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Abstract
The labor-intensive annotation process of seman-
tic segmentation datasets is often prone to errors,
since humans struggle to label every pixel cor-
rectly. We study algorithms to automatically de-
tect such annotation errors, in particular methods
to score label quality, such that the images with
the lowest scores are least likely to be correctly la-
beled. This helps prioritize what data to review in
order to ensure a high-quality training/evaluation
dataset, which is critical in sensitive applications
such as medical imaging and autonomous vehi-
cles. Widely applicable, our label quality scores
rely on probabilistic predictions from a trained
segmentation model – any model architecture and
training procedure can be utilized. Here we study
7 different label quality scoring methods used in
conjunction with a DeepLabV3+ or a FPN seg-
mentation model to detect annotation errors in a
version of the SYNTHIA dataset. Precision-recall
evaluations reveal a score – the soft-minimum of
the model-estimated likelihoods of each pixel’s
annotated class – that is particularly effective to
identify images that are mislabeled, across multi-
ple types of annotation error.

1. Introduction
Semantic segmentation, in which a model classifies each
pixel within an image, is a cornerstone task of fine-grained
image understanding (Kirillov et al., 2023). To train more
effective segmentation models, the size of image datasets
has dramatically grown in recent years, especially in fields
like radiology, pathology, robotics, and autonomous vehi-
cles. The labeling of semantic segmentation data necessi-
tates pixel-wise annotation of images, which is highly label-
intensive and error-prone, thus often failing to produce the
“ground truth” it is claimed to be. Training models to output
incorrect labels is obviously problematic, but even evaluat-
ing models with noisy labels is worrisome in high-stakes
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medical/robotics applications built around the segmentation
task.

Even significantly simpler to annotate data, e.g. for multi-
class/multi-label classification, contain many errors (North-
cutt et al., 2021a; Thyagarajan et al., 2023). To address
this, there is a growing interest in data-centric algorithms,
specifically Label Error Detection (LED) methods, which
aim to systematically enhance the quality of these datasets
(Kuan & Mueller, 2022; Northcutt et al., 2021b; Muller &
Markert, 2019). Here we consider LED in semantic seg-
mentation data, where the prevalence of label errors is likely
much greater than in classification data, due to the extra
annotation complexity. We consider algorithms to assign
a label quality score to each image1, such that the images
with the lowest scores are most likely to have some sort
of annotation error. These are the images that should be
prioritized for review or re-labeling (Wang & Mueller, 2022;
Kuan & Mueller, 2022; Goh & Mueller, 2023). An effec-
tive score will ensure reviewers do not wastefully inspect
correctly-labeled images (high precision) while simultane-
ously overlooking few mislabeled images (high recall).

In this work, we focus on universal LED methods that can
be applied to any segmentation dataset for which someone
has trained any standard type of segmentation model. The
methods considered here only require predictions from the
model and the annotated labels for the images in the dataset,
we do not require running inference on additional (synthe-
sized) images (Rottmann & Reese, 2022; Nishi et al., 2021),
nor training models in a special nonstandard way (Zhang
et al., 2020; Sukhbaatar & Fergus, 2014; Jiang et al., 2018;
Zhang & Sabuncu, 2018). This ensures our methods are
very easy to apply and widely applicable across domains.
More importantly, the best segmentation architectures are
constantly evolving, and LED methods that require nonstan-
dard training/inference may no longer be compatible with
future state-of-the-art architectures. Since the performance
of the segmentation model is obviously important for using
it to detect mislabeling, LED methods must remain compat-
ible with the best architectures to provide the best insights
about a dataset.

Our experiments study three common types of potential an-

1Code to run our method:
https://github.com/cleanlab/cleanlab

1

https://github.com/cleanlab/cleanlab


Estimating label quality and errors in semantic segmentation data via any model

notation error in a segmentation dataset, where for a specific
image, annotators may: (1) overlook an object depicted in
the image, i.e. its true segmentation mask has been dropped
in the given annotation (Drop), (2) select the incorrect class
label to apply for an annotated segmentation mask, i.e. its
true class has been swapped with another class in the given
annotation (Swap), or (3) miss some pixels which should
have been in/out of the mask when annotating it, i.e. the
mask’s true proper location has been shifted in the given
annotation (Shift). While “ground truth” is often used to
refer to the given annotation in the segmentation literature,
throughout this paper, we sparingly use “truth” to refer to
ideal segmentation masks that a hypothetical perfect an-
notator would produce. The labels we train a model to
predict are merely noisy reflections of this underlying truth
in most real-world datasets (Northcutt et al., 2021a). Here
we present a model-agnostic softmin label quality score that
is able to accurately detect all 3 types of annotation error, in
order to help us avoid training models with untrue data.

