Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

Jeffrey Li! Jieyu Zhang' Ludwig Schmidt' Alexander Ratner '

Abstract

Labeling training data is a critical and expen-
sive step in producing high accuracy ML mod-
els, whether training from scratch or fine-tuning.
To make labeling more efficient, two major ap-
proaches are programmatic weak supervision
(WS) and semi-supervised learning (SSL). More
recent works have either explicitly or implicitly
used techniques at their intersection, but in vari-
ous complex and ad hoc ways. In this work, we
define a simple, modular design space to study
the use of SSL techniques for WS more system-
atically. Surprisingly, we find that fairly simple
methods from our design space match the perfor-
mance of more complex state-of-the-art methods,
averaging a 3 p.p. increase in accuracy/F1-score
across 8 standard WS benchmarks. Further, we
provide practical guidance on when different com-
ponents are worth their added complexity and
training costs. Contrary to current understand-
ing, we find using SSL is not necessary to obtain
the best performance on most WS benchmarks
but is more effective when: (1) end models are
smaller, and (2) WS provides labels for only a
small portion of training examples.

1. Introduction

Learning with limited labels is a fundamental challenge in
machine learning (ML) applications (Kocon et al., |2023;
Zhu et al.| 2023)). To address the significant costs of hand-
labeling training sets, programmatic weak supervision (WS)
has emerged as a high impact research area (Ratner et al.|
2016;|Zhang et al.| 2022a)), where the aim is to learn from
multiple cheaper sources of noisy labels. Meanwhile, semi-
supervised learning (SSL) is a more classical direction with
similar high-level motivations. Instead of generating larger
quantities of noisy labels, SSL aims to directly leverage
additional unlabeled data. It seems natural that these two

"University of Washington. Correspondence to: Jeffrey Li
<jwl2162@cs.washington.edu>.

Workshop on Data-centric Machine Learning (DMLR) at the 40 th
International Conference on Machine Learning, 2023.

fields could be applied productively with one another, yet
their intersection has not been systematically studied.

In this work, we anchor on WS approaches and study
whether they can be enhanced using techniques from SSL.
At a high-level, most WS methods consist of two steps. First,
a label model aggregates a set of weak label sources to nois-
ily label a training set. Commonly, these sources take the
form of user-written heuristics (e.g., for sentiment analysis,
a user may check for the keyword “great” to provide the
label “positive”). Second, an end model is learned on this
training set. Crucially, weak sources can often abstain (e.g.,
the absence of “great” may not imply “negative”), leaving
certain examples to remain unlabeled and thereby unused.
This presents a natural opportunity to use SSL.

Indeed, this approach of using SSL in WS settings has
motivated several recent methods (Yu et al., 2021 |Ren et al.|
2020} Karamanolakis et al., 2021;|Gao et al.,2022). Though
these works often attribute their observed improvements
to their usage of unlabeled data (Zhang et al.| 2021} |Yu
et al.;2021; Ren et al.,|2020), they also incorporate various
algorithmic components in addition to SSL. Thus, we lack
clarity about the precise contributions of SSL and whether
simpler methods might also suffice. Also, while varying the
amount of unlabeled data is crucial when evaluating SSL
methods (Oliver et al., |2018), previous WS benchmarks
contain little diversity along this key dimension: most leave
only a small minority of examples as unlabeled. Here, we
conduct a more systematic study of how useful SSL is in
a variety of WS settings, as well as how and when to best
employ it.

Specifically, we first organize the intersection between SSL
and WS by proposing an explicit design space, centered
around disentangling the following key methodological con-
siderations:

(1) Thresholding: What to treat as (un)labeled? Because
WS uses heuristics for labeling, it often can only pro-
vide labels for a subset of examples, leaving the rest
as unlabeled. Further, it can be beneficial to addition-
ally remove some (likely) incorrect labels provided by
WS, as shown by [Lang et al.[(2022). Since unlabeled
data can result in multiple ways when using WS, we
view “what to treat as unlabeled” as a non-trivial and
first-class axis in our design space.

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

(2) SSL Technique: How to use unlabeled examples? After
deciding what data should be treated as unlabeled, one
can leverage these examples by simply using any ex-
isting SSL technique. Most recent proposals do so via
self-training, which uses the end model to periodically
provide labels for unlabeled examples; in addition, we
also try other out-of-the-box SSL methods.

(3) Re-labeling: Whether to update weak labels during
end model training? Because some labels from WS
are incorrect, it can be helpful to re-label a training
set with the end model during training. This approach,
increasingly used by WS methods (Yu et al., 2021}
Karamanolakis et al.| 2021; |Cachay et al., 2021), is of-
ten packaged as part of self-training-based SSL. Here,
we identify that re-labeling and SSL can be indepen-
dently employed, and aim to disentangle their impacts.

With our design space, we can organize previous works and
modularly generate a variety of methods. We test these
methods on several standard WS benchmarks, finding that
our design space is sufficient for matching the performance
of more complex state-of-the-art methods. We then compare
methods within our design space to ablate the importance
of each axis and so provide guidance on when each is worth
using. We summarize our key findings as follows:

* By searching over our design space, we identify two
methods that at least match all previous baselines
across 6 of 8 WS benchmarks, averaging a 3 p.p. in-
crease in accuracy/F1-score.

* While previous works emphasize utilizing data left
unlabeled by WS sources, we find that on 6 of 8 bench-
marks tasks, SSL is actually not necessary for achiev-
ing high performance: thresholding and re-labeling can
recover 89.1% of the gains enjoyed by also using SSL.

* To explain SSL’s lack of impact, we find that the small
amounts of unlabeled data in these benchmarks (i.e.,
<31%) are mostly unnecessary; when using clean in-
stead of weak labels, ignoring unlabeled examples
drops test accuracy by <2.5 p.p.

¢ In contrast, when WS sources leave more data as un-
labeled (i.e., >65%), SSL is generally worth priori-
tizing; using SSL can improve upon thresholding and
re-labeling by up to 16 p.p in such cases.

2. Related Work

SSL for WS tasks. Methods in WS have increasingly turned
to SSL to improve end model training. This includes DE-
NOISE (Ren et al.}|2020), which incorporates the temporal
ensembling SSL algorithm (Laine & Ailal [2017)), as well

as COSINE (Yu et al., 2021) and KeyClass (Gao et al.,
2022), which both use self-training (Lee, 2013). Other
works (Karamanolakis et al., 2021 [Maheshwari et al.| [2020;
Chen et al., 2021 Mazzetto et al.l [2021bga; |[Pukdee et al.,
2023 |Awasthi et al.,|2020) apply SSL when learning from
weak labels plus a small set of clean labels. However, these
methods fundamentally differ in their use of SSL, i.e., they
define a labeled-unlabeled split based on whether an exam-
ple has been cleanly or weakly labeled. Further, integrating
clean labels into WS enables a greater variety of special-
ized strategies, so we do not consider this setting in our
study. Likewise, [Boecking & Dubrawski|(2019) assume ad-
ditional supervision via heuristics for which examples share
the same labels, similar in spirit to consistency-based SSL
methods. Finally, we defer a more thorough background on
SSL in its own right to Section

SSL for learning with noisy labels. SSL techniques have
been regularly applied in the literature concerning learning
from noisy labels (Li et al.| 2020; Ding et al.| 2018}, |Kong
et al.,[2019). Though this setting is similar to WS, its main
difference is that label noise comes from a single “black-
box” noising process instead of from multiple explicit WS
sources. Thus, the resulting label noise patterns, often also
artificially injected in input-independent ways (Wei et al.|
2022), may differ significantly from those in WS. Further-
more, the WS setting can contain some examples with no
labels since WS sources may abstain.

Subset selection in WS. |Lang et al.| (2022) showcases the
broad utility of more carefully selecting subsets of weak
labels before end model training. In our work, we consider
subset selection in the greater context of two other trends
in the WS literature, applying SSL and re-labeling. Com-
pared to the core method of |Lang et al.| (2022), we also try
a simpler baseline, similar to |Gao et al.| (2022), based on
thresholding the existing confidences produced for weak
labels. We find that this method offers a competitive alter-
native on most datasets.

3. Design Space

In this section, we first formalize WS and SSL. Then, we
describe how our design space overlays on WS, detailing its
three key axes along with the specific instantiations of each
that we use in our experiments. Finally, we contextualize
which parts of existing work fit within our framework.

3.1. Problem Formalization

Weak supervision. In WS, we start with an unlabeled
training set D = {z;}?_; € X™ drawn from an underlying
distribution (x,y) ~ P. Labels are provided by a set of
labeling functions (LFs) {\;}72;, where each A; : X' —
Y U {0} either labels or abstains (denoted as \;(z;) = 0)

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

Thresholding

Label Model Weakly Labeled Set D
(LM) {x, 940,

Thresholding
SSL Technique

Re-labeling

Labeled Set L
¢ =L > End Model
{x,' s Vi i=1 (DM)
Unlabeled Set U ‘ SSL
{ x”}|U| Technique
i Ji=1

Re-labeling

{ Coverage, Confidence, Cut-based }
{ None, EM, VAT, Self-Training, Self-Training (DM as LF) }
{ None, DM directly, DM as LF }

Figure 1. Overview of our design space. In WS, a label model (LM) produces a weakly labeled training set D which is used to train the
discriminative end model (DM). Our design space overlays three decision points on this pipeline: (1) thresholding, which filters out some
weak labels in D to return labeled and unlabeled sets L and U'; (2) SSL technique, which defines how the end model can still use U during
training; (3) re-labeling, which uses the DM to update previously used weak labels.

on each z;. The goal is to train a discriminative end model
(DM) f : X — Y that performs well on P. Canonically,
WS methods contain two components. First, a label model
(LM) observes (D, {X;}7,) and outputs a weakly labeled
training set D = {(x;,%;)}?_;. Second, f is trained using
D. Often, the LM models ¥; probabilistically, allowing g;
to be a soft-label, a vector of probabilities over).

Problematically, D may contain several uncovered exam-
ples, where \j(x;) = 0 for all \;. Thus, the default practice
is to train f only on covered examples that received at least
one non-abstaining LF vote. Concurrently, D may also
contain several incorrect labels, where ¢; # y; (or in the
soft-label case, arg max .y, %i[c] # y; where g;[c] is the
probability assigned to class c¢). Both issues may lead to
sub-optimal performance compared to standard supervised
learning. Here, we focus on whether SSL lets us more
effectively learn from Din light of these challenges.

