ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection Data

Ulyana Tkachenko “! Aditya Thyagarajan”' Jonas Mueller !

Abstract

Despite powering sensitive systems like au-
tonomous vehicles, object detection remains fairly
brittle in part due to annotation errors that plague
most real-world training datasets. We propose
ObjectLab, a straightforward algorithm to detect
diverse errors in object detection labels, including:
overlooked bounding boxes, badly located boxes,
and incorrect class label assignments. Object-
Lab utilizes any trained object detection model to
score the label quality of each image, such that
mislabeled images can be prioritized for label re-
view/correction. Properly handling the erroneous
data enables training a better version of the same
object detection model, without any change in
existing modeling code. Benchmarks on SYN-
THIA and naturally-occurring annotation errors
in COCO reveal that across different object de-
tection models/datasets, ObjectLab consistently
detects error with much better precision/recall
compared to other label quality scores.

1. Introduction

Object Detection is a key computer vision task powering
many high-impact applications where computers decide ac-
tions based on captured images via a learned model. The
datasets used to train/evaluate these detectors require a mas-
sive amount of human labeling which is inevitably imper-
fect. Annotators of an object detection dataset inspect an
image and, for each depicted object, are supposed to draw a
bounding box around it and assign a discrete class label to
categorize this object.

In real-world datasets, annotators make three types of mis-
takes depicted in Figure 1: (1) An Overlooked error in
which a depicted object was not spotted and thus no corre-
sponding bounding box around it exists in the given label
for this image, (2) A Badly Located error in which anno-
tators sloppily draw the bounding box around a depicted
object such that its location/edges fail to perfectly enclose
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the object, (3) A Swapped error in which annotators draw a
correct bounding box around a depicted object, but assign it
the wrong class label. Such Swapped errors are also com-
mon in many classification datasets (Northcutt et al., 2021a),
but the increased complexity of object detection annotation
introduces potential for more varied types of label errors
than encountered in classification. We propose an algorithm,
ObjectLab, that utilizes any trained object detection model
to estimate the incorrect labels in such a dataset, regardless
which of these 3 types of mistake the data annotators made.

Training and evaluating models with incorrect bounding box
annotations is clearly worrisome. Likely mislabeled images
in an object detection dataset should be reviewed and ei-
ther re-labeled or excluded from the dataset. While some
research advocates dealing with noisy labels by training
models in a special manner (Nishi et al., 2021; Sukhbaatar
& Fergus, 2014; Jiang et al., 2018; Zhang & Sabuncu, 2018),
we advocate for a straightforward data-centric approach to
improve the data directly by first estimating which images
are mislabeled. The data-centric approach has many ad-
vantages over special modeling (Kuan & Mueller, 2022;
Northcutt et al., 2021b) — most importantly, it can be used
to improve the performance of any object detection model,
regardless of its architecture or training strategy. Our Ob-
jectLab approach' utilizes any trained detector to estimate
which images are incorrectly labeled — these can be cor-
rected to subsequently produce an even better version of this
same model (without any change in the existing modeling
code). This generality ensures data-centric methods like
ObjectLab will remain a valuable asset in the computer vi-
sion toolkit long in the future, even when new architectures
and training strategies have been invented which invalidate
special modeling techniques developed specifically to acco-
modate today’s models.

2. Methods

Our aim is detecting labeling issues in a standard ob-
ject detection dataset, in which each image [ is anno-
tated with bounding boxes B around each depicted ob-

!Code to run our method:
https://github.com/cleanlab/cleanlab
Code to reproduce benchmarks: https://github.com/
cleanlab/object-detection-benchmarks


https://github.com/cleanlab/cleanlab
https://github.com/cleanlab/object-detection-benchmarks
https://github.com/cleanlab/object-detection-benchmarks

ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection Data

Figure 1. Images in COCO dataset with some of the lowest Ob-
jectLab label quality scores. We show both the original given
label (left column in red) and prediction from Detectron2-X101
model (right column in blue). These examples exhibit different
naturally-occurring label errors: (top) Overlooked box, (middle)
Badly Located box, (bottom) Swapped class label. In top row:
annotators poorly outlined the ski (class #30) which the model
localized much better (with confidence 0.835), leading to a low
Badly-Located score in ObjectLab. In middle row: the vehicle
on the left is incorrectly annotated as a bus (class #5), while the
model predicted truck with confidence 0.996, leading to a low
Swapped-score in ObjectLab. In bottom row: annotators missed
the fire hydrant (class #10 in COCO) which the model detected
with confidence 0.998, leading to a low Overlooked-score in Ob-
jectLab.

ject, and each box is given an corresponding class label
¢(B) € {1,..., K} categorizing the object into one of K
classes. We interchangeably refer to the set of bounding
boxes provided for image I in the original dataset, £(I), as
the given label or annotation for this image.

Here we estimate a label quality score $(I) for each image,
such that images receiving lower scores are more likely
mislabeled (Kuan & Mueller, 2022), suffering from at least
one of the aforementioned mistake-types (1)-(3). Practical
constraints limit the number of images whose label can

be reviewed, and thus an effective label quality score is
key to prioritizing which images are worth another look.
Good scoring methods ensure reviewers neither waste time
inspecting correctly labeled images (high precision) nor fail
to catch images with label errors (high recall).

A natural way to score label quality is via the predictions of
a ML model. In this paper, we restrict ourselves to scoring
methods that can be applied to the predictions from any
standard object detection model, no matter its architecture or
training strategy. A key question is: when to trust the model
over the original data? To avoid bias from overfitting, label
quality scores are computed using out-of-sample predictions
from the model, i.e. based on predictions for an image I
from a copy of the model which never saw I during training.
We obtain out-of-sample predictions for every image in a
dataset via straightforward 5-fold cross-validation.

Given an image I, a typical object detection model outputs
prediction P(I), which is a set of predicted bounding boxes
B, each localizing an estimated object and associated with:
predicted class ¢(B) € {1,..., K} and a confidence value
0 < p(B) < 1 reflecting the estimated probability that the
object localized by B belongs to class ¢(B). The set P(I)
is typically only comprised of predicted boxes B whose
confidence exceeds some fixed threshold, i.e. ﬁ(B) > 7.
Here we use the same value 7y = 0.5 as the default in
many popular object detection libraries, noting the empiri-
cal performance of ObjectLab was not significantly affected
by trying smaller values of 7| in our benchmarks. While
certain types of object detection models output richer infor-
mation than listed here (Zaidi et al., 2022), we believe being
compatible with any type of model is key to an effective
label quality score for data-centric Al. As object detection
architectures advance over time and models become more
accurate/calibrated, such label quality scores will remain
applicable and immediately detect errors more effectively.

2.1. ObjectLab

Our proposed ObjectLab method straightforwardly scores
each image I independently of the others and produces
a label quality score §(I) solely based on the given la-
bel £(I) and model prediction P(I). Algorithm 1 details
our method. The ObjectLab score is a holistic represen-
tation of all possible labeling errors that can occur and is
based on a geometric mean of three mistake-subtype scores
Sovertook (1), Sbadioc(I), Sswap(I) Which respectively evalu-
ate how likely this image suffers from an Overlooked, Badly
Located, or Swapped error. These mistake-subtype scores
are each computed by estimating a particular aspect of each
annotated/predicted bounding box in image [ via a partic-
ular quality score in [0,1], and subsequently pooling these
quality estimates over all of the relevant boxes in / to form
one of the subtype scores for I.
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Algorithm 1 ObjectLab score §(I) for an image I

Require: given label £(I), model prediction ]5(1 )
I: q1,...,qn < BadlocBoxScores(L(I),P(1))

Sbadioc(I) <« softmin(gy, ..., qn) R
q1,---,qn < SwappedBoxScores(L(I), P(I))

Sswap(l) < softmin(qs,...,qn)
q1.---,qu < OverlookedBoxScores(£(1), P(I))

6: goverlook (I) — SOftmin(qla te QM)
return Geometric mean of 84qdi0c; Sswaps Soverlook fOr I