2. Related Work
A large body of work has studied robust ML with noisy
labels (Song et al., 2022; Wei et al., 2022; Chen et al., 2019;
Natarajan et al., 2013), but the importance of label error
detection alone was only more recently recognized (Muller
& Markert, 2019; Northcutt et al., 2021a;b; Kuan & Mueller,
2022). With growing value from algorithms to improve data
quality, LED methods have been proposed for more complex
supervised learning tasks including multi-label classifica-
tion (Thyagarajan et al., 2023), sequence prediction in NLP
(Wang & Mueller, 2022; Klie et al., 2022), and object detec-
tion (Chachuła et al., 2022; Murrugarra-Llerena et al., 2022).

Specifically for semantic segmentation, Vădineanu et al.
(2022) demonstrate the destructive effects of annotation
errors in medical imaging data. For segmentation in med-
ical imaging, Zhang et al. (2020) introduce a supervised
segmentation method for jointly estimating the spatial char-
acteristics of label errors from multiple human annotators.
However their approach is model-specific requiring two
coupled CNNs trained in a special manner unlike the gen-
eral label quality scores we consider here. Zhang et al.
(2020) also introduce the notion of under-segmentation,
over-segmentation, and class swaps as common types of
errors in segmentation data, which we also study here.

More similar to our work is the general principle of error
analysis, in which one sorts images by loss (or other eval-
uation metric) incurred between the model prediction and
annotated label. The worst-predicted images often reveal
suspicious annotations or other data anomalies. For segmen-
tation one traditionally uses the likelihood loss or IoU eval-
uation metric. Both are considered as label quality scores in
our study, but each has shortcomings. For LED in segmen-

tation data, Rottmann & Reese (2022) found operating on
connected components of each image to be more effective
than pixel-level analysis, but such approaches have vastly
worse computational complexity than the straightforward
softmin label quality score we propose here.

3. Methods for Scoring Label Quality
Semantic segmentation datasets typically consist of many
images, each containing a fixed grid of pixels. To label
the data, annotators assign each pixel to one of K possi-
ble classes (i.e. categories in the segmentation task). For a
given image x, a standard semantic segmentation model M
generates predicted class probabilities p = M(x), where
pijk represents the estimated probability that the i, j-th pixel
in image x belongs to class k. For unbiased evaluation of
label quality based on model predictions, we must avoid
overfitting. Thus we assume throughout this work that these
predicted probabilities are computed out-of-sample, derived
from a copy of the model that did not encounter x during
training. Using any type of model, out-of-sample predic-
tions can be obtained for every image in a dataset via say
5-fold cross-validation.

Utilizing p, we initially evaluate the individual fine-grained
labels for each pixel. In this context, we adopt effective
LED methodologies for standard classification scenarios
(Northcutt et al., 2021b; Kuan & Mueller, 2022), treating
every pixel as a distinct, independent instance (regardless of
the image to which it belongs).

For one image with pixel dimensions h× w, we thus have:

• p ∈ Rh×w×K , where pijk is the model predicted prob-
ability that pixel (i, j) belongs to class k.

• P = {Pij} is the predicted segmentation mask, where
Pij ∈ {0, ...,K − 1} is the predicted class label of
pixel (i, j), i.e. the class with the highest probability
= argmax

k
pijk.

• l = {lij} is the annotated segmentation mask, where
lij ∈ {0, ...,K − 1} is the annotated class label for
pixel (i, j).