Semi-supervised learning. SSL assumes access to a la-

beled dataset L = {(a¥, yl)}‘zi‘1 as well as an unlabeled
dataset U = {x;‘}‘fill The goal is to obtain a model that
performs well on L’s underlying distribution despite the
limited size of L. Though not strictly required, it is often
assumed that | L| << |U| and both are drawn from the same
test distribution. Generally, each SSL method makes a core
assumption about how P(x) relates to P(y|xz). Popular
categories of methods include entropy-minimization (Grand{
valet & Bengiol [2004; Leel [2013)), which assumes P(y|z)
is uncertain only when P(z) is small, and consistency regu-
larization (Miyato et al., 2017; Tarvainen & Valpolal 2017}
Laine & Ailal, 2017), which assumes local smoothness of
P(y|x) when ~ P(x), encouraging the model to make
similar predictions at similar inputs.

3.2. A Simple Design Space

By considering the standard WS pipeline, we anchor our
design space on three natural decision points as shown in
Figure[T} (1) thresholding strategy, (2) SSL technique, and
(3) whether to re-label. Importantly, our design space is ag-
nostic to the specification of LM and DM, though particular
LMs and DMs could affect which methods work best.

Thresholding. To apply SSL, we must first define which
examples in D should be considered as part of L and U,
respectively. Though this is part of the problem definition
in traditional SSL settings, it is a non-trivial choice in WS.
As a default, standard WS pipelines select L based on LF
coverage, ignoring uncovered examples on which all LFs
abstain. However, as shown by|Lang et al.|(2022)), removing
additional examples from D can help if they are more likely
to be incorrectly labeled. In our work, we consider the
following strategies for partitioning D into L and U

* Coverage-based (default): This removes uncovered
points {(z;,7;) : Aj(z;) = 0,Y5}.

* Confidence-based: Since most LMs can output prob-
abilistic labels, a basic yet under-explored approach
tried by |Gao et al.|(2022)) is to remove examples that
have low estimated confidence, here defined as the
highest probability assigned to a class. Formally, this
removes the examples {(z;,9;) : max.cy ¥i[c] < £}
for some threshold | V|71 < € < 1.

* Cut-based: This is the method of |Lang et al.| (2022),
which at a high-level removes examples whose labels
differ most from those of their nearest neighbors in
some pre-trained embedding space.

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

Method Thresholding SSL Technique Re-labeling L Novel LM Add. Reg. Add. Labels
Vanilla WS Coverage - - - - -
Cutstat (Lang et al [[2022) Cut-based (one-time) - — - — -
Denoise (Ren et al.|[2020) Coverage Temp. Ensembling Self-Train LM v - -
Weasel (Cachay et al.|[2021) - - Agreement-based v - -
Cosine (Yu et al.}[2021) Confidence (dyn.) Self-Train DM directly - v -
KeyClass (Gao et al.|[2022) Confidence (dyn.) Self-Train DM directly - v -
ASTRA (Karamanolakis et al.[[2021) Coverage Self-Train (DM as LF) DM as LF v - v
LPA+WL (Pukdee et al.,|2023) - Label Propagation - - - v
SPEAR (Maheshwari et al.||2020) - Entropy Min Agreement-based v v v

Table 1. Contextualizing methods within (middle columns) and outside (rightmost) our design space. “Novel LM” refers to a method
introducing its own label model. “Add. Reg.” refers to using additional regularizations, such as contrastive losses and soft-label
re-normalization. “Add. Labels” refers to assuming an additional set of clean labels. For methods using clean labels, we do not compare
to their results directly, but we can still place elements of their approaches in our design space.

SSL Techniques. After partitioning D into L and U,
we next consider how the end model can still make use
of the examples in U. By default, WS methods ignore U
altogether, but we may instead apply a variety of strategies,
such as plugging in any existing SSL technique. Like Oliver
et al.| (2018), we limit ourselves to SSL techniques that add
unsupervised loss terms during training since these methods
tend to achieve the best performance on traditional SSL
benchmarks. We also pick representative methods from
their taxonomy of approaches:

* Entropy minimization (EM): A classical SSL approach,
EM (Grandvalet & Bengio, |2004) penalizes less confi-
dent predictions on unlabeled examples, aiming for a
decision boundary in low-density regions of P(z).

e Self-training (ST): Self-training, along with the closely
related pseudo-labeling (Leel |2013;|C. Rosenberg &
Schneidermanl, [2005)), are traditional SSL methods that
iteratively use current predictions on unlabeled exam-
ples as true labels. Uniquely in the WS setting, we also
consider self-training the LM and DM together. In-
spired by |Karamanolakis et al.| (2021}, we specifically
try feeding the end model as an additional LF A, 1
used to re-fit the LM. We call this ST (DM as LF).

 Consistency regularization: These methods encourage
models to make similar predictions on (realistic) pertur-
bations of unlabeled examples. Of these methods, we
use VAT (Miyato et al.,2017) as it does not rely on data
augmentations, unlike most others. Augmentations are
less straightforward to define for text datasets, which
comprise the majority of WS benchmarks.

Re-labeling L. Traditional SSL assumes that all labels in L
are correct. However, in WS, we may also consider using
the end model to correct labels in L as it trains. This increas-
ingly popular technique in WS methods (Cachay et al.,|2021}
Yu et al., 2021; [Karamanolakis et al., [2021; Maheshwar1
et al.| 2020) is often packaged with traditional self-training
as an overall “SSL method” (Yu et al., 2021} [Karamanolakis
et al.,|2021)): instead of using the current model to label just

U, these methods also do so for L. However, this makes it
difficult to discern whether these methods improve perfor-
mance because they leverage U (i.e., apply SSL) or simply
because they clean up labels in L. Therefore, in our study,
we explicitly decouple the use of SSL and re-labeling L as
two independent decisions; i.e., we can re-label L regardless
of whether we use any specific SSL technique.

Specifically, we consider two types of re-labeling: (1) using
the end model’s predictions directly as in ST, and (2) re-
fitting the LM as in ST (DM as LF). For tractability, we treat
re-labeling as a binary decision when accompanied by an
SSL technique; we re-label L with the end model directly in
except when the SSL technique is ST (DM as LF). Also, we
formalize re-labeling as looping the two-stage WS pipeline
back onto itself. In principle, N rounds of re-labeling can be
paired with IV +1 separate choices for thresholding and SSL.
However, to reduce this search space, we consider either
using the same thresholding and SSL techniques across all
rounds or fixing the L/U split after thresholding the initial
LM outputs; in the context of thresholding, we refer to
these two schedules as dynamic and one-time, respectively.
Finally, some recent methods re-label by using a specialized
LM that can be jointly learned with the end model (Cachay
et al.L[2021;/Maheshwari et al.| |2020). We do not include this
type of agreement-based re-labeling in our study, instead
focusing on methods agnostic to the form of LM.

3.3. Contextualizing previous works

With our design space, we can contextualize several recent
WS methods, as shown in Table[T] Overall, this table demon-
strates the lack of systematic exploration. For instance, few
works perform any thresholding beyond coverage-based,
and only |Lang et al.[(2022) and |Gao et al.| (2022)) thresh-
old LM outputs. Furthermore, assessing the impact of SSL
in WS settings is muddled because methods often incorpo-
rate several different techniques. A salient example is that
COSINE (Yu et al.} 2021) was found by WRENCH (Zhang
et al.,2021)) to obtain state-of-the-art performance, with both
works championing the usage of unlabeled data as a key
driver of improvements; however, what COSINE refers to

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

Datasets | V] | Train| |Test| Coverage Snork. Precision
IMDb 2 20000 2500 87.6% 74.4%

Yelp 2 30400 3800 82.8% 75.4%
Youtube 2 1586 250 87.7% 87.0%
AgNews 4 96000 12000 69.1% 82.5%

Trec 6 4965 500 95.1% 60.0%
Spouse 2 22254 2701 25.8% 65.6% (on Val)

Chemprot 10 12861 1607 85.6% 58.0%
Census 2 10083 16281 99.1% 58.0%

Table 2. Statistics for the data/LF sets that we use, groupings are
by task type: text, text relation, and tabular classification. Note
that Spouse does not come with ground-truth training labels.

as self-training actually involves pseudo-labeling the whole
dataset, thereby performing both SSL and re-labeling. Fur-
ther, many methods use techniques outside of our design
space entirely, such as novel LMs (Ren et al., 2020; (Cachay
et al., 2021; |[Karamanolakis et al., 2021 Maheshwari et al.,
2020), contrastive learning (Yu et al.,[2021), and soft-label
re-normalization (Yu et al.,[2021}; Gao et al.| 2022)). As a re-
sult, it remains unclear whether our three axes are necessary
or even sufficient to achieve optimal performance. Though
our design space is by no means exhaustive, we believe it
offers a useful starting point to answer such questions.

4. Results

We begin by describing our experiment setup and various
baselines in Section Then, Sectionexplores how our
design space yields methods that perform at least as well as
the aforementioned baselines. In Sections [4.3]and [4.4] we
conduct extensive ablations on our three axes, finding that
SSL is surprisingly unnecessary on most WS benchmarks.
Finally, Section [4.5]explains this phenomenon and explores
settings in which SSL is more helpful.

4.1. Experimental Setup

Datasets and models. We use 8 classification datasets (see
Table [2)) and largely follow the end model configurations
from WRENCH (Zhang et al.,|2021) with a few changes to
the hyperparameter grid (Appendix [A). For NLP tasks, we
both fine-tune ROBERTa pre-trained models and train MLP
classification heads on (frozen) RoOBERTa embeddings, de-
ferring results for the latter to the appendix. For tabular
tasks, we just train MLPs. We tune all methods on a shared
hyperparameter budget of 300 trials for MLPs and 50 tri-
als for full ROBERTa fine-tuning. All reported test perfor-
mances are then averages over over three additional runs,
while all error bars are the standard deviations over these
runs. Finally, though our design space is compatible with
any LM, we use the soft-labels produced by the Snorkel LM
from |Ratner et al.| (2019). However, we test robustness to
this choice by also trying Majority Voting when comparing
with existing methods. Zhang et al.|(2021) found these two
LM:s to be the most consistent across many WS tasks.

Baselines. We consider five baselines, corresponding to
the WRENCH implementations of existing state-of-the-art
methods. As Table[I]shows, each incorporates some aspects
of our design space, while not necessarily being contained
completely within it. We list these methods as follows:

Vanilla: applies the default WS pipeline, using coverage
thresholding and no SSL or re-labeling.