To gain some intuition, consider say the Badly located
mistake-subtype, for which we compute a particular quality
estimate for each annotated bounding box B in [, reflecting
the quality of its location. These location-quality estimates
are then pooled over every annotated box B in [ to form
the single subtype score 8pqd10c(!), which roughly quanti-
fies the estimated likelihood that any box B in I was badly
located. Pooling via the mean quality estimate is overly
sensitive to statistical variation the quality estimates for
correctly located boxes, while pooling via the minimum
quality estimate undesirably ignores the estimates for all
boxes except one. An effective compromise between these
extremes is softmin pooling (Wang & Mueller, 2022), in
which we compute the pooled value 0 < ¢ < 1 from a
vector of per-box values ¢’ := (qi,...,¢qn) via the inner
product: ¢ = (g, softmax(1 — ¢)). Here we suppose there
are [NV annotated boxes for I. Such pooling reflects a softer
version of the minimum function that still takes all boxes’
quality estimates into account. Beyond the Badly located
mistake-subtype, we also employ softmin pooling to aggre-
gate certain per-box quality estimates into the other two
types of subtype scores Soperiook (L), Sswap(L)-

Algorithms 2, 3, 4 detail the computation of the per-box
quality estimates used for each subtype score. Intuitively,
our quality score for an individual annotated box being
badly located is based on its similarity with the nearest
predicted box of the same class. Our quality score for an
individual annotated box having a swapped class label is
inversely related to its similarity with a nearby predicted
box confidently predicted to belong to a different class. To
estimate whether an individual predicted box B corresponds
to an overlooked box that should have been in the original
annotations, our corresponding quality score is based on
this prediction’s confidence and the similarity between B

and the nearest annotated box of the same class as ¢(B).

Between any pair of bounding boxes in the same image, we
define a similarity function:

sim(B1, By) = - k(B1,B2) + (1 — ) - IoU (B, By).

Here IoU is the standard Intersection over Union similar-
ity measure and k(-, -) is a Gaussian kernel similarity be-

tween 4D vectors defined by the outer edges of each box =
exp(—||b1 — ba||/o) where the entries of by (or by) are the
coordinates of the top-left and bottom-right corners of Bj
(or Bs) normalized to unit interval. Throughout we simply
set « = 0 = 0.1 and did not find their precise values to
affect performance. Rather the Gaussian kernel is included
to avoid similarity ties when the IoU is equal to 0. Tied label
quality scores between different images are undesirable as
they do not aid in prioritizing which to review first. We also
define sim, as the minimum possible similarity between
any pair of annotated and predicted boxes across all images
in the dataset, and ¢* = 1 as the maximum possible quality
estimate for any box (across all mistake subtypes).

Computing Badly Located scores per annotated box.
Badly located box scores are calculated for every annotated
box via Algorithm 2. We simply score each annotated box
based on its similarity with the nearest predicted box of
the same class. When there is no such predicted box, we
consider this annotated box well-located (assigning maxi-
mum quality score ¢* = 1). For a well-trained model, we
observed the majority of incorrect predictions are entirely
false positive/negative detections; when objects are correctly
detected, their predicted bounding boxes tend to be well-
localized, except for classes where the original annotations
also contain poorly located boxes thus confusing the model.

Computing Swapped scores per annotated box.
Swapped box scores are calculated for every annotated box
via Algorithm 3. We are most concerned that an annotated
box may have a swapped class label when there exists an
extremely similar predicted box that was predicted with
high confidence to belong to a different class. For swapped
errors, we score the annotated box quality based on the dis-
tance to the most similar predicted box that was confidently
predicted to belong to a different class. If there are no such
predicted boxes, we do not consider the annotated box to
potentially have a swapped class label, and its quality esti-
mate is set to the maximum value ¢* = 1. Deciding what
constitutes a highly confident prediction depends on a fixed
threshold 7, which one can set based on the estimated trust-
worthiness of the model (e.g. via a calibration curve). One
can also use separate thresholds for each class (Northcutt
et al., 2021b). Here we simply fix this threshold 7 = 0.95
corresponding to a 95% confidence value adopted as a de
facto standard in statistical decision-making.