• s = {sij} is an numeric array of per-pixel scores,
where sij is a fine-grained label quality score for pixel
(i, j). Here we consider fine-grained scores computed
via some simple function sij = f(lij , pij1, . . . , pijK)
applied independently to the information at each pixel
(i, j). Any label quality score for classification data
could be used here (Kuan & Mueller, 2022). We stick
with the most straightforward choice: sij = pijk∗

where k∗ = lij , i.e. the model-estimated likelihood of
the annotated class (Muller & Markert, 2019).
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• b = {bij} is an array of per-pixel binary values, where
bij = 0 if the pixel at position (i, j) is flagged as poten-
tially mislabeled (otherwise bij = 1) by a flagger LED
algorithm (Klie et al., 2022). Here we use Confident
Learning (Northcutt et al., 2021b). Such methods can
be applied to estimate which instances are mislabeled
in a classification dataset; here we can simply treat each
pixel as a separate instance for a direct application.

Having computed (some of) the above per-pixel information,
we are interested in obtaining an overall label quality score
s for each image x, to help us prioritize which images re-
quire review. To avoid wasted reviewing effort, our primary
desiderata is that images with the lowest scores should con-
tain some form of annotation error, and images where every
pixel is labeled correctly should receive much higher scores.
An effective score s should be robust to minor statistical
fluctuations in per-pixel model outputs which are inevitable
in practical deep learning. In this paper, we consider the fol-
lowing 8 methods for producing the label quality score s(x)
of an image x. We first present some baseline approaches
that help better motivate our proposed Softmin method.

3.1. Correctly Classified Pixels (CCP)

This approach measures the proportion of correctly classi-
fied pixels in an image. It is calculated as follows:

sCCP (x) =

∑
i,j I[lij = Pij ]

h · w
(1)

Relying on Correctly Classified Pixels is an intuitive way
to use machine learning to verify the choices made by data
annotators. This approach should be robust to small statisti-
cal fluctuations in the predicted probability values output by
a model, given it only operates on the predicted segmenta-
tion mask. However it ignores both model confidence and
shortcomings of the trained model.

3.2. Thresholded CCP (TCCP)

The Correctly Classified Pixels method is sensitive to the
model’s propensity to over/under predict certain classes rel-
ative to others. This alternative approach extends Correctly
Classified Pixels with an adaptive threshold parameter and
calculating accuracy using a different threshold for each
class. We select the threshold value for each class that max-
imizes accuracy for predicting this class, and use the mean
over all classes as our overall label quality score.

For each class k ∈ {1, . . . ,K} and threshold τ in a prede-
fined set of thresholds T , we calculate accuracy as follows:

skTCCP,t(x) =

∑
i,j I[lij = k, pijk > τ ]

h · w
(2)

For each class k, we select a separate threshold value τ∗k
that maximizes skTCCP,τ (x):

τ∗k = argmax
τ∈T

skTCCP,τ (x) (3)

The overall TCCP label quality score for an image x is then
the mean of these per-class values over all classes:

sTCCP (x) =
1

K

K∑
k=1

skTCCP,τ∗
k
(x) (4)

Thresholding the probabilistic predictions separately for
each class allows us to account for shortcomings of the
model if it systematically over/under-predicts a certain class.
This can be viewed as a form of post-hoc calibration applied
before computing the overall label quality score.

3.3. Confidence In Label (CIL)

We compute the confidence of a given label using the
model’s predicted probabilities – simply adopting the model-
estimated likelihood of the annotated class at each pixel as
a label quality score. Recall that pi,j,c denotes the predicted
probability that pixel at position (i, j) belongs to class c, and
consider the shorthand: sij := pi,j,lij , for expressing the
model-estimated likelihood of the annotated class at each
pixel lij . Each sij serves as a quality score for an individ-
ual pixel annotation, and the CIL score of each image x is
simply the mean of these pixel-scores within the image:

sCIL(x) =
1

h · w
∑
i,j

sij (5)

3.4. Softmin (Our Proposed Method)

With a well-trained model, we expect the resulting per-pixel
scores sij to be lower for pixels that are incorrectly anno-
tated or otherwise ambiguous looking. Even in perfectly
labeled regions of an image, the sij will inevitably vary
due to natural statistical fluctuations (estimation error in
model training). Thus their mean, sCIL(x), may be unde-
sirably sensitive to such sij variations in correctly-labeled
regions of an image (which presumably represent most of
most images). This can be mitigated by focusing solely on
the worst-labeled region of an image, for instance the mini-
mum of the sij corresponds to one of the least confidently
well-labeled pixels in the image. While robust to nuisance
variation in the pixel-scores for correctly-labeled regions of
the image, the minimum score entirely ignores most of the
image, which is also undesirable. Presumably it is easier
to determine certain images are mislabeled when a large
region of many pixels all receive low scores (see Figure 2).

