggests that collecting
more diverse data could be a method to enhance performance. If the model is sufficiently large, we conjecture this
method always (stochastically) monotonically increases the performance (as implied by (Zhang et al., 2021)).

• The transition from a qualitative to a quantitative measure of diversity can be seen as a significant advancement in the
field because of conceptual transitions about how we think and talk about data quality/diversity.

• The use of Task2Vec to embed data implies a method applicable to any modality, potentially benefiting all areas of
machine learning research.
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