Computing Overlooked scores per predicted box.
While the aforementioned quality estimates for the Swapped
and Badly Located error types are computed for each anno-
tated box, Overlooked errors are defined by the absence of
such a box in the given label. Thus overlooked box quality
scores are instead calculated for every predicted box via
Algorithm 4. Again we only consider high-confidence pre-
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Algorithm 2 BadlocBoxScores for image

Algorithm 4 OverlookedBoxScores for image [

Require: given label £(I), model prediction P(I)
1: scores « {}
2: for annotated box B € L(I) do
3: Let k = ¢(B) denote its annotated class and
Py :={B € P(I) : ¢(B) = k} denote the
predicted boxes with the same predicted class.
4: scores.append(q) where q <+ ¢*if P, =0
else: ¢ <~ maxp_p, sim(B, B)
return scores

Algorithm 3 SwappedBoxScores for image I

Require: given label £(I), model prediction P(I)

1: scores «+ {}

2: for annotated box B € £L(I) do

3: Let k = ¢(B) denote its annotated class and
Py :={Bec P(I): &B)#k, p(B) > 11} be
the predicted boxes with another predicted class
whose confidence exceeds threshold 7.

4: scores.append(q) whereq <+ ¢*if P_, =10

else: ¢ <~ 1 —maxp p sim(B, B)
return scores

dicted boxes whose confidence exceeds threshold 7. For
each such box, we consider whether there is a corresponding
annotated box present in the image or not. When there is,
the similarity between the two serves as the quality score,
otherwise we use the minimum possible similarity adjusted
by the model confidence (since a 99% confident prediction
with no corresponding annotated box is more indicative of
an overlooked error than a 98% confidenct prediction).

Aggregating separately quantified evidence for these var-
ious types of potential errors, the ObjectLab score offers
a model-agnostic and computationally-efficient estimate
of label quality in object detection datasets. This method
straightforwardly utilizes predictions from a trained model.
Sorting images by our proposed score can help detect a wide
variety of labeling errors of different types.

3. Related Work

Several previous works have demonstrated object detection
datasets are full of labeling errors, mostly via manual analy-
sis (Murrugarra-Llerena et al., 2022; Ma et al., 2022; sama,
2022; Hasty.ai, 2022). Other work has focused only on spe-
cific error types in object detection data and model-specific
techniques to improve training with noisily labeled data
(Xu et al., 2019). Due to the immense value of system-
atic label error detection, extensive research has developed
methods for this task particularly for classification datasets
(Brodley & Friedl, 1999; Muller & Markert, 2019). Confi-

Require: given label £(I), model prediction P(I)
1: scores « {};
2: for predicted box B € P(I) with p(B) > 74 do
3: Letk = é(B) denote its predicted class and
Ly :={B € L(I) : ¢(B) = k} denote the
subset of annotated boxes for class k.
if £, = () then
q = sim, - (1 —}3(3))
else
¢ = maxpes, sim(B, B)

® >0k

scores.append(q)
9: if scores =: scores = {¢*}
return scores

dent Learning (Northcutt et al., 2021b) is one particularly
popular methodology to automatically detect mislabeled
classification data. Recent work has studied methods to
extend these label error detection capabilities beyond clas-
sification to structured data in NLP (Klie et al., 2022) and
segmentation data in computer vision (Rottmann & Reese,
2022; Chan et al., 2021). In these areas, label quality scores
have been found to be effective (Kuan & Mueller, 2022),
particularly when they are properly pooled for data with
complex multi-dimensional labels, e.g. via the softmin pool-
ing used in ObjectLab (Wang & Mueller, 2022; Thyagarajan
etal., 2023).

Some of the related label quality scoring methods discussed
in this section are also considered as baseline methods for
comparison in our subsequent benchmarks. We restrict our
attention to general approaches like ObjectLab that can be
used with any standard model and training strategy, because
the score is produced solely based on model predictions
and the original labels. Throughout all such methods are
only applied to out-of-sample predictions obtained via cross-
validation.