Instead of taking the minimum of these scores, we can
instead form a soft approximation of the minimum to re-
main robust to nuisance variation in high pixel-scores while
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still accounting for the scores across the entire image. Our
softmin scoring method interpolates between the mean and
minimum score. It computes an overall label quality score
for the image from per-pixel confidence values via a soft
version of the minimum operator:

sSM (x) =
∑
i,j

sij ·
exp

(
1−sij

τ

)
∑

i,j exp
(

1−sij
τ

) (6)

This is analogous to the popular softmax approximation
of the argmax operator, where temperature parameter τ
controls the sharpness of the minimum approximation above.
Since the sij are confidence values between 0 and 1, we
use a smaller τ = 0.1 throughout to appropriately tradeoff
between emphasizing the smallest per-pixel scores (most
indicative of annotation error locations within an image)
while still accounting for the rest of the image. A similar
setting was explored by Wang & Mueller (2022) to diagnose
mislabeling of text datasets used for entity recognition.

3.5. Confident Learning Counts (CLC)

The alternative Confident Learning Counts label quality
score extends the popular Confident Learning method for
LED in classification (Northcutt et al., 2021b) to segmenta-
tion settings. Treating each pixel as an independent instance
in a classification task (ignoring which image it belongs to),
we apply Confident Learning to infer a binary mask b esti-
mating which pixels in image x are mislabeled. A resulting
label quality score is naturally defined as the proportion of
pixels in the image estimated to be mislabeled:

sCLC =

∑
i,j bij

h · w
(7)

To reduce runtime and memory requirements of the method,
we first downsample predicted/annotated segmentation
masks 4 times before computing sCLC . In downsampling,
predicted class probabilities are mean pooled within each
4× 4 grid, and the resulting annotated label for this grid is
determined via majority vote over the 4× 4 pixels.

3.6. IOU

A standard evaluation measure to measure the similarity
between segmentation predictions and labels is the IoU met-
ric (Intersection over Union, a.k.a. Jaccard Index) (Kirillov
et al., 2023; Chan et al., 2021). The IOU for an individual
image can serve as a label quality score, calculated as:

sIOU (x) =
|P ∩ l|
|P ∪ l|

(8)

where P represents the predicted segmentation mask and
l represents the annotated mask. Sorting images based on

sIOU corresponds to traditional error analysis, in which one
inspects the highest loss images for suspicious anomalies,
with loss computed with respect to model predictions based
on a standard evaluation metric.

3.7. Connected Components (CoCo)

Rottmann & Reese (2022) suggest that LED on the pixel-
level is less robust than scoring label quality at a connected
component level. This approach exploits the spatial na-
ture of segmentation data, where neighboring pixels often
belong to the same class. In the Connected Components
approach, we produce a quality score for each component
of an image, a spatially-contiguous region of pixels all an-
notated/predicted to share the same class. Subsequently we
pool these component scores into an overall image score
by taking their average over components and classes. Com-
ponent scores are produced by producing a predicted class
probability for the overall component and using it to evalu-
ate the likelihood of the annotated label for the component.

More specifically, we calculate an overall label quality score
sCoCo(x) for image x as follows:

1. Form a set of connected components based on each
unique combination of predicted and annotated seg-
mentation masks P and l.

2. For each connected component c, use the mean of the
predicted probabilities pijk for the pixels within the
component as a predicted class probability estimate for
the entire component pc.

3. Compute a quality score for the component sc = pc[k]
where k is the annotated class label for this component,
using the same sort of label-likelihood we computed
for each pixel si,j in other approaches.

4. Average the per-component scores sc across all com-
ponents c to obtain the overall label quality score
sCoCo(x) for image x.

To reduce runtime and memory requirements of the method,
we first downsample predicted/annotated segmentation
masks 4 times before computing sCoCo. Here we follow the
same downsampling procedure previously described.