Cutstat + {Snorkel, MV}: uses the thresholding method
from |Lang et al.[(2022), with no alterations.

COSINE + {Snorkel, MV}: modifies the method from |Yu
et al.| (2021) in two ways when appropriate for fair compari-
son; the LM used is Snorkel instead of MV except as shown
in Table[8] and the DM is an MLP in Table[6]

Denoise + {Snorkel, MV}: applies the method from [Ren
et al{(2020) except using Snorkel instead of MV to initialize
their label aggregator as shown in Table[§] Also, we use
RoBERTa-based end models instead of BERT.

Weasel: applies the method from|Cachay et al.|(2021)) except
to train ROBERTa-based end models on the text datasets.

4.2. Does our design space yield competitive methods?

We first demonstrate that simple methods from our design
space can at least match the performance of all previous
methods. When the end model is ROBERTa, our best single
method (shown in Figure@) is the combination of (dynamic)
confidence thresholding, ST (DM as LF), and re-labeling.
This method at least matches the performance of other base-
lines on 5 of the 7 text-based datasets, on average closing
11.5% of the remaining gap between previous WS methods
and fully supervised learning. On AGNews and Chemprot,
only Cutstat results in a better point estimate. However,
for both tasks, swapping cut-based thresholding into our
method produces state-of-the-art accuracies of 0.885 (0.002)
and 0.601 (0.008), respectively (as shown in Appendix
this method is similarly strong when the LM is instead Ma-
jority Voting). Finally, Figure 2] shows that searching our
design space exhaustively per dataset—while not necessarily
practical-can be even more effective, closing an additional
15% of the gap to fully supervised learning. Significantly,
our methods are strong despite not using some additional
techniques employed by recent works (i.e., see Table [IJ).
This provides empirical justification for focusing only on
methods from within our design space in later analyses.

4.3. Which axes are most important?

Though our design space is sufficient for strong performance,
we now show that SSL is, by and large, not necessary on
current benchmarks. Specifically, we conduct an extensive
ablation comparing all eight possible subsets of including
(or ignoring) each axis, presenting the results in Tables

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

IMDb-RoBERTa (Acc) Yelp-RoBERTa (Acc)

0.0

Youtube-RoBERTa (Acc) AGNews-RoBERTa (Acc)

0.0t

0.0

0.0

T 004 _T_ 0.04 0.02 0.02

a

ﬁ 0.02 0.02 = 0.01 0.01

- = I

{=4

3 000 % I ? I 0.00 e R [e - 0.00 + rrrrr
-0.02 -0.02 -0.01 -0.01
0.15 TREC-ROBERTa (Acc) Spouse-RoBERTa (F1_binary) 0.0 Chemprot-RoBERTa (Acc) 0.15 Census-MLP (F1_binary)

03 W Conf + VAT + Re-label

T o010 I 0.2 0.04 0.10

a

o

4 0.05 0.02 0.05 E=

. i i -] T l

‘<E1 0.00 ? I 0.0 = ! T 0.00 ! ————— 0.00 I ,,,,,

-0.1

Best of Design Space
B Conf + ST (DM as LF) + Re-label

B Cutstat + Snorkel

—-0.02

—~0.05

mmm Denoise + Snorkel

COSINE + Snorkel Weasel

Figure 2. Test performance for LM = Snorkel. We compare the best single method found for each DM from our design space (green) with
the best methods per-dataset (turquoise, narrower error caps) as well as four recent proposals from the literature. We plot all performances
relative to that of vanilla training (deferring absolute metrics to Table[7]in Appendix [B). Note that for Census, a tabular dataset, the best
single method is different since we report the one we found for MLPs (see Appendix [B).

and E} As an example, for the row “Thresh + SSL,” we
run every combination within the cross-product of all non-
default thresholding and SSL techniques (i.e., {Conf-based,
Cut-based} x {EM, VAT, ST, ST w/ DM}) and then select
the best of these combinations using the validation set. For
“Entire Design Space,” we perform this method selection
procedure over all methods from the design spaceﬂ

From this analysis, we observe that SSL helps only in lim-
ited scenarios. Including SSL on Spouse yields a 0.2 in-
crease in F1-score compared to not using any form of SSL.
However, on all the other six tasks, “Thresh + Re-label”
performs at least within a standard deviation of the best
method, making up 89.1% of the gap between “Vanilla” and
“Thresh + SSL + Re-label.” One explanation for this result
is the distinctly lower coverage LF set for Spouse, a factor
we explore in depth in Sec[d.3] Further, model size may
also play a role. In the corresponding Table 0] (Appendix [B)
for MLPs, “Thresh + Re-label” can make up only 68.2% of
the gap between “Vanilla” and “Thresh + SSL + Re-label.”

4.4. What are the best instantiations of each axis?

Having compared the three axes at a macro-level, we now
zoom in on each. Specifically, we compare all implemen-
tations of a given axis when paired with the best possible
setting of the other two. For thresholding and SSL, we find
that previously underexplored approaches are worth using.

Thresholding. Examining Table[d] we observe that thresh-
olding is significantly helpful in most cases. This extends

the conclusions of’ (2022), showing that removing

!This differs from “Thresh + SSL + Re-label” because methods
for that row must employ non-default choices for each axis.

labels is still adds unique value even when also allowing for
SSL and re-labeling. Interestingly, the simpler confidence-
based threshold matches the cut-based method (within error
bars) on all datasets except Chemprot.

SSL and Re-labeling. For these two axes, we observe
largely similar trends in Tables [T0]and [[T]in Appendix [C.2]
SSL and re-labeling are each only strictly necessary for a
minority of datasets, significantly outperforming “no SSL”
and “no re-labeling” on just one and two datasets, respec-
tively. As such, all SSL methods tend to perform similarly.
But for MLPs in Table [13} SSL is more useful and we see
that VAT and ST (DM as LF) are the most consistent. No
other method comes within error bars on four tasks.

4.5. When is SSL more useful?

To explain why SSL is largely redundant on most existing
WS benchmarks, we show that the unlabeled data in each
task is generally unnecessary for learning strong models.
However, when using lower coverage LF sets (a setting not
captured by these benchmarks), ignoring unlabeled data can
significantly compromise performance. In these settings,
SSL has more room to be impactful.

Data gaps in WS. We can think of any WS training set L =
{(XY, gjz)}lf;‘l C D as suffering from three deficiencies:

1. Limited size: Since not all examples are labeled, the
quantity of labels may be insufficient.

2. Coverage bias: Since LFs abstain based on feature-
dependent rules, the inputs in L are a biased subpopu-
lation of the full test distribution.

3. Label noise: Since LFs are just heuristics, labels ¢; can
be biased towards incorrect classes.

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

Method IMDb Yelp Youtube = AGNews TREC Spouse Chemprot Mean w/o Spouse
Vanilla 0873 0919 0.944 0.870 0637 0273 0.569 0.726 0.802
0.001) (0.009) (0.007) (0.003) (0.010) (0.074) (0.001) (0.011) (0.003)
Thresh Alone 0.887 0.948 0.953 0.882 0703 0.267 0.584 0.746 0.826
S 0.008) (0.006) (0.002) (0.001) (0.017) (0.060) (0.004) (0.009) (0.003)
SSL Alone 0.885 0.939 0.955 0.881 0.640 0343 0.593 0.748 0.816
(0.002) (0.008) (0.005) 0.003) (0.013) (0.075) (0.010) (0.011) (0.003)
Relabel Alone 0901 0944 0.952 0.877 0700 0332 0.577 0.755 0.825
0.013) (0.004) (0.006) (0.002) (0.014) (0.105) (0.010) (0.015) (0.004)
Thresh 4 SSL 0.885 0.959 0.943 0.887 0732 0529 0.592 0.790 0.833
0.018) (0.002) (0.008) (0.005) (0.014) (0.057) (0.005) (0.009) (0.004)
Thresh + Re-label 0905 0.961 0.952 0.883 0748 0236 0.600 0.755 0.841
0.011) (0.002) (0.006) (0.005) (0.023) (0.085) (0.006) (0.013) (0.005)
SSL + Re-label 0.894 0.949 0.951 0.879 0702 0365 0.583 0.760 0.826
c-labe 0.008) (0.002) (0.002) 0.002) (0.035 (0.073) (0.003) (0.012) (0.006)
0907 0.961 0.949 0.885 0765 0.531 0.601 0.800 0.845
Thresh + SSL +Re-label | o504 (0.003) (0.0100 (0.003) (0.012) (0.039) (0.008) | (0.006) (0.003)
Entire Desten S 0907 0.961 0.952 0.887 0765 0.531 0.601 0.801 0.845
¢ Design Space 0.004) (0.002) (0.006) (0.005) (0.012) (0.039) (0.008) (0.006) (0.003)
Fully sunervised 0932 0976 0.967 0918 0.966 - 0.894 - 0.943
¥ sup (0.005) (0.001) (0.013) (0.006) (0.004) - (0.012) - (0.003)

Table 3. Axis ablation for LM = Snorkel, DM = RoBERTa. Each row corresponds to picking a specific method within our design space
using validation tuning. Blue numbers are the highest for a given dataset, while bold numbers are those within error bars of the best result.

Thresh IMDb Yelp AGNews TREC Spouse Chem.
Cov 0.901 0.949 0.881 0.702 0.365 0.593
(0.013) (0.002) (0.003) (0.035) (0.073) (0.010)
Cut 0.907 0.958 0.887 0.765 0.531 0.608
u (0.004) (0.003) (0.005) (0.012) (0.007) (0.003)
Conf 0.906 0.961 0.884 0.753 0.531 0.593
0 (0.005) (0.003) (0.002) (0.021) (0.039) (0.010)

Table 4. Deeper dive into the thresholding axis for DM = RoBERTa.
We report the highest performance of a method that incorporates a
given type of thresholding, selected by validation performance.

We hypothesize that SSL adds more unique value within our
design space when gaps (1) and (2) are more significant.
When gap (3) is the only dominating factor, there is less
reason to expect SSL to outperform thresholding and re-
labeling since the latter two more directly address label
noise. However, these two axes still do not use the unlabeled
examples, which cause gaps (1) and (2).

Label noise is the main gap on WS benchmarks. To
measure the relative importance of the three data gaps, we
compare the following models:

GT (Cov): the model trained on the clean labels for only
covered inputs, removing gap (3) but retaining (1) and (2).

GT (Full): the model trained with a clean and fully labeled
version of D, removing all gaps.