3.1. mAP label quality score

In error analysis, one sorts the data by the predictions’
loss according to a standard evaluation metric computed
separately for each instance. The resulting ranking reveals
images for which the model struggles most, often because
some of them are mislabeled (Bolya et al., 2020; Voxel51,
2023; Klie et al., 2022). Thus this constitutes a reasonable
approach to label quality scoring for general ML tasks.

Mean Average Precision (mAP) is a widely used evalua-
tion metric in object detection, quantifying the accuracy
of an object detector via both its precision (percentage of
correctly identified objects out of all the predicted objects)
and recall (percentage of correctly detected objects out of
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all the annotated objects). mAP is computed by calculating
the Average Precision (AP) for each class and then taking
the mean across all classes. As a standard approach to er-
ror analysis in object detection, we can compute mAP per
image, and also use this as an alternative label quality score
(Voxel51, 2023). If one had a perfect model, label quality
scoring via mAP would appropriately measure how wrong
the data annotations are. But in practice, model predictions
will never be perfect, especially from models trained with a
noisily labeled dataset.

3.2. Tile-estimates approach

Beyond error analysis with per-image mAP scores, we also
consider a direct extension of methods for identifying label
errors in classification tasks (Northcutt et al., 2021b; Kuan &
Mueller, 2022) to the object detection setting. To do so, we
simply reduce aspects of object detection to a classification
perspective. A straightforward way is a tile-based reduction,
in which we first divide each image into a grid of size (J, J).
Each tile in this grid is assigned a label and predicted class
probabilities, and across all the images, these tiles are treated
as separate instances in a classification task (ignoring which
image each tile stems from). Subsequently standard label-
quality scoring for classification (Kuan & Mueller, 2022)
can be applied to score each tile. Here we simply use the
likelihood of the given label according to the predicted class
probabilities. To get a label quality score for an image, we
finally pool the tile-scores over this image. We explored
various pooling options and found that a simple geometric
mean to work well.

To assign labels for each tile based on the given object
detection annotations, we compute the overlap between
tiles and annotated bounding boxes and assign the original
bounding box label to the tiles significantly overlapping with
this box. To obtain predicted class probabilities for a tile
from our object detection model outputs, we form a kernel-
smoothing predictor within each image. Here we apply the
aforementioned similarity function sim() between boxes
but here to a tile and each bounding box, in order to construct
a similarity-weighted average of all boxes probabilities (for
this same image) as the predicted class probability vector
for the tile.

3.3. CLOD (Chachutla et al., 2022)

Similar to our above extension of classification label quality
scores to the object setting, Chachuta et al. (2022) pro-
pose an extension of the Confident Learning (Northcutt
et al., 2021b) approach to detect label errors in object de-
tection. Their CLOD method involves clustering annotated
and model-predicted boxes based on IoU distance — specif-
ically single linkage agglomerative clustering. As in our
tile-estimates approach, CLOD assigns a label and predicted

Figure 2. Example of a naturally mislabeled image in the COCO-
bench dataset that receives low ObjectLab score. We show the
original dataset label, which contains no boxes beyond those de-
picted for Car (class #0). Here the seated person and the chair
were overlooked in the given label, even though these are among
the 5 COCO-bench classes.

probabilities to each cluster, which allows the application
of Confident Learning to assess label quality (treating each
cluster as a separate instance). Subsequently, one can sim-
ply use mean-pooling over the clusters within an image to
obtain a label quality score for the image. Chachuta et al.
(2022) also consider the Overlooked, Swapped, and Badly
Located object detection errors and propose CLOD as an
effective way to detect them.

4. Experiments
4.1. Dataset and Models

Our benchmarks evaluate label quality scoring methods by
training two object detection models across three datasets
in order to ensure the results are dataset and model agnostic.
Table 2 reports the accuracy of each model on each dataset.
Our first two datasets (COCO-bench and SYNTHIA) are
specially curated for evaluation by ensuring we know which
images are truly mislabeled or not.