4. Experiments
4.1. Datasets

Most real-world segmentation data are full of annotation
errors (Vădineanu et al., 2022), but we must benchmark our
label quality scores on a dataset where we can be sure of
the underlying true segmentation masks. Here we use the
SYNTHIA dataset (Ros et al., 2016), a simulated vehicular
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dataset similar to Cityscapes (Cordts et al., 2016), but with
images generated via graphics engine. To study mislabeling
that reflects common issues encountered in real-world seg-
mentation data, we introduce three types of errors into the
given labels of our dataset (depicted in Figure 1):

1. Drop: Randomly eliminate the label of a selected class,
mapping those pixels to the “unlabeled” category. The
Drop error mimics situations in which annotators forget
to label portions of an image, overlooking certain ob-
jects, or forgetting the class exists in the set of choices.

2. Swap: Randomly interchange the labels of two se-
lected classes across all pixels of the chosen image.
The Swap error mimics situations where annotators
possess low certainty about which class to select or ac-
cidentally select the wrong one, perhaps not realizing
a better class label exists in the set of categories.

3. Shift: Inspired by Heller et al. (2018), this error intro-
duces variability in the shape of a mask for a chosen
class, specifically along its edges. Using the OpenCV
library (OpenCV, 2023), we introduce random mor-
phological variation in the segmentation masks, repre-
senting annotators who sloppily draw the labels.

Our benchmark has three datasets, each containing one of
these types of labeling errors. The set of images is the same
in each dataset, but differing between datasets is: which
images are mislabeled, the types of label errors, and the
proportion of mislabeled images. In our first, second, and
third dataset: 20%, 30%, and 20% of the images respectively
have a Drop, Swap, or Shift error. These settings allow us
to characterize label error detection performance separately
across the three error types, facilitating fine-grained study
of our proposed methods under diverse conditions observed
in real-world segmentation data (Vădineanu et al., 2022).

In each dataset, label errors are randomly introduced before
establishing training and validation splits. Each training and
each validation dataset has 1,112 images. In our benchmark,
we only produce predictions and label quality scores for
images in the validation set – these are the only images
considered in our evaluations. Note that one could instead
employ cross-validation to score label quality of every im-
age, but the benchmark conclusions would unlikely change.

4.2. Models

To study how well LED methods generalize across different
segmentation models, we apply each label quality scoring
technique with two different models:

1. DeepLabV3+ (Chen et al., 2018): enhances the
DeepLabV3 model with a decoder module to further
refine segmentation results, particularly along object

Drop (Car overlooked) - Given Mask for Unlabeled class

Shift Error (in Sky class) - Given Mask for Sky class

Swap (Building → Vegetation) - Given Mask for Vegetation

Figure 1. Examples of the three types of annotation errors in our
SYNTHIA datasets. In the depicted Drop error, the car was over-
looked by annotators and its pixels are left as part of the Unlabeled
class. In the depicted Shift error, the mask for the Sky class was
poorly drawn and incorrectly covers part of the car. In the depicted
Swap error, the buildings have been mislabeled as the Vegetation
class instead of the Building class. All three of these images are
amongst the top-10 images with lowest softmin label quality score
in the dataset, and thus automatically prioritized for review.

boundaries. This model has shown excellent perfor-
mance in semantic segmentation tasks and has been
widely used in various applications.

2. FPN (Lin et al., 2017) The Feature Pyramid Network
is a strong feature extractor for multi-scale object de-
tection. The FPN model handles scale variation by
using a top-down pathway and lateral connections to
combine low-resolution, semantically strong features
with high-resolution, semantically weak features.

Both models are implemented using the PyTorch
backbone provided by Iakubovskii (2019) (with the
“se resnext50 32x4d” encoder and “imagenet” pretrained
weights). The final activation function for both models is
“softmax2d”. All three models are fit to the noisily labeled
training data each with their respective error type and used
to produce out-of-sample predictions for a noisy validation
set over which we evaluate LED performance. Our exper-
iments reflect a common setup in practical segmentation
applications, in order to understand how effectively label
errors can be detected under this setup.
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4.3. Evaluation

Detecting the mislabeled images within a large dataset is an
information retrieval task, and thus we evaluate performance
with standard precision/recall metrics. In particular, we eval-
uate how well our label quality scores are able to rank truly
mislabeled images above those which are correctly labeled
via: the Area Under the Receiver Operating Characteris-
tic Curve (AUROC), the Area Under the Precision-Recall
Curve (AUPRC), and Lift @ T. Lift measures how many
times more prevalent labels errors are within the top-T scor-
ing images vs. all images (and is monotonically related to
Precision @ T. We consider T = 100 or setting it equal to
the true number of mislabeled images in each dataset.