Given our hypothesis, we would expect these models to
perform similarly on WRENCH benchmarks. Indeed, as
shown in Figure 3] the largest gap between them is <2 p.p.

SSL helps more when coverage is lower. While SSL’s
ineffectiveness on existing benchmarks corresponds to label
noise being the predominant data gap, we would ideally also

Impacts of |L| and Coverage Bias

1.00

o
£ 095 » imdb
M /, ® yelp
@ 4 youtube
= b+ ® agnews
I trec
: 0.90 chemprot
o

0.85 £

0.85 0.90 0.95 1.00

GT (Cov) Test Acc

Figure 3. Measuring the impact of smaller |L| and coverage bias
on WS benchmarks. As seen, when label noise is removed from
the covered set of examples for GT (Cov), the performance drops
<2% compared to having all the clean labels for GT (Full). Note
we cannot plot Spouse as it does not have clean training labels.

show that SSL is more useful when the other two gaps are
significant, i.e., when GT (Cov) performs markedly worse
than GT (Full). One natural way to explore this would be to
test on lower coverage LF sets, which result in more unla-
beled data. However, most existing benchmarks have cover-
ages above 80% (see Table[2)). To overcome this limitation,
we first explore a wider range of coverages by subsampling
or generating LFs on existing datasets. We also create two
new WS text classification tasks based on publicly available
datasets, Massivel§8 (FitzGerald et al.,|2022) and Banking77
(Casanueva et al.| [2020); these tasks have larger label spaces
than all WRENCH datasets and thus require more effort (i.e.,
LFs) to obtain high coverage. Finally, we explore the less-
studied tabular setting, using Mushroom, Spambase, and

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

Semeval Chemprot

Massivel8 (Ours) Banking77 (Ours)

0.9 -
-

0.8

0.7

0.6 3
0.5

0.85
0.80
0.75
0.70
0.65
0.60

0.85
0.80 ../'/.
0.75

0.65
0.60
0.55

0.0 02 04 06 08 1.0 00 02 04 06 08

10 00 02 04 06 08 10 00 02 04 06 08 1.0

Coverage Coverage Coverage Coverage
Mushroom (Tab.) 1.0 Spambase (Tab.) 1.00 Phishingwebsites (Tab.)
0.9 .
S 0.9 0.95 ’
<08
0
Q@ 07 08 0.90
L]
0.6
0%0 02 04 06 o8 10200 o2 06 08 1.0°%%0 o0z 04 06 08 Lo
Coverage Coverage Coverage
Imdb 0.98 Yelp Agnews
0.94 ' P S 0.92 —
«—* A o 0.96 0.90 o
0 0.92
o 0.04 0.88
5090 0.86
E 0.88 0.92 0.84 "’4.\.
0.
0.86 0.90 82
0.80
0.84 0.88
00 02 04 06 08 1.0 00 02 06 08 10 00 02 04 06 08 1.0
Coverage Coverage Coverage
—e— Thresh+SSL »— Thresh+Re-label ------ GT (Full) *— GT (Cov) —e— Vanilla WS

Figure 4. Impacts of coverage level on data gaps and the effectiveness of SSL. Plotting GT (Full) (gray-dashed) and GT (Cov) (blue), we
measure the impacts of removing label noise across nested LF subsets. We also compare the effectiveness of Thresh + SSL (green) to
Thresh + Re-label (red). For datasets more impacted by coverage bias and limited size (larger gaps between dashed and blue lines), SSL
adds more unique value. “(Ours)” refers to datsets we introduce. “(Tab.)” refers to tabular tasks.

PhishingWebsites in a setup similar to that of |[Zhang et al.
(2022b)) (see Appendix [D|for details on all these datasets).

From this analysis, we first see that smaller coverage levels
(within the ranges we test) do not always cause GT (Cov)
to perform poorly. On some tasks (top two rows of Figure
M), including the three tabular datasets and our two new
ones, GT (Cov) performs significantly worse as coverage de-
creasesﬁ In contrast, on IMDb, Yelp, and AGNews (bottom
row of Figure[d), GT (Cov) surprisingly comes within 2%
of GT (Full) even when coverage drops to 10-20%.

Importantly, the partitioning of datasets based on the perfor-
mance of GT (Cov) also corresponds to the effectiveness of
using SSL over not using it. For each LF set used, we run
the methods within a reduced version of our design space:
we allow for confidence thresholding and try both versions
of self-training to perform SSL (i.e., by labeling points in U)
or to re-label (i.e., by labeling points in L). For the tabular
tasks, we also try VAT for the SSL technique because of its
effectiveness for MLPs. We plot the best performing meth-
ods for both “Thresh + SSL” and “Thresh + Re-label” in
Figure[d] As shown in the top two rows, just “Thresh + SSL”

?In Appendix E we show that coverage bias (and not limited
size) is primarily responsible for these performance drops.

is enough to consistently outperform “Thresh + Re-label” at
lower coverage levels. In contrast, in the bottom row, where
GT (Cov) drops in performance by <2 p.p., “Thresh + SSL”
continues to perform within errors of “Thresh + Re-label.”

Overall, this suggests that SSL can indeed be useful in WS
settings that differ from those captured by standard bench-
marks. At lower coverages (i.e., <35%), SSL is consistently
worth trying; potentially allowing users to reduce the num-
ber of LFs they need to write in order to achieve a particular
target performance. On our tabular tasks, SSL even allows
one to match having 40 LFs (highest coverage plotted) with
at most 20 LFs (second lowest).

5. Conclusions

We proposed a design space for combining SSL and WS,
using it to contextualize and match the performance of state-
of-the-art WS methods. We show that on existing WS bench-
marks, using the unlabeled data is surprisingly not essential.
However, it can be more useful when training MLPs instead
of RoBERTa and when the LFs cover fewer examples. Some
future directions include developing: (1) heuristics for more
efficiently navigating our design space given a new task; (2)
ways to compare data gaps without using clean labels.

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

References

Awasthi, A., Ghosh, S., Goyal, R., and Sarawagi, S. Learn-
ing from rules generalizing labeled exemplars. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SkeuexBtDr.

Boecking, B. and Dubrawski, A. Pairwise feedback for data
programming. In Proceedings of NeurIPS *19 Workshop
on Learning with Rich Experience (LIRE ’19), December
2019.

C. Rosenberg, M. H. and Schneiderman, H. Semi-
supervised learning by entropy minimization. In Semi-
Supervised Self-Training of Object Detection Models,
2005.

Cachay, S., Boecking, B., and Dubrawski, A. End-
to-end weak supervision. In Advances in Neu-
ral Information Processing Systems, volume 34,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/

0e674a918ebca3f78bfe02e2f387689d-Paper.

pdf.

Casanueva, 1., Temcéinas, T., Gerz, D., Henderson, M.,
and Vuli¢, 1. Efficient intent detection with dual sen-
tence encoders. In Proceedings of the 2nd Work-
shop on Natural Language Processing for Conversa-
tional Al, pp. 38—45, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.
nlp4convai-1.5.
org/2020.nlp4convai-1.5.

Chen, M., Cohen-Wang, B., Mussmann, S., Sala, F,
and Re, C. Comparing the value of labeled and
unlabeled data in method-of-moments latent variable
estimation. In Proceedings of The 24th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 130 of Proceedings of Machine Learn-
ing Research, pp. 3286-3294. PMLR, 13-15 Apr
2021. URL https://proceedings.mlr.press/
v130/chen2lg.html.

Ding, Y., Wang, L., Fan, D., and Gong, B. A semi-
supervised two-stage approach to learning from noisy
labels. In 2018 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 1215-1224,
Los Alamitos, CA, USA, mar 2018. IEEE Computer
Society. doi: 10.1109/WACV.2018.00138. URL
https://doi.leeecomputersociety.org/
10.1109/WACV.2018.00138.

FitzGerald, J., Hench, C., Peris, C., Mackie, S., Rottmann,
K., Sanchez, A., Nash, A., Urbach, L., Kakarala, V.,
Singh, R., Ranganath, S., Crist, L., Britan, M., Leeuwis,

URL https://aclanthology.

W., Tur, G., and Natarajan, P. Massive: A 1m-example
multilingual natural language understanding dataset with
51 typologically-diverse languages, 2022. URL https
//doi.orqg/10.48550/arXiv.2204.08582.

Gao, C., Goswami, M., Chen, J., and Dubrawski, A. Clas-
sifying unstructured clinical notes via automatic weak
supervision. In Proceedings of the 7th Machine Learning
for Healthcare Conference, volume 182 of Proceedings
of Machine Learning Research, pp. 673—690. PMLR, 05—
06 Aug 2022. URL https://proceedings.mlrl
press/v182/gao22a.html.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning
by entropy minimization. In Advances in Neural
Information Processing Systems, volume 17. MIT
Press, 2004. URL https://proceedings!
neurips.cc/paper/2004/file/
96f2b50b5d3613adf9c27049b2a888c7-Paper.
pdfl

Karamanolakis, G., Mukherjee, S., Zheng, G., and Awadal-
lah, A. H. Self-training with weak supervision. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 845-863, Online,
June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.66. URL |https:
//aclanthology.org/2021.naacl-main. 66.

Kocon, J., Cichecki, I., Kaszyca, O., Kochanek, M.,
Szydto, D., Baran, J., Bielaniewicz, J., Gruza, M.,
Janz, A., Kanclerz, K., Kocon, A., Koptyra, B.,
Mieleszczenko-Kowszewicz, W., Mitkowski, P., Oleksy,
M., Piasecki, M., Radlinski, , Wojtasik, K., Wozniak, S.,
and Kazienko, P. ChatGPT: Jack of all trades, master of
none. Information Fusion, 99:101861, 2023. ISSN 1566-
2535. doi: https://doi.org/10.1016/j.inffus.2023.101861.
URL https://www.sciencedirect.com/
science/article/pi1i/S156625352300177X.

Kong, K., Lee, J., Kwak, Y., Kang, M., Kim, S. G.,
and Song, W.-J. Recycling: Semi-supervised learning
with noisy labels in deep neural networks. IEEE Ac-
cess, 7:66998-67005, 2019. doi: 10.1109/ACCESS.
2019.2918794. URL |https://ieeexplore.ieee.
org/document/8721656.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. In International Conference on
Learning Representations, 2017. URL https://
openreview.net/forum?id=BJ60o0fgge.