COCO-bench dataset. This subset of 2171 images from
the famous COCO 2017 dataset (Lin et al., 2014) only con-
siders 5 of the classes: person, chair, cup, car, and traffic
light. These images and classes were selected because two
other groups have re-annotated these images considering
these classes (Ma et al., 2022; sama, 2022), and we use these
redundant annotations here to determine which of these im-
ages truly have an annotation error in COCO. Specifically
for each image, we compared its 5-class COCO annotation
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Figure 3. Various errors in our SYNTHIA-AL dataset, including:
class label for Car (class #0 in SYNTHIA-AL) swapped with
Bicycle (class #3), bounding box around depicted Car shifted
to incorrect location (middle), and omitted bounding box around
depicted Car (bottom). These examples involve the Car class, but
similar errors exist in labels for each of the other 4 classes.

to its independent annotation by Ma et al. (2022) and by
sama (2022) in order to determine ground truth. When both
of these extra annotations disagreed with the COCO annota-
tion but agreed with one another, we considered the image
to be mislabeled in our COCO-bench dataset (whose labels
all come from 5-class COCO, not the extra annotations).
When all three annotations agreed, we considered the image
correctly labeled. Here agreement between annotations was
assessed by thresholding their pairwise mAP score. We man-
ually inspected the remaining images to decide which were
mislabeled or not. In total, 251 images in COCO-bench are
considered mislabeled and we are confident in the ground
truth assessments. Figure 2 depicts an example from this
benchmark that this process revealed to be truly mislabeled.

SYNTHIA-AL dataset. Bengar et al. (2019) curated the
SYNTHIA-AL dataset as an object detection benchmark
where the ground truth labels are known because the images
are synthetically generated by a realistic graphics engine
(Ros et al., 2016). To ensure more independent images from
what was originally a video dataset, we ensured a minimum
distance of 28 frames between any pair of images included

in our benchmark dataset. Our benchmark version of this
dataset contains 5000 images and 5 classes: Pedestrian,
TrafficLight, Car, TrafficSign, Bicycle.

We then randomly perturbed some of the clean labels in
this dataset to inject various types of mislabeling: dropped
bounding boxes, swapped class labels, and shifted bounding
boxes. Some images contained more than one type of anno-
tation error with 22% unique images containing at least one
error. Our perturbations were considered as sole source of
ground truth error for the SYNTHIA-AL dataset, given the
images are generated by a graphics engine. Figure 3 depicts
some examples from this benchmark. While we cannot
characterize all properties of the naturally-occurring label
errors present in COCO-bench, we control the label errors
in SYNTHIA-AL, facilitating more systematic evaluation.

COCO-full dataset. Finally we also considered detecting
mislabeled images in the full COCO 2017 training dataset,
which has 80 classes (Lin et al., 2014). We refer to this
dataset of 118,000 images as COCO-full to distinguish it
from COCO-bench. Figure 1 shows some of the label errors
automatically detected in this dataset. Note that we do know
the ground truth mislabeled images in COCO, and thus only
performed a limited evaluation with this dataset. For each
label quality scoring method, we manually reviewed its 100
lowest-scoring images in COCO to assess what fraction of
them were actually mislabeled.

Detectron-X101 model. The Detectron-X101 network is
one of the most accurate object detection models in the pop-
ular Detectron2 library (Wu et al., 2019). This model uses a
ResNeXt backbone (Xie et al., 2017) with a Feature Pyra-
mid Network (Lin et al., 2017); standard convolutional and
fully-connected output heads are used for box prediction.

Faster-RCNN model. Proposed by Ren et al. (2015), the
Faster R-CNN architecture is one of the most widely used
object detection methods. Here we specifically use the
R-50-FPN Faster-RCNN network from the MMDetection
library (Chen et al., 2019). This model shares parameters
between a fully-convolutional region proposal network and
the detection network, which is based on a ResNet-50 (He
et al., 2015) backbone with a Feature Pyramid Network
(Lin et al., 2017). Faster-RCNN is slightly less accurate
than Detectron-X101 (Table 2) but often favored for its
efficiency.