Evaluation via Lift assesses scores’ precision, while AU-
ROC and AUPRC assess both precision and recall. In set-
tings where true positives are relatively rare (as our misla-
beled images are here), Saito & Rehmsmeier (2015) argue
AUPRC is more informative than AUROC.

5. Results
Tables 1-4 report results from a comprehensive evaluation of
all aforementioned label quality methods using both models
on our variants of the SYNTHIA dataset. The results reveal
that our Softmin approach consistently delivers the most
(or second-most in certain settings) effective detection of
labeling errors, irrespective of the error type or the specific
model in use. Our proposed method consistently demon-
strates superior performance compared to existing strategies
that rely on variations of the IoU metric (Rottmann & Reese,
2022). While the Connected Components approach does
fare slightly better at detecting Shift errors according to
some metrics, Connected Components label quality scores
do not work well for detecting Drop errors. We find that
detecting Swap errors is significantly easier than other two
types of error, with Shift errors being hardest to detect. Vi-
sually, we also found this to be the case when manually
inspecting our SYNTHIA images for errors.

5.1. Annotation errors in the CityScapes Dataset

Finally, we apply our methodology to audit for mislabel-
ing in the popular CityScapes segmentation dataset, here
studying its fine-annotations (Cordts et al., 2016). We fit a
DeepLabV3+ model to this data and use the model’s out-of-
sample predictions with our softmin score to assess each im-
age’s label quality. Figure 2 shows top naturally-occurring
label errors discovered by this approach, and many more
of such overlooked errors were discovered. The full re-
sults for CityScapes are provided in the previously linked
benchmarks GitHub repository.

Road overlooked - Given Mask for Unlabeled class

Sky overlooked - Given Mask for Unlabeled class

Car overlooked - Given Mask for Unlabeled class

Sidewalk overlooked - Given Mask for Unlabeled class

Figure 2. Images which received some of the lowest softmin label
quality scores in the Cityscapes dataset. In different images, the
Road, Sky, Car, and Sidewalk were overlooked by annotators –
pixels which should have been annotated with these classes were
mistakenly left as the Unlabeled class. The Suggested Errors on
right highlight the pixels with low sij values in each image.

6. Discussion
Our study presents a comprehensive evaluation of eight
different label quality scoring methods for semantic seg-
mentation datasets. Based on a soft-minimum of the model-
estimated likelihoods of each pixel’s annotated class, the
Softmin score is particularly effective for detecting misla-
beled images with high precision and recall, regardless what
types of annotation errors lurk in the data. This highlights
the value of focusing on potentially severely mislabeled
regions of an image when estimating which images have
imperfect annotations. Our findings align with insights from
Wang & Mueller (2022), who found taking a minimum over
per-token scores to be an effective sentence label quality
score for entity recognition (text) data.

The Softmin score is easy to apply with any trained segmen-
tation model, and thus will remain applicable as improved
segmentation architectures and training procedures are in-
vented. After using this method to detect annotation errors,
they can be fixed or some of the bad data omitted from the
training set, and subsequently a more reliable copy of this
same model trained without any change in the modeling
code. As the accuracy of models increases via new innova-
tions, the LED performance of our label quality scores will
improve, thus enabling even more accurate versions of these
models to be produced from higher integrity data.

6



Estimating label quality and errors in semantic segmentation data via any model

Table 1. AUROC achieved by various label quality scores used with two types of models for detecting three types of annotation errors.

METHOD DROP SWAP SHIFT

MODEL DEEPLABV3+ FPN DEEPLABV3+ FPN DEEPLABV3+ FPN

CORRECTLY CLASSIFIED PIXELS 0.915 0.916 1.000 1.000 0.833 0.798
THRESHOLDED CCP 0.869 0.869 0.993 0.993 0.852 0.818
CONFIDENCE IN LABEL 0.915 0.916 1.000 1.000 0.832 0.797
CONFIDENT LEARNING COUNTS 0.904 0.905 0.999 0.999 0.807 0.778
IOU 0.921 0.901 0.880 0.880 0.713 0.649
CONNECTED COMPONENTS 0.880 0.888 0.984 0.982 0.783 0.819
SOFTMIN 0.951 0.947 0.998 0.998 0.863 0.828

Table 2. AUPRC achieved by various label quality scores used with two types of models for detecting three types of annotation errors.