Lang, H., Vijayaraghavan, A., and Sontag, D. Training
subset selection for weak supervision. In Advances
in Neural Information Processing Systems, vol-
ume 35, pp. 16023-16036. Curran Associates, Inc.,

https://openreview.net/forum?id=SkeuexBtDr
https://openreview.net/forum?id=SkeuexBtDr
https://proceedings.neurips.cc/paper_files/paper/2021/file/0e674a918ebca3f78bfe02e2f387689d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0e674a918ebca3f78bfe02e2f387689d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0e674a918ebca3f78bfe02e2f387689d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0e674a918ebca3f78bfe02e2f387689d-Paper.pdf
https://aclanthology.org/2020.nlp4convai-1.5
https://aclanthology.org/2020.nlp4convai-1.5
https://proceedings.mlr.press/v130/chen21g.html
https://proceedings.mlr.press/v130/chen21g.html
https://doi.ieeecomputersociety.org/10.1109/WACV.2018.00138
https://doi.ieeecomputersociety.org/10.1109/WACV.2018.00138
https://doi.org/10.48550/arXiv.2204.08582
https://doi.org/10.48550/arXiv.2204.08582
https://proceedings.mlr.press/v182/gao22a.html
https://proceedings.mlr.press/v182/gao22a.html
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://aclanthology.org/2021.naacl-main.66
https://aclanthology.org/2021.naacl-main.66
https://www.sciencedirect.com/science/article/pii/S156625352300177X
https://www.sciencedirect.com/science/article/pii/S156625352300177X
https://ieeexplore.ieee.org/document/8721656
https://ieeexplore.ieee.org/document/8721656
https://openreview.net/forum?id=BJ6oOfqge
https://openreview.net/forum?id=BJ6oOfqge

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

2022. URL https://proceedings.neurips. Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey,
cc/paper_files/paper/2022/file/ S., and Ré, C. Training complex models with
66720ca4e5a09ff83b55all7a6b2a86c—Paper—Confmuhetask . weak supervision. Proceedings of the
pdf. AAAI Conference on Artificial Intelligence, 33(01):

47634771, Jul. 2019. doi: 10.1609/aaai.v33i01.
33014763. URL https://ojs.aaai.org/index.
php/AAATI/article/view/4403.

Lee, D. The simple and efficient semi-supervised learning
method for deep neural networks. In ICML Workshop on
Challenges in Representation Learning, 2013.

Li, J., Socher, R., and Hoi, S. C. Dividemix: Learn-
ing with noisy labels as semi-supervised learning. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=HJgExaVtwr.

Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., and
Ré, C. Data programming: Creating large training
sets, quickly. In Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/

Maheshwari, A., Chatterjee, O., Killamsetty, K., Iyer, 6709e8d64a5f47269%ed5cead9f625f7ab-Paper.
R. K., and Ramakrishnan, G. Data programming pdfl
using semi-supervision and subset selection. CoRR,
abs/2008.09887, 2020. URL https://arxiv.org/
abs/2008.09887.

Ren, W., Li, Y., Su, H., Kartchner, D., Mitchell, C.,
and Zhang, C. Denoising multi-source weak su-
pervision for neural text classification. In Find-
ings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 3739-3754, Online,
November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.findings-emnlp.
334. URL https://aclanthology.org/2020.
findings—-emnlp.334.

Mazzetto, A., Cousins, C., Sam, D., Bach, S. H., and Up-
fal, E. Adversarial multi class learning under weak
supervision with performance guarantees. In Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 7534-7543. PMLR, 18-
24 Jul 2021a. URL https://proceedings.mlr.
press/v139/mazzetto2la.htmll Tarvainen, A. and Valpola, H. Mean teachers are

1 Is: Weight- i
Mazzetto, A., Sam, D., Park, A., Upfal, E., and Bach, S. better role models eight-averaged consistency

. . .) targets improve semi-supervised deep learning
Semi-supervised aggregation of dependent weak supervi- . .
. . results. In Advances in Neural Information Pro-
sion sources with performance guarantees. In Proceed- . .
. F The 24th Int tional Conf Artificial cessing Systems, volume 30. Curran Associates,
ings of The nternational Conference on Artificia Inc.. 2017. URL https://proceedings)

Intelligence and Statistics, volume 130 of Proceedings of
Machine Learning Research, pp. 3196-3204. PMLR, 13—
15 Apr 2021b. URL https://proceedings.mlr.
press/v130/mazzetto2la.htmll

neurips.cc/paper/2017/file/
68053af2923e00204c3ca’c6a3150cf7-Paper.
pdf.

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu, Y.
Learning with noisy labels revisited: A study using real-
world human annotations. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?1d=TBWA6PLJZQm.

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Vir-
tual adversarial training: A regularization method for
supervised and semi-supervised learning, 2017. URL
https://arxiv.org/abs/1704.03976.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D.,
and Goodfellow, 1. Realistic evaluation of deep
semi-supervised learning algorithms. In Advances
in Neural Information Processing Systems, vol-
ume 31, 2018. URL https://proceedings.
neurips.cc/paper/2018/file/ North American Chapter of the Association for Compu-
c1fea270c48e8079d8ddf7d06d26ab52-Paper. !fational Linguistics: Human Language Technologies, pp.
pdfl 1063-1077, 2021. URL https://aclanthology.

org/2021.naacl-main.84.pdf.

Yu, Y., Zuo, S., Jiang, H., Ren, W., Zhao, T., and Zhang,
C. Fine-tuning pre-trained language model with weak
supervision: A contrastive-regularized self-training ap-
proach. In Proceedings of the 2021 Conference of the

Pukdee, R., Sam, D., Ravikumar, P. K., and Balcan, N. Label

propagation with weak supervision. In The Eleventh Zhang, J., Yu, Y, Li, Y., Wang, Y., Yang, Y., Yang, M.,

International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=aCuFa-RRgtI.

10

and Ratner, A. WRENCH: A comprehensive benchmark
for weak supervision. In Thirty-fifth Conference on Neu-
ral Information Processing Systems Datasets and Bench-

https://proceedings.neurips.cc/paper_files/paper/2022/file/66720ca4e5a09ff83b55a117a6b2a86c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/66720ca4e5a09ff83b55a117a6b2a86c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/66720ca4e5a09ff83b55a117a6b2a86c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/66720ca4e5a09ff83b55a117a6b2a86c-Paper-Conference.pdf
https://openreview.net/forum?id=HJgExaVtwr
https://openreview.net/forum?id=HJgExaVtwr
https://arxiv.org/abs/2008.09887
https://arxiv.org/abs/2008.09887
https://proceedings.mlr.press/v139/mazzetto21a.html
https://proceedings.mlr.press/v139/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html
https://arxiv.org/abs/1704.03976
https://proceedings.neurips.cc/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf
https://openreview.net/forum?id=aCuFa-RRqtI
https://openreview.net/forum?id=aCuFa-RRqtI
https://ojs.aaai.org/index.php/AAAI/article/view/4403
https://ojs.aaai.org/index.php/AAAI/article/view/4403
https://proceedings.neurips.cc/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://aclanthology.org/2020.findings-emnlp.334
https://aclanthology.org/2020.findings-emnlp.334
https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://openreview.net/forum?id=TBWA6PLJZQm
https://openreview.net/forum?id=TBWA6PLJZQm
https://aclanthology.org/2021.naacl-main.84.pdf
https://aclanthology.org/2021.naacl-main.84.pdf

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

marks Track, 2021. URL https://openreview.
net/forum?id=09SKS5k81i0.

Zhang, J., Hsieh, C.-Y., Yu, Y., Zhang, C., and Ratner, A. A
survey on programmatic weak supervision. arXiv preprint
arXiv:2202.05433, 2022a. URL https://doi.org/
10.48550/arXiv.2202.05433.

Zhang, J., Wang, H., Hsieh, C.-Y., and Ratner, A. J.
Understanding programmatic weak supervision via
source-aware influence function. In Koyejo, S., Mo-
hamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 35, pp. 2862-2875. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
1343edb2739%9a61la6e20bd8764e814b50-Paper-Conference.
pdf.

Zhou, W., Lin, H., Lin, B. Y., Wang, Z., Du, J., Neves,
L., and Ren, X. Nero: A neural rule grounding frame-
work for label-efficient relation extraction. In Pro-
ceedings of The Web Conference 2020, WWW 20,
pp- 2166-2176. Association for Computing Machin-
ery, 2020. ISBN 9781450370233. doi: 10.1145/
3366423.3380282. URL lhttps://doi.org/10.
1145/3366423.3380282.

Zhu, Y., Zhang, P., Haq, E.-U., Hui, P., and Tyson, G. Can
chatgpt reproduce human-generated labels? a study of
social computing tasks, 2023. URL https://doi}
org/10.48550/arXiv.2304.10145!

11

https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=Q9SKS5k8io
https://doi.org/10.48550/arXiv.2202.05433
https://doi.org/10.48550/arXiv.2202.05433
https://proceedings.neurips.cc/paper_files/paper/2022/file/1343edb2739a61a6e20bd8764e814b50-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1343edb2739a61a6e20bd8764e814b50-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1343edb2739a61a6e20bd8764e814b50-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1343edb2739a61a6e20bd8764e814b50-Paper-Conference.pdf
https://doi.org/10.1145/3366423.3380282
https://doi.org/10.1145/3366423.3380282
https://doi.org/10.48550/arXiv.2304.10145
https://doi.org/10.48550/arXiv.2304.10145

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

A. Experiment Details

A.1. Search Spaces
Method Hyperparameters Description Range
1r learning rate le-5,1e-4,1e-3,1e-2,1e-1
Snorkel LM weight_decay weight decay le-5,1e-4,1e-3,1e-2,1e-1
num_epoch the number of training epochs 5,10,50,100,200
batch_size batch size 32,128,512
1r learning rate le-4,1e-3,1e-2
MLP dropout dropout probability 0.2,0.0
weight_decay weight decay 0.0
num_layer the number of hidden layers 2
hidden_size the hidden size of MLP layers 128, 256, 512
batch_size batch size 32
BERT 1r learning rate le-5,3e-5,5e-5
weight_decay weight decay le-4
T period for updating pseudo-labels 50,100,200
13 confidence threshold 0.1,0.3,0.5,0.7,09
COSINE A weight for confidence regularization 0.01,0.05,0.1
m weight for contrastive regularization 1
v margin for contrastive regularization 1
« momentum term for temporal ensembling 0.6
d size of hidden layer 20— 29
Denoise cl coefficient of denoiser loss 0.1,0.3,0.5,0.7,0.9
c2 coefficient of classifier loss 0.1,0.3,0.5,0.7,0.9
c3 coefficient of unsupervised self-training loss 1-c2-c1
0% temperature 1.0,0.33
WeaSEL d size of hidden layer 20 — 29
dropout dropout prob 0.3
Confidence Thresh threshold minimum confidence to keep np. linspace(ﬁ +0.1,0.9,9)
Cutstat Thresh percentile what percentile as cut-off np.linspace(0.1,0.9,9)
Self-Training T period for updating pseudo-labels 50, 100
Self-Train (DM as LF) T period for updating pseudo-labels 50, 100
EM A the coefficient for EM loss 1,0.5, le-1, le-2, 1e-3
A the coefficient for VAT unsupervised loss 1,0.5, le-1, le-2, 1e-3
VAT VAT ip Iterations of the power method for VAT 1
13 Finite difference for approximation in VAT 0.05,0.1,0.5, 1,5

VAT Perturbation distance

le-6, 1e-3,1,2.5,5

Table 5. Search spaces organized by type of method: label models, end models, baselines, thresholding, and SSL techniques.