4.2. Evaluation Metrics

Our primary interest is how well our label quality estimates
correctly prioritize images that have annotation errors over
those which do not. Label error detection can be viewed
as a form of information retrieval, a field with standard
evaluation metrics based around precision/recall, which we
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Table 1. Precision@ 100 achieved by various label quality scores
for detecting mislabeled images in the COCO-full dataset.

MODEL OBJECTLAB MAP
DETECTRON-X101 0.58 0.22
FASTER-RCNN 0.42 0.17

adopt here to evaluate different label quality scoring meth-
ods (Kuan & Mueller, 2022). For each set of label quality
scores, we compare them against the ground truth informa-
tion about which images are mislabeled to compute their
Average Precision, Precision @ 100 (i.e. what fraction of
the 100 lowest-scoring images are truly mislabeled), and
Precision @ T, for T' = the true number of mislabeled im-
ages in each dataset. For the full COCO dataset where this
ground truth information is not available, we only report
Precision @ 100 for a select number of label quality scoring
methods (as it is labor intensive to report).

5. Results

Figure 5 shows that ObjectLab detects mislabeled images
with better precision/recall than other label quality scores in
both COCO-bench and SYNTHIA-AL, regardless of which
object detection model is used. Out of the other label quality
scores evaluated, the basic mAP score performs the best on
SYNTHIA-AL but does not fare as well on COCO-bench.

Table 1 reports the results of our label quality score evalua-
tion in the full 80-class COCO dataset. Because we could
only calculate the precision via laborious manual review
of top-ranking images under each method, we limit this
evaluation to the Precision @ 100 metric and compare Ob-
jectLab against the straightforward mAP label quality score.
In COCO-full, ObjectLab again consistently detects label er-
rors with much higher precision than the mAP score across
both types of models.

While ObjectLab explicitly accounts for model confidence
and specific forms of errors expected in practice, the mAP
score exclusively relies on the IoU between predictions and
labels. Figure 4 shows examples where mAP label quality
scores mistakenly flag correctly labeled images due to im-
perfect predictions from the object detection model. Unlike
mAP, ObjectLab scores are unaffected by bad model pre-
dictions made with insufficient confidence. Unlike mAP,
ObjectLab scores do not explicitly penalize images with an-
notations for which there is no corresponding prediction. We
did not encounter images with extraneously added bounding
boxes in our examination of object detection datasets.

The images with the lowest ObjectLab quality scores in the
COCO-full dataset reveal many interesting findings. Figure
1 illustrates different types of label errors present in the

Figure 4. Images from COCO-full whose label quality is better
assessed via ObjectLab than mAP score. We show both the original
given label (left column in red) and prediction from Detectron2-
X101 model (right column in blue). In top row: model incorrectly
predicts hairbrush is a zebra (class #22) with moderate confidence.
The label quality score for this image viamAP = 0.0, via ObjectLab
= 1.0. In bottom row: model does not recognize sports ball (class
#32) but it is correctly marked in the annotation. The label quality
score for this image via mAP = 0.0, via ObjectLab = 1.0.

dataset, and Figure 6 shows fundamental inconsistencies
between annotations. Through visual examination of many
top/mid/bottom-ranking ObjectLab results, we estimate that
in COCO 2017 around: 5% of images have an Overlooked
error, 3% have a Badly Located error, and 0.7% have a
Swapped error. A full table of ObjectLab results for the en-
tire COCO-full dataset is provided in the previously linked
benchmarks GitHub repository.

