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Abstract
Active learning is a common strategy for reducing
the dependency of model training on large labeled
datasets by selecting only the most useful data for
labeling. In this work, we consider the problem of
actively selecting labels for time instant classifica-
tion using neural network classifiers. We propose
a novel method that selects samples based on a
combination of factors that includes uncertainty,
diversity, and data density.

1. Introduction
Time series classification has applications in diverse fields
such as healthcare, climate science, neuroscience, and finan-
cial analysis. Learning classifiers can often require large
amounts of labeled data that can be difficult and expensive to
obtain. To reduce this label dependency, we can use active
learning (AL) to acquire labels that are most informative
for learning classifiers (Settles, 2009). In this work, we con-
sider the problem of active time series instant classification
which involves assigning data, at individual time instants or
time stamps, to different classes. While much of prior work
considers actively classifying entire time sequences into a
single class, there isn’t much work in literature that deals
with actively classifying time instants. Additionally, there
is limited work that explores AL for deep networks, as prior
works have studied AL for time series data using nearest
neighbour classifiers (He et al., 2015; Peng et al., 2017).

Majority of the works that have explored using deep net-
works for active classification focus on non-correlated data
such as images and text. These works are not directly ap-
plicable to time instant classification since they do not con-
sider the inter sample correlations occurring within a time
sequence owing to its periodicity. Standard deep AL meth-
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ods are either uncertainty or diversity based which fail to
perform well. For e.g., uncertainty based methods prioritize
noisy or class transition time instants, leading to subpar
performance. Our proposed method addresses these prob-
lems by designing a method that incorporates uncertainty,
diversity, and data density to improve active time instant
classification for deep networks.

2. Method
Problem setup: Suppose that we wish to classify each time
instant xi ∈ Rd within a time series X = {x1, . . . ,xT }
as corresponding to a class yi. Our goal is to devise an
active acquisition strategy for labels y that allows time series
instant classifiers to be trained in a label efficient manner.
The proposed AL method is designed for neural network
classifiers f that can be decomposed into representation
learning network fθ, which consists of stacked 1D CNNs,
and a classifier network fψ , which consists of a linear layer
followed by a softmax operator. The network fθ transforms
each time instant xi ∈ Rd to a latent instant representation
zi ∈ Rk, while the classifier network transforms these latent
representations zi to class prediction probability vectors
ŷi ∈ Rc, where c is the number of different classes.

Our proposed method: We first apply an uncertainty quan-
tification function U on all softmax probability vectors
ŷi,∀i ∈ T . Representations zi corresponding to the top K
percentile of uncertainty scores U(ŷi) are clustered into M
different clusters through the K-means clustering algorithm.
Out of these M clusters, the top B dense clusters, where
B is the sampling budget in an AL round, are selected and
the most representative sample for each of these clusters are
chosen. Labels for the chosen samples are obtained and the
classifier is then retrained on all the labeled samples. This
procedure is repeated until the total labeling budget is met.

Intuition for our method: Time series instants, and their
corresponding instant representations, are likely to be peri-
odic in time. Uncertain periodic time instants are likely to
yield similar representations, and hence a K-means cluster-
ing algorithm is likely to cluster periodic uncertain instants
together. Clusters of higher density are likely to be as-
sociated with more frequently encountered uncertain time
instants, which need to be prioritized for label acquisition.
By selecting points from such clusters, we avoid noisy or
class transition points which are inherently uncertain.
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Figure 1. Our method shown in blue line (using entropy as an uncertainty function) and green line (using margin confidence as an
uncertainty function) outperforms all the baseline methods. All experiments are repeated 5 times. The median score is shown in solid
lines while the gap between 75th and 25th percentile scores is filled with shaded colors.
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(A) ANYmal B input and labels (B): 52 % accuracy with 20 samples (C): 75 % accuracy with 40 samples

Figure 2. Our method on ANYmal B. (A) shows the input sequences instants xi and their corresponding labels yi. The red vertical lines
show sample instants chosen for labeling at the end of a training round. It can be seen in (B) that our method prioritizes selection of
uncertain periodic instants which are frequently encountered (class 2) for labelling, leading to correct prediction of these instants in (C).

3. Experiments
Synthetic data: We simulate sequences of sinusoidal waves
y = sin(2πfx) + ϵ, where ϵ ∼ N (0, 1) that switch
randomly between 5 different frequency (f ) values of
12, 15, 20, 24, 30 which the classifier predicts.

Robot activity datasets: We use the Isaac gym environment
(Liang et al., 2018) to generate sequences of two different
types of quadrupedal robots, ANYmal B and ANYmal C,
walking through a predefined map which consists of 5 dif-
ferent terrains (Azabou et al., 2022). These terrain classes
to be predicted include walking down a staircase, walking
on a flat surface, walking up a staircase, walking down a
slope, and walking up a slope.

Baselines and results: We experiment with two variations
of our method, using entropy and margin sampling for un-
certainty quantification. The baseline methods we use are
random (where samples are selected uniformly at random),
max-k entropy (an informativeness based method), core-
set selection (Sener & Savarese, 2018) (a diversity based
method), and InfoNN (Nadagouda et al., 2023) (a method
proposed for active image classification that considers both
informativeness and diversity). On an average, our method

with margin sampling seems to be the best performing in
all the experiments. Since our method outperforms methods
that use either uncertainty (entropy) or diversity (coreset)
and also a combination of the two factors (InfoNN), we be-
lieve that incorporating data density indeed is very beneficial
in selecting informative samples.

4. Discussion and future directions
In our method, we employ clustering of representations to
find densely distributed sample regions. It would be inter-
esting to think of more principled methods that capture the
correlation in the time series data to estimate these dense
regions. Possible directions towards this include finding
distributional modes of smaller windowed segments, or the
short term Fourier transforms for these windows, through
the kernel mean-shift algorithm. Also, the methods we cur-
rently use for uncertainty quantification sometimes fail to
accurately measure a sample’s informativeness. For exam-
ple, some of the incorrectly classified samples have very low
entropy values, thus avoiding their selection. This necessi-
tates the usage of other methods, potentially specific to time
series data (Peng et al., 2017) to quantify the uncertainty.

2



Active learning for time instant classification

References
Azabou, M., Mendelson, M., Sorokin, M., Thakoor, S.,

Ahad, N., Urzay, C., and Dyer, E. L. Learning behavior
representations through multi-timescale bootstrapping.
2022.

He, G., Duan, Y., Li, Y., Qian, T., He, J., and Jia, X. Active
learning for multivariate time series classification with
positive unlabeled data. In 2015 IEEE 27th International
Conference on Tools with Artificial Intelligence (ICTAI),
pp. 178–185. IEEE, 2015.

Liang, J., Makoviychuk, V., Handa, A., Chentanez, N.,
Macklin, M., and Fox, D. Gpu-accelerated robotic simula-
tion for distributed reinforcement learning. In Conference
on Robot Learning, pp. 270–282. PMLR, 2018.

Nadagouda, N., Xu, A., and Davenport, M. A. Active metric
learning and classification using similarity queries. In
Uncertainty in Artificial Intelligence (UAI), 2023.

Peng, F., Luo, Q., and Ni, L. M. Acts: an active learning
method for time series classification. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE),
pp. 175–178. IEEE, 2017.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In International
Conference on Learning Representations, 2018.

Settles, B. Active learning literature survey. Technical
report, University of Wisconsin-Madison Department of
Computer Sciences, 2009.

3