A.2. Implementation Details

Label Models. Of the two label models that we use, we must tune parameters only for Snorkel. We tune over the search
space in Table [5|once per dataset; we then fix the hyperparameters and seed for fitting Snorkel to ensure the same exact
weak labels are given to all methods. This seed is chosen from a pool of three, also based on the validation set.

End Models. For MLPs, we increase the range of hidden sizes compared to WRENCH and tune for dropout instead
of weight decay. For RoOBERTa, we do not tune the batch size in order to reduce the search space, observing minimal
differences compared to using an alternative batch size of 16. Following WRENCH, we perform early stopping based on
validation performance for all methods. Specifically, we use a patience of 1000 steps for MLPs and 100 steps for RoBERTa.

Thresholding. Whenever applying dynamic versions of thresholding, we use the same threshold value across different
rounds for simplicity. Setting separate thresholds for different stages of learning (or adaptively) could be an interesting

direction for future work.

12

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

SSL Techniques. We make note of some important details relevant to specific SSL techniques:

¢ For the two self-training methods, we use a training schedule similar to that of COSINE, whereby we divide training
into two stages: In the first stage, the end model is trained on weak labels as is done in standard WS end model training.
In the second stage, new pseudo-labels are generated upon reaching a pre-specified update period of {50,100} steps.

¢ For self-training, we also allow for applying thresholds to the pseudo-labels given to unlabeled data. When combining
this approach with thresholding the initial weak labels, we again use the same threshold value.

* When using ST (DM as LF), we do not re-tune the label model-specific hyperparameters for Snorkel in subsequent
self-training rounds. We default to instead using the same hyperparameters found from the initial search.

* For EM and VAT, we sample batches with equal numbers of labeled and unlabeled examples when taking each step but
tune a weighting parameter to balance their losses.

* When applying VAT to RoBERTa models, we calculate perturbations with respect to the RoOBERTa-based features
(which are continuous) instead of the raw text inputs.

Re-labeling. For re-labeling, we again use a two-stage training schedule where the second stage contains a label update
period (as explained when discussing self-training). When combining re-labeling with thresholding, we consider the set
of examples with candidate labels (i.e., which are possibly removed when performing dynamic thresholding) to be fixed
after the initial round of thresholding (of LM outputs). Thus, re-labeling provides new pseudo-labels only for examples that
survived the initial thresholding.

Compute. We ran all MLP experiments on AWS, using up to four g4dn. 4xlarge EC2 instances at one time. Each
instance allowed for running up to 10 different experiments (i.e., here considered as a hyperparameter sweep for any specific
method from our design space) in parallel. For all RoOBERTa training runs, we ran our experiments on a fleet of up to 15
NVIDIA-A40 GPUs hosted on a cluster shared by our research lab. Each experiment fits on a single A-40 GPU, which is
large enough to use our batch sizes without needing gradient accumulation.

13

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

B. Additional Results for Baseline Comparisons
B.1. Additional Plots

IMDb-MLP (Acc) Yelp-MLP (Acc) Youtube-MLP (Acc) AGNews-MLP (Acc)

0.03

0.03 0.03

0.03

0.02 0.02 0.02 0.02

! 0.01 E 0.01 T | o; I .
: m
W i R - R = |
0.00 f l :[0.00 ! I l 0.00 F 0.00 I :|:
i
-0.01 -0.01 T -0.01

TREC-MLP (Acc) Chemprot-MLP (Acc)

Ain Test Perf.
o
2

-0.01
Spouse-MLP (F1_binary)
=

0.1 0.0

0.12

0.12 0.02 0.08

0.00 F l 0.00{- 0.00f FEEL L, . | 0.00f FEL I ————————————
—0.06 -0.01 T —0.04

Best of Design Space I Cutstat + Snorkel B Denoise + Snorkel
B Conf + VAT + Re-label (w/ DM) COSINE + Snorkel Weasel

Ain Test Perf.
o
2

1

Figure 5. Test performance for LM = Snorkel, DM = MLP. We compare a selected method from our design space (green) with four recent
proposals from the literature. We plot all performances relative to that of vanilla training (see Table[6]for the absolute metrics)

IMDb-BERT-MV (Acc) Yelp-BERT-MV (Acc) Youtube-BERT-MV (Acc) AGNews-BERT-MV (Acc)

0.03 0.0 0.0 0.03
‘5 0.02 I 0.04 T 0.02 0.02
o
o -
$ 0.01 0.02 0.01 0.01
R - T
£
S 0.00f T ——————————————————————————————— 0.001 L T 000 B | 0.00 (W __emte KL L ECRE
-0.01 ~0.0: -0.01 -0.01

Chemprot-BERT-MV (Acc)

" Spouse-BERT-MV (F1_binary) 0.06

0.16 I 0.04 B Cut + ST (DM as LF) + Re-label
T B Cutstat + MV
0.05 0.08 0.02 I COSINE + MV
I i mmm Denoise + MV
0.00 (- FEL L I 0001 gy I ————— 0.00 - L LS ; ———————————— Weasel
—0.05 —0.08 ! -0.02

Figure 6. Test performance for LM = MV, DM = RoBERTa. We compare a selected method from our design space (green) with four recent
proposals from the literature. We plot all performances relative to that of vanilla training (see Table[]for the absolute metrics). For this
setting, we did not run an exhaustive search over the whole design space so we do not report “Best of Design Space.”

]

Ain Test Perf.

MLP Results. While fully fine-tuning RoBERTa end models provides better overall performance across text-based tasks,
we also provide results for MLP end models for completeness. Here, the best single-method across datasets was (one-time)
confidence thresholding + VAT + re-labeling. This method achieves the best point estimate on all 8 datasets compared to
previous baselines.

Majority Voting Results. We also ablate the specific choice of label model to be Majority Voting for the RoBERTa
experiments. Here, we mostly use the same method as for when the label model is Snorkel. However, we found that
swapping in cut-based thresholding tended to perform better than sticking with confidence-based. This behavior can perhaps
be explained by the relatively cruder confidence estimates for Majority Voting soft-labels; instead of learning a probabilistic
model, the soft-labels for Majority Voting simply use the ratios of LF votes (e.g. for a binary task, if an example received 2
negative and 3 positive votes, the soft-label would be [0.4, 0.6]). Overall, we find that this method can least match previous
baselines on all datasets except Spouse. Notably though, the best overall performance on Spouse is still obtained by applying
our design space on top of the Snorkel label model (see Tables[7]and [§).

14

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

B.2. Tables with Absolute Performance

Method IMDb Yelp Youtube = AGNews TREC Spouse Chemprot Census
Vanilla 0828 0917 0.925 0.854 0.623 0.228 0.544 0511
0.001) (0.001) (0.004) (0.002) (0.004) (0.013) (0.002) (0.012)
Cutstat + Snorkel 0827 00913 0.919 0.865 0.662 0228 0.553 0.587
: 0.002) (0.001) (0.005 (0.001) (0.017) (0.003) (0.004) (0.001)
0.850 0924 0.929 0.870 0.678 0.330 0.558 0.593
Conf+ VAT +Re-label |~ '005) (0.004) (0.005 (0.000) (0.023) (0.005) (0.005 (0.005)
Best of Desien S 0.850 0.926 0.929 0.880 0.677 0.394 0.561 0.605
estol Design space 0.002) (0.004) (0.005) 0.000) (0.016) (0.006) (0.005) (0.006)
0833 0015 0.921 0.853 0.641 0.248 0536 0520
COSINE (MLP) + Snorkel | /001y (0.002) (0.002) (0.002) (0.012) (0.028) (0.004) (0.027)
. 0.806 0.895 0.528 0.856 0.568 0.169 0.535 0.569
Denoise (MLP) + Snorkel | /o11) (0006) (0.000) (0.001) (0.003) (0.207) (0.004) (0.007)
Weasel (MLE) 0.826 0.905 0.921 0.856 0.446 0.261 0.551 0.552
0.003) (0.005) (0.016) (0.005 (0.117) (0.017) (0.007) (0.051)

Table 6. Test performance for LM = Snorkel, DM = MLP. Blue referes to the best performance of a single method (i.e., excluding “Best of
Design Space”, which reports the best method per dataset) while bold refers to being within standard deviation error bars of the best
method. Red indicates where “Best of Design Space” outperforms the best single method outside of error bars.

Method IMDb Yelp Youtube AGNews TREC Spouse Chemprot

- 0873 0919 0944 0870 0656 0273 0.569
©001) (0.009) (0.007) (0.003) (00I7) (0.074) (0.001)

ot Smo 0869 0943 0953 0882 0703 0242 0.584
0015 (0.006) (0.002) (0.001) (0.017) (0.016) (0.004)

‘ 0.888 0954 0947 0882 0711 0531 0.581
Conf+ST(DMasLE) + Re-label | 013y (0.006) (0.012) (0.002) (0.030) (0.039) (0.012)
Best of Desien Soace 0907 0961 0.952 0885 0765 0531 0.601
‘ sign Sp 0.004) (0.002) (0.006) (0.002) (0.012) (0.039) (0.008)

0875 0042 094 0855 0655 030 0.580

COSINE (RoBERTa) + Snorkel | g 098 (0.001) (0.010) (0.002) (0.002) (0.048) (0.005)
. 0867 0922 0949 0867 0633 0287 0.544
Denoise (ROBERTa) + Snorkel | vy (0'018) (0.006) (0.008) (0.014) (0.202) (0.005)
0866 0926 0.960 0873 0647 0231 0.584
Weasel (RoBERTa) (0.006) (0.028) (0.008) (0.005) (0.021) (0.028) (0.014)

Table 7. Test performance for LM = Snorkel, DM = RoBERTa. Blue referes to the best performance of a single method (i.e., excluding
“Best of Design Space”, which reports the best method per dataset) while bold refers to being within standard deviation error bars of the
best method. Red indicates where “Best of Design Space” outperforms the best single method outside of error bars.