6. Discussion

The ObjectLab score introduced in this paper is straightfor-
ward to integrate into any existing object detection pipeline.
Using predictions from the trained model, ObjectLab is able
to detect diverse types of errors and automatically priori-
tizes mislabeled images in the data for review. After their
labels are fixed, the same object detection model can be
easily retrained on the corrected dataset. Because Object-
Lab depends on model predictions, its label error detection
accuracy increases with a better model. Thus a better model
improves ObjectLab results, which in turn can be used to
better correct the data, allowing an even better version of
the model to be trained. Most object detection models and
datasets should be amenable to this virtuous cycle. In prac-
tice, labeling issues should be considered in both training
and evaluation datasets (Northcutt et al., 2021a), to not only
maximize reliability of a learned object detector but also
ensure decisions like architecture selection and whether to
deploy or not are based on the correct information.
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Figure 5. Evaluating various label quality scoring methods across two models and two datasets where ground truth label errors are known.
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Figure 6. Examples of inconsistent annotations in COCO-full. In these images, which received low ObjectLab scores, some depicted
animals are annotated as both cow and sheep.
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Supplementary Results

Dataset Model mAP

COCO-bench X-101 0.67
COCO-bench  FasterRCNN 0.62
SYNTHIA Detectron:X-101  0.58
SYNTHIA FasterRCNN 0.53
COCO-full X-101 0.53
COCO-full FasterRCNN 0.49

Table 2. Standard mAP evaluation to measure overall accuracy of the (out-of-sample) predictions from each model on each dataset.

Dataset : Model Quality Score  Avg. Precision Precision@100 Precision@Num_errors
ObjectLab 0.365 0.49 0.34
COCO-bench: mAP 0.222 0.20 0.23
X-101 Tile-estimates 0.284 0.26 0.22
CLOD 0.27 0.18 0.17
ObjectLab 0.273 0.43 0.30
COCO-bench: mAP 0.171 0.26 0.20
FRCNN Tile-estimates 0.283 0.32 0.21
CLOD 0.26 0.16 0.15
ObjectLab 0.502 0.89 0.44
SYNTHIA: mAP 0.313 0.39 0.33
X-101 Tile-estimates 0.280 0.18 0.25
CLOD 0.25 0.13 0.14
ObjectLab 0.46 0.88 0.42
SYNTHIA: mAP 0.309 0.30 0.29
FRCNN Tile-estimates 0.309 0.25 0.24
CLOD 0.23 0.11 0.12

Table 3. Metrics of various label quality scoring methods across two models and two datasets where ground truth label errors are known.
This table is simply an alternate representation of the benchmark results plotted in Figure 5.
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Figure 7. Additional examples of Overlooked errors amongst the images with lowest ObjectLab scores in the COCO-full dataset. In top
row: the given label (on left) is missing the cat (class #28), detected by Detectron2-X101 model with confidence = 0.99 (prediction on
right). In bottom row: an atypical-looking cow (class #19) was missed by annotators, but predicted by Detectron2-X101 model with
confidence = 0.99.
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Figure 8. Additional examples of Badly Located errors amongst the images with lowest ObjectLab scores in the COCO-full dataset. In top
row: the given label (on left) incorrectly localizes the flower head of the broccoli, whereas Detectron2-X101 model correctly predicts its
location with moderate confidence = 0.88 (on right). In bottom row: the annotated bounding boxes were poorly drawn around the skis.
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Figure 9. Additional examples of Swapped errors amongst the images with lowest ObjectLab scores in the COCO-full dataset. In top row:
the given label (on left) mistakenly says the sink to the right of the toilet is another toilet, whereas Detectron2-X101 model confidently
predicts it is a sink (confidence = 0.95). In bottom row: the depicted truck is incorrectly annotated as a regular car in the given label,
whereas these are separate classes in COCO-full.
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Figure 10. Examples of inconsistent annotations in COCO-full detected via low ObjectLab score (with predictions from Detectron-X101
model). Here we see selective annotation of photos of people as person objects in some images but not others.
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Figure 11. Examples of inconsistent annotations in COCO-full detected via low ObjectLab score (with predictions from Detectron-X101
model). Here we see selective annotation of sofas as chair objects in some images but not others.
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Figure 12. Examples of inconsistent annotations in COCO-full detected via low ObjectLab score (with predictions from Detectron-X101
model). Here we see selective annotation of SUVs as car objects in some images but as truck objects in others.
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