ERROR TYPE DROP SWAP SHIFT

MODEL DEEPLABV3+ FPN DEEPLABV3+ FPN DEEPLABV3+ FPN

CORRECTLY CLASSIFIED PIXELS 0.814 0.814 0.999 0.999 0.474 0.399
THRESHOLDED CCP 0.684 0.681 0.983 0.983 0.526 0.440
CONFIDENCE IN LABEL 0.813 0.814 0.999 0.999 0.472 0.398
CONFIDENT LEARNING COUNTS 0.795 0.796 0.999 0.999 0.429 0.375
IOU 0.808 0.749 0.754 0.759 0.440 0.320
CONNECTED COMPONENTS 0.654 0.675 0.971 0.965 0.519 0.537
SOFTMIN 0.888 0.875 0.996 0.996 0.545 0.461

Table 3. Lift @ T achieved by various label quality scores used with two types of models for detecting three types of annotation errors.
Here T is set equal to the true number of mislabeled images in each dataset.

ERROR TYPE DROP SWAP SHIFT

MODEL DEEPLABV3+ FPN DEEPLABV3+ FPN DEEPLABV3+ FPN

CORRECTLY CLASSIFIED PIXELS 3.637 3.662 3.369 3.369 2.391 2.254
THRESHOLDED CCP 3.216 3.117 3.167 3.157 2.709 2.345
CONFIDENCE IN LABEL 3.637 3.662 3.369 3.369 2.413 2.254
CONFIDENT LEARNING COUNTS 3.588 3.588 3.369 3.358 2.163 2.072
IOU 3.983 3.464 2.341 2.320 2.254 1.935
CONNECTED COMPONENTS 3.142 3.167 3.114 3.061 2.550 2.618
SOFTMIN 4.231 4.107 3.305 3.305 2.755 2.550
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Table 4. Lift @100 achieved by various label quality scores used with two types of models for detecting three types of annotation errors.

ERROR TYPE DROP SWAP SHIFT

MODEL DEEPLABV3+ FPN DEEPLABV3+ FPN DEEPLABV3+ FPN

CORRECTLY CLASSIFIED PIXELS 5.088 5.088 3.432 3.432 2.315 2.113
THRESHOLDED CCP 4.196 4.144 3.432 3.432 2.767 2.365
CONFIDENCE IN LABEL 5.088 5.088 3.432 3.432 2.315 2.113
CONFIDENT LEARNING COUNTS 4.983 4.983 3.432 3.432 2.164 2.013
IOU 4.773 4.511 3.020 3.055 3.120 2.164
CONNECTED COMPONENTS 3.882 3.934 3.432 3.432 3.170 3.271
SOFTMIN 5.140 5.193 3.432 3.432 3.019 2.315
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Vădineanu, Ş., Pelt, D. M., Dzyubachyk, O., and Batenburg,
K. J. An analysis of the impact of annotation errors on
the accuracy of deep learning for cell segmentation. In
International Conference on Medical Imaging with Deep
Learning, pp. 1251–1267. PMLR, 2022.

Wang, W.-C. and Mueller, J. Detecting label errors in token
classification data. In NeurIPS Workshop on Interactive
Learning for Natural Language Processing, 2022.

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu, Y.

Learning with noisy labels revisited: A study using real-
world human annotations. In International Conference
on Learning Representations, 2022.

Zhang, L., Tanno, R., Xu, M.-C., Jin, C., Jacob, J., Cic-
carelli, O., Barkhof, F., and Alexander, D. C. Disentan-
gling human error from the ground truth in segmentation
of medical images. In Advances in Neural Information
Processing Systems, 2020.

Zhang, Z. and Sabuncu, M. Generalized cross entropy
loss for training deep neural networks with noisy labels.
In Advances in Neural Information Processing Systems,
2018.

10