Method IMDb Yelp Youtube = AGNews TREC Spouse Chemprot
— 0862 0906 0959 0870 0667 0247 0572
0010) (0020) (0.010) (0.004) (0013) (0.049) (0.010)
ot Y 0859 0954 0957 0871 0721 0244 0.580
0.006) (0.000) (0.007) (0.008) (0.023) (0.018) (0.002)
0882 0954 0969 0.882 0743 0347 0.606
Cutstat + ST (DM as LF) + Re-label |- o509 (0.004) (0.004) (0.004) (0.049) (0.052) (0.004)
0882 0945 0.956 0876 0702 0431 0.580
COSINE (RoBERTa) + MV 0007 (0.008) (0.009 (0.002) (0.018) (0.034) (0.011)
Denoise + MV 0866 0905 0.956 0873 0678 0.172 0.576
cnoise 0.013) (0.029) (0.010) 0.006) (0.025) (0.205) (0.010)
Weasel (ROBERT:) 0866 0926 0.960 0873 0647 0231 0.584

Table 8. Test performance for LM = Majority Voting, DM = RoBERTa.

15

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

C. Additional Ablation Results
C.1. Axis Ablation for MLP

Method IMDb Yelp Youtube = AGNews TREC Spouse Chemprot Census Mean
Vanilla 0828 0017 0.925 0.854 0.623 0.228 0.544 0511 0.679
(0.001) (0.001) (0.004) 0.002) (0.004) (0.013) (0.002) 0.012) | (0.002)

Thresh Alone 0.833 0924 0915 0.865 0678 0228 0.547 0.587 0.697
0.002) (0.002) (0.002) 0.001) (0.027) (0.003) (0.004) 0.001) | (0.003)

SSL Alone 0.841 0.918 0.932 0.877 0.605 0.375 0.533 0.518 0.700
(0.004) (0.002) (0.000) 0.001) (0.008) (0.029) (0.003) (0.015) | (0.004)

Redabel Alone 0.833 0924 0.917 0.862 0.631 0.243 0.549 0.526 0.686
0.001) (0.002) (0.014) 0.001) (0.024) (0.003) (0.007) 0.027) | (0.005)

Thresh + SSL 0.838 0.926 0.929 0.878 0.691 0.394 0.560 0.605 0.728
cs (0.004) (0.004) (0.002) (0.001) (0.012) (0.006) (0.001) (0.006) | (0.002)
Thresh + Re.label 0.837 0925 0.917 0.870 0677 0270 0.558 0.602 0.707
esh + Re-fabe 0.002) (0.003) (0.007) (0.001) (0.016) (0.007) (0.002) 0.002) | (0.002)
SSL + Re.label 0.835 0925 0.935 0.875 0662 0347 0.557 0.542 0.710

§ (0.001) (0.006) (0.005) 0.002) (0.011) (0.043) (0.004) 0.025) | (0.006)

)) 0.850 0.930 0.929 0.880 0.671 0.347 0.561 0.606 0.722
Thresh + SSL + Re-label | - 5050 (0.001) (0.005) 0.000) (0.034) (0.043) (0.005) 0.001) | (0.007)
0850 0.926 0.929 0.830 0677 0394 0.561 0.605 0.728

Entire Design Space

(0.002) (0.004) (0.005) (0.000) (0.016) (0.006) (0.005) (0.006) (0.002)

Table 9. Test performance for LM = Snorkel, DM = MLP. Each row corresponds to picking a specific method within our design space
using validation tuning. Numbers in blue are the highest for any given dataset, while numbers in bold are those within error bars of the
best result.

C.2. Axis Instantiations for ROBERTa

IMDb Yelp AGNews TREC Spouse Chemprot
et SSL 0906 0961 0884 0748 0336 0.600
est wio 0.005) (0.002) (0.003) (0.023) (0.095) (0.006)
Best w/ EM 0.893 0956 0885 0746 0283 0.601
es ©011) (0.001) (0.001) (0.043) (0.083) (0.009)
0900 0952 0885 0753 0244 0.608
Best w/ VAT 0.005) (0.005 (0.003) (0.021) (0.040) (0.003)
Bestw/ ST 0907 0961 0887 0765 0392 0.601
: ©.004) (0.003) (0.005) (0.012) (0.098) (0.005)
‘ N 0889 0958 0885 0725 0531 0.601
Bestw/ST(DMasLE) |00 (0.003) (0.003) (0.018) (0.039) (0.008)

Table 10. Details of the SSL axis for DM = RoBERTa. We report the highest performing method that incorporates a given SSL technique,
selected by validation performance.

IMDb Yelp AGNews TREC Spouse Chemprot

No Re-label 0885 0.959 0.887 0732 0529 0.592
ORE-HbEINE | 0.018) (0.002) (0.005) (0.014) (0.057) (0.005)
0.907 0.961 0.885 0765 0.532 0.601

Relabeling | o 004) (0.002) (0.003) (0.012) (0.039) (0.005)

Table 11. Details on whether re-labeling is useful for DM = RoBERTa. We report the highest performing method that either incorporates
or does not incorporate re-labeling, selected by validation performance.

16

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

C.2.1. AXIS INSTANTIATIONS FOR MLPs

Method IMDb Yelp Youtube AGNews TREC Spouse Chemprot Census

Cov 0.841 0.925 0.935 0.877 0.662 0.375 0.557 0.542
(0.004) (0.006) (0.005) (0.001) (0.011) (0.029) (0.004) (0.025)

Cut 0.832 0.930 0.935 0.880 0.684 0.394 0.566 0.606
(0.002) (0.001) (0.002) (0.000) (0.016) (0.015) (0.003) (0.001)

Conf 0.850 0.928 0.929 0.878 0.691 0.417 0.560 0.592
(0.002) (0.002) (0.005) (0.002) (0.012) (0.009) (0.011) (0.008)

Table 12. Details of the thresholding axis for DM = MLP. “Best with” represents the highest performing method that incorporates a given

thresholding method, selected by validation tuning.

Method IMDb Yelp Youtube AGNews TREC Spouse Chemprot Census
st SSL 0837 0927 0935 0870 0.684 0270 0560 0.602
©002) (0.001) (0.002) (0001 (0.016) (0.007 (0.011) (0.002)

Best w/ VAT 0850 0926 0935 0.880 0.691 0355 0.563 0.605
0.002) (0.002) (©.005 (0.000) (0.012) (0.015 (0.007) (0.006)

Best w/ EM 0835 0922 0925 0869 0664 0268 0.560 0.595
©001) (0.00D) (0.002) (0.002) (0.007) (0.032) (0.009 (0.004)

Bestw/ ST 0838 0928 0929 0866 0.674 0379 0.566 0.592
estw ©001) (0.002) (0.005 (0.001) (0.018) (0.008) (0.003) (0.002)
0834 0930 0935 0869 0.668 0.417 0.561 0.606
Bestw/ST(MasLE) | 001y (0.001) (0.002) (0.000) (0.038) (0.009) (0.005 (0.001)

Table 13. Details of the SSL axis for DM = MLP. We report the highest performing method that incorporates a given SSL method, selected

by validation tuning.

17

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

D. Beyond standard WS benchmarks: datasets for coverage ablations
D.1. LF subsampling and procedural generation on existing WRENCH datasets

Overall, WS benchmarks lack agreed-upon ways to explore different LF coverage/precision trade-offs. In this work, we
choose to do so by sub-sampling LFs from an overall base set. However, the default LF sets associated with WS benchmarks
are not equally as suitable to subsample from. In particular, we are wary about subsampling default LF sets when they:

(1) Contain very few LFs, which reduces the possible granularities of subsampling

(2) Contain LFs which are heterogeneous or have untracked lineages (e.g., A closely relates to or was only provided in
response to another LF \o).

For datsets where we subsample directly, we choose ones with both larger LF counts and where all LFs are of the same form.
This includes:

e Semeval: 164 string-matching rules selected by humans from an automated candidate generation procedure (Zhou
et al., [2020)

* Chemprot: 26 individual keyword-based rules (Yu et al.,|[2021)

These contrast with LF sets that are far smaller, more heterogeneous, or have unclear dependencies. For these datasets, we
instead procedurally generate LFs using the tools from WRENCH (Zhang et al.| 2021])

e IMDb: 4 aggregate keyword based rules (i.e., each LF checks for the presence of any of multiple keywords), 1
expression-based rule (Ren et al., [2020)

e Yelp: 7 heuristic rules on keywords, 1 third-party model on polarity of sentiment (Ren et al., 2020)

* Agnews: 9 aggregate keyword based rules split amongst four respective classes (Ren et al., 2020)

Subsampling. On some datasets, we directly subsample the LFs coming from WRENCH, selecting the most accurate
LFs in a class-stratified fashion in order to roughly preserve similar ratios of LFs between classes. We also take care not
to completely remove all the LFs for a given class, setting the minimum count to 1 per class. We explore subsampling
per-class ratios within [0.1,0.9], avoiding LF sets that are near-duplicates of each other (i.e., having coverage levels within
1% of each other). We subsample based on accuracy to (optimistically) simulate an LF writer who is both careful and has
considerable domain expertise; we assume that if they were to end up at a lower coverage LF set (either by writing fewer
LFs or by pruning LFs written during a “brainstorming” phase), they would prioritize rules that they are most confident
about. Assuming the LF writer has sufficient domain knowledge, these LFs are also the ones more likely to be accurate on
the examples they fire on.

Procedural Generation. For the datasets where subsampling is less appropriate, we use WRENCH’s LF generator to
construct LF sets with {2, 5, 10, 15, 20} n-gram based LFs per class, choosing the most accurate LFs from the candidate
pool that have at least 2% coverage over the training set.

D.2. New WS benchmarks: Massivel8 and Banking77

We also create two new WS benchmarks by writing LFs for the publicly available intent classification datasets MASSIVE
(FitzGerald et al., [2022) and Banking77 (Casanueva et al.,|2020). These tasks were chosen a high-level to capture some
practical challenges that are not as well-represented by current WRENCH tasks; most notably, they contain significantly
higher class counts, which makes them more challenging to write LFs for. Roughly speaking, assuming one writes uni-polar
LFs (i.e., each LF either votes for a single class or abstains), the form of the vast majority of LFs in WRENCH, the number
of LFs needed to reach a certain coverage level will likely need to scale with the number of classesﬂ Further, because tasks
with larger label spaces require writing more LFs, we also view these tasks as being especially relevant for studying lower
coverage LF sets. We provide more details about the new tasks as follows:

3This, of course, also assumes that the coverage of LFs within each class does not change dramatically

18

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

Massivel8 is derived from the MASSIVE dataset, a collection of single-shot interactions between human users and general
intelligent voice assistants across 52 languages. We exclusively use the English-US portion of this dataset and treat the broad
scenarios (i.e., general domains) as labels instead of the finer-grained intents. For instance, “alarm” is a scenario whereas
“alarm_set”and “alarm_remove” are two intents within that scenario. We call the resulting task Massivel8 since there
are 18 different scenario classes. Notably, even with this simplification, Massivel8 contains at least nearly double the class
count of all previous WRENCH classification tasks (see Table|14|below).

Banking77 is a collection of online banking queries along with the corresponding user intents. We use this task as defined
with the full set of 77 intents, which can be both quite domain specific and especially fine-grained. If we were to write the
minimum number of LFs for Banking77, i.e. one for each class, this would already require 77 LFs, more than the number of
LFs for most previous WRENCH datasets.

Datasets |Y| |Train| |Testf #LFs Coverage Snork. Precision Metric
IMDb 2 20000 2500 5 87.6% 74.4% Acc.
Yelp 2 30400 3800 8 82.8% 75.4% Acc.
Youtube 2 1586 250 10 87.7% 87.0% Acc.
AgNews 4 96000 12000 9 69.1% 82.5% Acc.
Trec 6 4965 500 68 95.1% 60.0% Acc.
Massivel8 (ours) 18 11514 2974 59 61.3% 83.8% Acc.
Banking77 (ours) 77 9003 3080 218 54.5% 76.5% Acc.
Spouse 2 22254 2701 9 25.8% 65.6% (on Val) FI (binary)
Chemprot 10 12861 1607 26 85.6% 58.0% Acc.
Census 2 10083 16281 83 99.1% 58.0% FI (binary)

Table 14. Comparing our two new datasets (blue) to previous benchmarks. Coverage is the percentage of training examples on which at
least one LF does not abstain. “Snork. precision” refers to the accuracy of the Snorkel LM on the covered set of inputs.

Labeling Functions. For both datasets, we manually write the LFs ourselves based upon a randomly sampled development
set of 250 cleanly-labeled examples. Each LF checks whether a specific keyword (or set of multiple keywords) is a substring
of the given example and then votes for a specific class if the substring(s) are present (and otherwise abstaining). We provide
some examples of the LFs we wrote in Tablesand We share the full LF sets in our supplied codebaseﬂ

Finally, in our experiments, we also try the same subsampling procedure from Appendix [D.T]to further explore different
coverage levels. For Massivel8 we use the ratios {0.1, 0.5, 0.7, 0.8, 1} and for Banking77 we use the ratios {0.1, 0.5, 0.7,
1.0}.

Label

Keyword LFs

‘‘alarm’’

[YYalarm’ ',

Y ‘waketup’ ']

‘‘takeaway’’

[Y‘takeaway’'’,

‘‘delivery’’,

“‘order’ ']

‘‘social’’

[Ytweet’'’,

‘“‘twitter’’,

‘‘facebook’’,

‘‘complain’’]

‘‘music’’

[Y‘what+song’ ',

‘‘savetsong’’,

‘'‘shuffle’’]

‘‘calendar’’

[Y‘calendar’’,

‘‘schedule’’,

“‘remind’ ']

Table 15. Example LF's for Massivel8. Each row shows one of the possible labels and the associated keyword-based LFs. Note that some
LFs contain multiple keywords/substrings that are joined by the “+” character. This signifies that the LF checks whether all the keywords

supplied are in a given example (though they do not necessarily have to appear in the provided order).

Label

Keyword LFs

‘l‘age_limit’’

[‘“lage limit’’,

‘‘child’’,

\ \my son’’,

‘‘my daughter’’]

‘‘pin_blocked’’

[‘Y'takeaway'’,

‘‘delivery’’,

‘‘order’’]

‘‘lost_or_stolen_card’’

[YYtweet’’,

‘“twitter’’,

‘‘facebook’’,

‘‘complain’’]

‘‘“verify my_identity’’

[*‘id+check’ ",

‘‘what+ id’’]

‘‘disposable_card_-limits’’

[‘‘disposable+limit’’,

‘‘disposablet+max’’]

Table 16. Example LFs for Banking77. Note the usage of “+”, as explained in the caption of Table[T3]

4https ://github.com/jeffreywpli/SSLAWS

19

https://github.com/jeffreywpli/SSL4WS

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

D.3. Tabular Datasets

Labeling Functions. We use three tabular tasks and the LF generation procedure from Zhang et al.|(2022b). At a high-
level, this procedure uses the sk1learn implementation of random forests (i.e., RandomForestClassifier) to train
multiple decision trees on a small cleanly-labeled development set (i.e., formed by uniformly sampling 5% of the training
set in our experiments). Uni-polar LFs are then derived from individual trees. In our experiments, we generate a set of 100
candidate LFs for each task and then select the top-{5%, 10%, 15%, 20%} most accurate LFs (per-class) based upon the
full training set (i.e., similar in spirit to WRENCH’s procedural LF generator). Again, while this selection step isn’t possible
without access to all the labels, we consider it as a loose (optimistic) approximation of integrating of a domain expert’s
knowledge and judgment.

Robustness to seeding. One caveat of this approach for genearting LFs is that the behavior may vary depending on the
initial random seed given to RandomForestClassifier. To try to account for this, we try multiple seeds and find that
the overall conclusions do not change across different runs of the LF generator. As seen in Figure[7} while the absolute
performance levels may vary across seeds, SSL is consistently more useful at lower coverage levels.

Mushroom (Seed 1) 10 Mushroom (Seed 2) 10 Mushroom (Seed 3)
! : —4

0.9 0.9
3
2 0.8 0.8
o
3
K] 07 07

L}
06 06

0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 06 08 10
Spambase (Seed 1) Spambase (Seed 2) Spambase (Seed 3)
-

0.95 ~ 0.95 0.95
020 ._;//‘/J 0.90 0.90 7 o
o /
H g

3 0.85 0.85 0.85
go. . .
o
3 0.80 0.80 0.80
2o . .

0.75 0.75 0.75

0.70 0.70, 0.70

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1.00 Phishingwebsites (Seed 1) 10 Phishingwebsites (Seed 2) 1.00 Phishingwebsites (Seed 3)
L]
o 0.95 0.95
& — ::[4]
— ® S /‘/,
0 [[==
() ¥ P
" 0.90 0.90
L]

0'8%.0 02 04 06 08 10 O'%.O 02 04 06 08 1.00'8%.0 02 04 06 08 10
Coverage Coverage Coverage

o— GT (Cov) —e— Vanilla ®— Thresh+SSL ®— Thresh+Re-label - GT (Full)

Figure 7. Replication of our tabular experiments across different seeds

20

Characterizing the Impacts of Semi-supervised Learning for Weak Supervision

E. Coverage bias explains the value of unlabeled data

Semeval Chemprot Massivel8 (Ours) Banking77 (Ours)
0.90 gt] 0.90 —
0.9 o4 -
el 0.85 o 0.85
08 0.80 0.80

0.75

07 0.75 ¢ 0.70

0.70 0.65
06 0.65 ¢ 0.60
0.5 //. 0.60 0.55

. 0.50
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0

Coverage Coverage Coverage Coverage
Imdb Yelp Agnews
0.98{]
0.94 —5—- % 0.92 e ——— = —
0.2 [e 0.96 0.90 —
g ’ 0.04 0.88
mo.go .—// 0.86
0.92
4} 0.84
2088
0.86 0.90 0.82
0.80
0.84 0.88
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Coverage Coverage Coverage
—————— GT (Full) »— GT (Cov) GT (Sub) ~ —e— Vanilla WS

Figure 8. Limited Size versus Coverage Bias. We may assess the relative impacts of the limited size of WS training sets (comparing GT
(Full) and GT (Sub)) versus their coverage bias (comparing GT (Sub) and GT (Cov)).

In Section we observed that on some datasets, as coverage decreases, so does the performance of GT (Cov). Indeed, for
any LF set, we can view the gap in performance between GT (Cov) and GT (Full) as a reflection of the aggregate impact of
two data gaps that WS datasets suffer from: (1) limited size (i.e., not all training examples are labeled) and (2) coverage bias
(i.e., the examples covered by LFs come from a biased subpopulation of the test distribution). Because GT (Cov) simply
ignores all unlabeled examples, this gap also then reflects the value of said examples.

A natural follow up question is whether limited size or coverage bias more greatly hinders learning under WS. Here, we
further decompose the performance drops we observed between GT (Cov) and GT (Full) by considering a third model
that interpolates between the two. Specifically, we consider GT (Sub), a model that suffers only from limited size but not
coverage bias. This model is trained on a training set that shares the same size as the dataset for GT (Cov), but consists of
examples re-sampled uniformly from the full training set (i.e., eliminating coverage bias).

Once we have trained all three models, we may then simply compare the following performance gaps:

o TestPerf(GT (Full)) — TestPerf(GT (Sub)): to ablate the impact limited size

o TestPerf(GT (Sub)) — TestPerf(GT (Cov)): to ablate the impact of coverage bias

As we see in Figure [8] when large gaps exist between GT (Full) and GT (Cov), most of this gap is explained by the
performance drop between GT (Sub) and GT (Cov) instead of the drop between GT (Full) and GT (Sub) (e.g., especially on
Semeval, Massivel8, Banking77). This suggests that coverage bias is far more responsible than limited size, which perhaps
makes sense in the context of WS, as LFs can label an arbitrary amount of data but only from the covered set. Also, this
means that SSL techniques, initially developed in settings where labeled and unlabeled sets are i.i.d. (i.e., where limited
size is the only relevant data gap), actually remain effective in low coverage WS settings despite the significant impacts of
coverage bias.

21

